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Abstract

We present an autocalibration algorithm for upgrading
a projective reconstruction to a metric reconstruction by
estimating the absolute dual quadric. The algorithm enforces
the rank degeneracy and the positive semidefiniteness of the
dual quadric as part of the estimation procedure, rather than
as a post-processing step. Furthermore, the method allows
the user, if he or she so desires, to enforce conditions on
the plane at infinity so that the reconstruction satisfies the
chirality constraints.

The algorithm works by constructing low degree polyno-
mial optimization problems, which are solved to their global
optimum using a series of convex linear matrix inequality
relaxations. The algorithm is fast, stable, robust and has
time complexity independent of the number of views. We
show extensive results on synthetic as well as real datasets
to validate our algorithm.

1. Introduction

By its very nature, the problem of determining the internal
parameters of a camera from image data alone has generated
tremendous theoretical interest in the field of computer vi-
sion since its introduction in [4]. The appeal of the problem
is practical as well, since a generic self-calibration method
eliminates the need for a special offline procedure, such
as using a calibration grid. While a projective reconstruc-
tion of the scene can be computed from image coordinates
alone, the goal of autocalibration is to compute the projective
transformation (homography) that upgrades the projective
reconstruction to a metric reconstruction.

The basic tenet of autocalibration is the constancy of
the absolute conic under rigid body motion of the camera.
This is encoded conveniently in the absolute dual quadric
(Q∗∞) formulation of autocalibration [23]. Once estimated,
an eigenvalue decomposition of the dual quadric yields the
homography that relates the projective reconstruction to a
Euclidean reconstruction.

The common practice in estimating Q∗∞ is to enforce its
rank degeneracy as a post-processing step by simply drop-
ping the smallest singular value. The rank degeneracy of
the absolute quadric has an important physical interpreta-
tion: enforcing it is equivalent to demanding a common
support plane for the absolute conic over the multiple views.
That, indeed, is the real advantage that an absolute quadric
based method affords over one based on, say, the Kruppa
constraints. Thus, for more than two views, it does not make
sense to estimate Q∗∞ without enforcing the rank condition.

In this paper, we propose a method for estimating the
absolute quadric where its rank deficiency is imposed within
the estimation procedure. A significant drawback of several
prior approaches for autocalibration is the difficulty in ensur-
ing a positive (or negative, depending on scale) semidefinite
Q∗∞. As has been discussed in the literature [9], it is usually
not correct to simply output the closest positive semidefinite
matrix as a post-processing step since it might lead to a de-
generate calibration. Our formulation explicitly demands a
positive (or negative) semidefinite Q∗∞ as an output of the
optimization problem, which ensures that the resulting dual
image of the absolute conic (DIAC) can be decomposed into
its Cholesky factors to yield the calibration parameters of
the cameras.

It is well-established that the principal difficulty in auto-
calibration lies in the affine upgrade step, which involves
a precise estimation of the plane at infinity, π∞. In our
approach, estimating the plane at infinity is encapsulated
in the absolute quadric estimation itself, as π∞ lies in the
null-space of Q∗∞. Further, it is reasonable to demand that
chirality holds, that is, the points and camera centers lie on
one side of the plane at infinity [7]. It has been argued in
recent literature [16] that it is most important for any recon-
struction method to start by satisfying the requirements of
chirality, in particular, with respect to the camera centers. In-
tuitively, moving across the plane at infinity requires jumps
across large “basins” in the search space. Thus, imposing
chirality constraints increases the chances of an autocali-
bration routine to start in the correct region of the search
space.
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Given reasonable assumptions on the internal parameters
of the camera, such as zero skew and unit aspect ratio, we
pose the problem of estimating the positive semidefinite,
rank-degenerate absolute quadric as one of minimizing a
polynomial objective function, subject to polynomial equal-
ity and inequality conditions. Chirality conditions translate
into polynomial inequality constraints on the entries of the
absolute quadric, so they can be readily included in the poly-
nomial system that we seek to minimize. Our formulation
allows us to compute the global minimum for such a polyno-
mial system using a series of convex linear matrix inequality
relaxations [13, 14].

In summary, the contributions of this paper are:

• We present a fast and reliable method for autocalibra-
tion by estimating the absolute dual quadric, where
its rank degeneracy and positive semidefiniteness are
imposed within our optimization framework.

• We can demand that our reconstruction satisfy the re-
quirements of chirality by imposing constraints on the
plane at infinity during our estimation procedure.

• We globally minimize a reasonable objective function
based on camera matrices alone to deduce the entries of
the absolute quadric subject to all the above constraints.

2. Background
Unless stated otherwise, we will denote 3D points by

homogeneous 4-vectors (such as X = (X1, X2, X3, X4)>)
and 2D points by homogeneous 3-vectors (such as x =
(x1, x2, x3)>). A projective camera is represented as P =
K[R|t], where the intrinsic calibration parameters of the
camera are encoded in the upper triangular matrix K and
(R, t) denote the exterior orientation of the camera. One of
the objectives in autocalibration is to recover the matrix K,
which we parametrize as

K =

 fx s u
0 fy v
0 0 1

 (1)

where fx, fy stand for the focal lengths in the x and y direc-
tions, s denotes skew and (u, v) the position of the principal
point.

Suppose we have a projective reconstruction {Pi,Xj}
for i = 1, · · · ,m and j = 1, · · · , n. We wish to determine
the projective transformation H that takes the projective
reconstruction back to Euclidean {Pi

M ,X
j
M} where

Pi
M = PiH , i = 1, . . . ,m

Xj
M = H−1Xj , j = 1, . . . , n. (2)

We can always perform the projective reconstruction such
that P1 = [I|0]. We can choose the world Euclidean frame

to coincide with the first camera, so that P1
M = K1 [I|0].

Then, the form of H can be deduced as

H =
[

K1 0
−p>K1 1

]
(3)

where the plane at infinity in the projective reconstruction is
π∞ = (p, 1)>. The canonical form of π∞ is (0, 0, 0, 1)>

and is moved by a projective transformation.
The absolute conic, Ω∞, is the point conic on π∞ gov-

erned by X2
1 +X2

2 +X2
3 = 0, X4 = 0. A principal quantity

of interest in autocalibration is the dual image of the abso-
lute conic (DIAC): ω∗ = KK>. Clearly, once the DIAC
is estimated, it is only a matter of computing its Cholesky
decomposition to recover K. (Of course, provided that the
recoveredω∗ is positive semidefinite!) We refer the reader to
[9] for more details and turn our attention to a more powerful
geometric entity useful for self-calibration.

2.1. The Absolute Dual Quadric

The absolute dual quadric is the dual to the absolute conic
Ω∞ in metric 3-space and has the form

Q∗∞ = Ĩ =
[

I 0
0> 0

]
. (4)

Any plane in the envelope of the absolute dual quadric is
tangent to the absolute conic Ω∞.

The following are known properties of Q∗∞ which are
used in this paper. We will simply state them here without
proof: Q∗∞ is a degenerate conic - it is singular, of rank 3.
Q∗∞ is symmetric, positive (or negative, depending on sign)
semi-definite. Under a transformation H, Q∗∞ transforms as
Q∗∞

′ = HQ∗∞H>. Q∗∞ is fixed under a similarity transfor-
mation, but is moved by a general projective transformation.
The plane at infinity, π∞, is a null vector of Q∗∞.

Q∗∞π∞ = 0. (5)

2.2. Autocalibration Using the Absolute Quadric

The projective transformation that takes the projective
reconstruction back to Euclidean is the one that takes Q∗∞
measured in the projective reconstruction back to its canoni-
cal form Ĩ, that is, Q∗∞ = HĨH>. For a camera matrix Pi,
the dual image of the absolute conic, ω∗i is the image under
Pi of the dual of the absolute conic Ω∞, that is the image of
Q∗∞ under Pi. So,

ω∗i = PiQ∗∞Pi>. (6)

Now, we can impose constraints on the entries of ω∗i to
constrain the entries of Q∗∞. Once Q∗∞ is determined, H
can be recovered by a simple eigendecomposition.



2.3. Chirality

Chirality constraints demand that the reconstruction sat-
isfy a very basic criterion: the imaged scene points must
be in front of the camera [7]. A general projective trans-
formation need not preserve the convex hull of a point set.
That is, the scene can be split across the plane at infinity in
a projective reconstruction. A quasi-affine reconstruction
is one that differs from the Euclidean scene by a projective
transformation, but in which the plane at infinity is guaran-
teed not to split the point set. A quasi-affine reconstruction
can be computed from the solution of the so-called “chiral
inequalities” determined by all the scene points and camera
centers [7]. For a thorough introduction to the concept, we
refer the reader to the corresponding chapter in [9].

2.4. Polynomial Minimization using LMI Relax-
ations

We are interested in solving polynomial optimization
problems of the following class:

min f(x)
subject to gi(x) ≥ 0, i = 1, 2 . . . ,m, (7)

where f(x) and gi(x) are scalar polynomials of the vector
indeterminate x ∈ Rn. Let p∗ denote the minimum objec-
tive value (if it exists) of the above problem. Then, a convex
relaxation is, by construction, a convex optimization prob-
lem with minimum objective value p∗r such that p∗r ≤ p∗.
Hence, by solving the relaxed problem, a lower bound on
the original objective function is obtained.

When optimizing a scalar polynomial objective function
subject to polynomial constraints, convex relaxations can be
obtained by gradually adding lifting variables and constraints
corresponding to linearizations of monomials up to a given
degree. This is the technique we will adopt. The LMI
relaxation covering monomials up to a given even degree 2δ
is referred to as the LMI relaxation of order δ. The standard
Shor relaxation in mathematical programming [21] can be
regarded as a first-order LMI relaxation.

For an LMI relaxation of order δ, let vδ(x) be a vector
containing all monomials up to degree δ including the con-
stant term 1. To form the relaxed optimization problem of
the original problem (7), the following steps are required:

1. Linearize the objective function f(x) by lifting:
xk11 x

k2
2 . . . xkn

n is replaced with the new lifting vari-
able yk1k2...kn . Thus, the linearized objective function
can be written f>y for a constant coefficient vector f
and the lifting vector y.

2. Apply lifting to the LMI constraint
gi(x)vδ−1(x)vδ−1(x)> � 0 for each constraint
gi(x) ≥ 0. Denote the linearized constraint by
Mδ−1(gi(y)) � 0.

3. Add the LMI moment matrix constraint which
corresponds to linearizing the trivial constraint
vδ(x)vδ(x)> � 0. Denote the linearized constraint
by Mδ(y) � 0.

To summarize, the following SDP is solved for the LMI
relaxation of order δ of the problem (7):

min f>y
subject to Mδ−1(gi(y)) � 0, i = 1, 2 . . . ,m,

Mδ(y) � 0.
(8)

If the feasible set {x | gi(x) ≥ 0, i = 1, . . . ,m } is com-
pact and under some mild additional assumptions akin to
qualification constraints in mathematical programming, it
is shown in [14] that the hierarchy of relaxations converges
asymptotically limδ→∞ p∗δ = p∗. It turns out that for many
of the non-convex polynomial optimization problems, global
optima are reached at a given accuracy for a moderate num-
ber of lifting variables and constraints, hence for an LMI
relaxation of moderate order. A sufficient condition for reach-
ing the global optimum is that the moment matrix Mδ(y∗)
has rank one at the optimum y∗.

If the solution to the relaxed problem is not tight, that is,
p∗δ < p∗, then an approximate solution may be obtained by
simply keeping the lifting variables corresponding to first-
order moments. A Matlab toolbox for LMI relaxations can
be found in [10].

3. Related Work
There is a significant body of literature within computer

vision that deals with autocalibration, beginning with the
introduction of the concept in [4]. Approaches to autocali-
bration can be broadly classified as stratified and direct. The
former is a two-step process, whereby the first step involves
estimating the plane at infinity for an upgrade to the affine
stratum and the metric upgrade is typically performed by
estimating K in a subsequent step.

Estimating the plane at infinity to achieve an affine up-
grade is considered the most difficult step in autocalibration
[8]. The plane at infinity itself has proven to be a rather
elusive entity to estimate precisely. A prior approach has
been to exhaustively compute all 64 solutions to the modu-
lus constraints [19], although only 21 of them are physically
realizable [20]. An alternate approach involves solving a
linear program arising from chirality constraints imposed
on the points and camera centers to delineate the region in
R3 where the first three coordinates of the plane at infinity
parametrized as π∞ = (p, 1)> must lie. Subsequently, p is
recovered by a brute force search within this region [8]. In
our approach, estimating the plane at infinity is encapsulated
in the absolute quadric estimation itself, as π∞ lies in the
null-space of Q∗∞.



A variety of linear methods exists for estimating K for the
metric upgrade step, see [9] for more discussion. A drawback
of linear approaches is that they do not enforce positive
semidefiniteness of the DIAC. One work that the authors are
aware of, where estimation of the DIAC is constrained to be
positive semidefinite, is [2].

The class of direct approaches to autocalibration are those
that directly compute the metric reconstruction from a projec-
tive one by estimating the absolute conic. Kruppa equations
are view-pairwise constraints on the projection of the abso-
lute quadric. Methods based on the Kruppa equations (or the
fundamental matrix), such as [15], are known to suffer from
additional ambiguities when used for autocalibration with
three or more views [22].

The absolute quadric was introduced as a device for au-
tocalibration in [11, 23], as it is a convenient representation
for both the absolute conic and the plane at infinity. More-
over, it can simultaneously be estimated over multiple views.
Constraints on the DIAC can be transferred to those on Q∗∞
using the (known) cameras in the projective reconstruction.
The actual solution methods proposed in [23] are a linear ap-
proach and one based on sequential quadratic programming.
Linear initializations for estimating the dual quadric are also
discussed in [17]. It is known that these methods which do
not ensure positive semidefiniteness are liable to perform
quite poorly with noisy data.

While it can be shown that zero skew alone is sufficient
for a metric reconstruction [12], a practitioner must use as
much of the available information as possible [9]. We will
adopt this latter philosophy and make the safe assumptions
that the skew is close to zero, the principal point close to
origin and the aspect ratio is close to unity. We allow the
focal length to vary to account for varying zoom.

Very recently, there has been interest in developing glob-
ally optimal solutions to several problems in multiview geom-
etry. A number of simpler problems in multiview geometry
can be formulated in terms of systems of polynomial inequal-
ities [13], which can be globally minimized using the theory
of convex linear matrix inequality relaxations [14]. The in-
herent fractional nature of multiview geometry problems is
exploited in [1] to compute the globally optimal solution to
triangulation and resectioning, with a certificate of optimal-
ity. A branch-and-bound method is used for autocalibration
in [5], however, their problem is formulated in terms of the
fundamental matrix of view pairs and does not scale beyond
a small number of views.

4. Problem Formulation
Many self-calibration algorithms, such as [15, 5], do not

estimate the absolute quadric directly. As compared to algo-
rithms such as [23, 16] which estimate the absolute quadric,
our main contribution is that we constrain Q∗∞ to be positive
semidefinite and rank degenerate within our optimization

framework. Our optimization problems themselves have
been designed with the intention of extracting a globally
minimal solution.

Further, we give the user the option to impose the re-
quirements of chirality within the same unified framework,
if needed. It has been argued in prior literature that it is
desirable to ensure that chirality is satisfied only with respect
to the set of camera centers [16]. The reason is that cameras
are estimated using robust techniques from several points, so
they exhibit better statistical properties than the points them-
selves. And a few outliers in the scene points can make it
impossible to satisfy the requirements of full chirality. Simi-
lar to the quasi-affine reconstruction with respect to camera
centers (QUARC) in [16], a pairwise twist test ensures that
the plane at infinity cannot violate the line segment joining
any pair of camera centers. By subsequently imposing the
condition on our reconstruction that the plane at infinity lie
on one side of all the camera centers, we are guaranteed to
recover a Q∗∞ consistent with the requirements of chirality.

4.1. Imposing rank degeneracy and positive
semidefiniteness of Q∗∞

Let us suppose an appropriate objective function, f(Q∗∞),
has been defined, which depends on the parameters of Q∗∞
and imposes some desired property on the metric reconstruc-
tion. In addition, we demand that the absolute quadric be
rank deficient and positive semidefinite. Thus, our optimiza-
tion problem is of the form:

min f(Q∗∞) (9)
subject to rank(Q∗∞) < 4, Q∗∞ � 0.

Since Q∗∞ is a symmetric matrix, it can be parameterized
using 10 variables. The condition of rank degeneracy can
be imposed by demanding that det Q∗∞ = 0, which is a
polynomial of degree 4. The positive semidefiniteness of
Q∗∞ can be ensured by asserting that each principal minor of
Q∗∞ have a non-negative determinant, which are polynomial
equations of degree at most 3. Thus, an equivalent problem
is:

min f(Q∗∞) (10)
subject to det(Q∗∞) = 0

det [Q∗∞]jk ≥ 0, j = 1, 2, 3 k = 1, · · · ,
(

4
j

)
‖Q∗∞‖2F = 1.

where [Q∗∞]jk stands for the k-th j × j principal minor of
Q∗∞. Note that one need not impose all of the above in-
equalities for ensuring semidefiniteness, but doing so may
strengthen the convex LMI relaxation. Since Q∗∞ is only de-
fined up to a scale factor, we use the last equality constraint
to fix its norm to one. The above is a system of polynomial



(in)equalities and our objective function is also a polyno-
mial, which can be minimized globally using the theory in
Section 2.4.

4.2. Imposing chirality constraints

Next, to impose chirality constraints, recall that the plane
at infinity is the null-vector of Q∗∞ and can be expressed (up
to scale) as

π∞ =
[

det(Q̂∗∞1),det(Q̂∗∞2),det(Q̂∗∞3),det(Q̂∗∞1)
]>

where Q̂∗∞1 represents the 3× 3 matrix formed by eliminat-
ing the fourth row and the i-th column of Q∗∞. The camera
center is determined as

Ci =
[

det(P̂i
1),det(P̂i

2),det(P̂i
3),det(P̂i

4)
]

where P̂i
j stands for the i-th camera in the projective recon-

struction with its j-th column eliminated.
Now, chirality constraints are of the form π∞

>Ci >
0, which is simply a polynomial of degree 3. Thus, even
chirality constraints can be included as part of the polynomial
system in our formulation for autocalibration.

4.3. Choice of objective function

Finally, we address the question of the objective function.
Over the years, several different objective functions have
been specified for autocalibration. The trade-off in designing
a suitable objective function, as discussed in [16], is between
retaining geometric meaningfulness and ensuring optimality
of the recovered solution. We have looked at various choices
of the objective function within our polynomial optimization
framework, which are described below.

In most situations, it is quite correct to assume that the
skew is close to zero and aspect ratio close to unity, while
a simple transformation of the image coordinates sets the
principal point to (0, 0). Let us assume we have enough
prior knowledge of the camera intrinsic parameters in our
motion sequence to apply a suitable transformation to the co-
ordinate system that brings the intrinsic parameter matrices
of the cameras close to identity. With this “pre-conditioning”
based on prior knowledge, we can demand that an algebraic
condition be satisfied by the entries of the DIAC so that K
has a form diag(f, f, 1). One such objective function to be
minimized is:

f(Q∗∞) :=
∑
i

(ω∗i11−ω∗
i
22)

2
+ω∗i12

2
+ω∗i13

2
+ω∗i23

2
.

(11)
Recall that ω∗i = PiQ∗∞Pi>, thus ω∗ijk = pi>j Q∗∞pik
where, pi>k stands for the k-th row of the i-th camera matrix.

Experiments with synthetic data for this objective func-
tion are described in Section 5 and results are tabulated in

Table 1. This works well even when we allow focal length
to vary such that K is significantly different from identity.
Experimental results for this scenario are also given in Table
1.

A problem with the above objective function is that it
is not normalized to account for the scale invariance of ω∗.
This can be achieved by dividing each quantity by, say ω∗33,
to obtain the following objective function:

f(Q∗∞) :=
∑
i

(ω∗i11 − ω∗
i
22)

2
+ ω∗i12

2
+ ω∗i13

2
+ ω∗i23

2

ω∗i33
2 .

(12)

This is a rational objective function, which can be tackled
in our polynomial optimization set-up by introducing a new
variable corresponding to each view. The optimization prob-
lem we address now has the form:

min
n∑
i=1

ti (13)

subject to ω∗i33
2
ti =(ω∗i11 − ω∗

i
22)

2
+ ω∗i12

2

+ ω∗i13
2

+ ω∗i23
2

det(Q∗∞) =0, Q∗∞ � 0.

The number of variables in the above optimization problem
increases linearly with the number of views. So, it can be
solved only for a relatively smaller number of views (three,
maybe four) with the current state of the art in polynomial
minimization.

It is easy to impose further constraints on the problem,
such as zero skew, which corresponds to a quadratic polyno-
mial:

ω∗i12ω
∗i
33 = ω∗i13ω

∗i
23. (14)

Other constraints such as principal point at the origin and unit
aspect ratio can be similarly imposed as linear or quadratic
polynomial constraints.

There can be other principled approaches to formulating a
polynomial objective function for autocalibration, assuming
constant intrinsic parameters, such as

f(Q∗∞) :=
∑
i

‖ω∗ − λiPiQ∗∞Pi>‖. (15)

For a projective reconstruction such that P1 = [ I |0 ], Q∗∞
can be parametrized in terms of ω∗ and the three parameters
of the plane at infinity, which leads to 10 + n variables for
the n-view problem. Our experimental sections will discuss
only the results obtained by using objective functions in (11)
and (13).

5. Experiments with synthetic data
We have subjected our algorithm to extensive simulations

with synthetic, noisy data to give the reader an idea of its



performance in statistical terms. The implementation is
done in Matlab with the GloptiPoly toolbox [10]. An LMI
relaxation order of δ = 2 (cf. Section 2.4) has been used
throughout all the experiments and this, in general, yields a
global solution to the polynomial optimization problem at
hand.

Let the ground truth intrinsic calibration matrix be K0

and the estimated matrix be K, where

K0 =

 f0
1 s0 u0

0 f0
2 v0

0 0 1

 and K =

 f1 s u
0 f2 v
0 0 1

 .
Then we define the following metrics to evaluate the perfor-
mance of the autocalibration algorithm:

∆f =
| 12 (f1 + f2)− 1

2 (f0
1 + f0

2 )|
1
2 (f0

1 + f0
2 )

∆r = max
(
r

r0
,
r0

r

)
, where r =

f1
f2
, r0 =

f0
1

f0
2

∆p =
∣∣∣1
2

(|u|+ |v|)− 1
2

(|u0|+ |v0|)
∣∣∣

∆s = |s− s0|. (16)

For a calibration matrix of the form diag(f, f, 1), the ideal
values of these metrics are ∆f = 0, ∆r = 1, ∆p = 0 and
∆s = 0. An additional quantity of interest is the chiral-
ity check, that is, the (percentage) number of cameras that
follow the chirality constraints.

For the synthetic experiments, there are 12 cameras and
15 points. All the points lie in the cube [−1, 1]3 of side
length 2, centered at the origin and the nominal distance of
the cameras from the origin is 2. For the case of constant
focal length, ground truth intrinsic calibration matrix for
each camera is K0 = diag(1, 1, 1). To simulate variable
focal length, the intrinsic calibration matrix is of the form
diag(f, f, 1), where f is allowed to attain any random value
in the range [0.05, 1.00]. Noise with standard deviation 0.2%
of the image size is added to the image coordinates prior
to the projective factorization that forms the input to our
algorithm. The objective function to be minimized is the one
in (11). The results are tabulated in Table 1, where all the
quantities reported are statistics over 100 trials.

The size of the LMI relaxations used to solve for Q∗∞
is a function of the number of variables, the number of
constraints and the maximum degree of the polynomial oc-
curring in the objective function and constraints. For the
optimization problem (11) that we solve in this paper, none
of these quantities depend on the number of views. Thus the
time complexity of our algorithm is essentially constant with
respect to the number of views.

Note that these experiments were conducted with a rela-
tively few number of cameras and points, which sometimes

causes the geometry to become ill-conditioned. If that hap-
pens, the algorithm can break down due to numerical insta-
bilities, which manifest themselves as constraint violations
(such as the few chirality violations above). Another way to
detect this is by checking the rank of the moment matrix in
the LMI relaxation which should have rank one for globally
optimal solutions.

A smaller set of experiments was performed using the
objective function in (13). This was found to perform
marginally better than the objective function in (11) for ex-
periments conducted with three views. But the algorithm al-
ready becomes very computationally intensive for just three
views and impossible to solve within reasonable memory
limits for four or more views. The gains in terms of accuracy
of solution achieved by using this theoretically more correct
objective function are not enough to justify the enormous
computational expense, so we will restrict ourselves to the
objective function (11) henceforth.

6. Experiments with real data

In [16], several image sequences for a variety of scenes
are obtained with a hand-held camcorder. The number of
images varies from 3 to 125. The images themselves are
quite noisy and although acquired with a constant zoom
setting, auto-focus effects cause focal length to vary across
the sequence. The resulting projective factorizations were
upgraded to metric using a variety of algorithms and their
results visually compared. The results are rated on a scale of
0 (severely distorted) to 5 (very good metric reconstruction)
according to the qualitative criteria listed in [16].

We evaluate the metric reconstructions obtained by our
algorithm for 25 of these sequences using the same qualita-
tive criteria as in [16]. These comparisons are tabulated in
Table 2. Some sample scene reconstructions are depicted in
Figure 1. 1

Method A is the method of [16] where a quasi-affine re-
construction is obtained after untwisting the cameras and a
non-linear local optimization method is used to minimize an
appropriate objective function which specifies some require-
ments on the intrinsic parameters. Method B is the technique
in [3]. Method C is the algorithm in [6] which uses the full
set of chirality constraints to obtain an estimate of the plane
at infinity. The method of [18] is used to obtain the recon-
structions in Method D by minimizing a cost function based
on the absolute quadric starting from a linear initialization.
Method E is a modified version of [8]. More details on the
individual methods A-E can be found in the references above
or [16].

Method F is the method described in this paper where we
impose the requirement that the estimated dual quadric be

1The VRML reconstructions for these and other sequences are available
at http://vision.ucsd.edu/quadric.



Quantity Fixed focal length Variable focal length
Without chirality With chirality Without chirality With chirality

∆f 0.0086 0.0360 0.0069 0.0328
∆r 1.0041 1.0315 1.0027 1.0272
∆p 0.0073 0.0096 0.0055 0.0098
∆s 0.0051 0.0092 0.0033 0.0050

chirality N/A 0.9867 N/A 0.9942
failed 2 2 4 1

Table 1. Performance on synthetic data. The numbers are mean values over 100 trials for the performance metrics defined in (16). For
fixed focal length, K0 = diag(1, 1, 1). For variable focal length, K0 = diag(f, f, 1), f ∈ [0.05, 1.00]. 0.2% noise is added in image
coordinates. The last row indicates the number of experiments that failed due to numerical issues and were excluded from the results .

(a) Flower Pot (61 views) (b) Nissan2 (89 views)

(c) David (11 views) (d) Pickup (89 views)

Figure 1. Metric reconstructions for four real sequences. The points are plotted in white, the image planes in yellow and the optical axes are
plotted in green.

positive semidefinite and rank deficient. The optimization
problem is given by (10) and the objective function used is
(11). Method G is the same algorithm, but now chirality is
imposed with respect to the set of camera centers.

As a general observation, the algorithm performs well for
a larger number of cameras. The sequence “Basemnt” has
forward camera motion, while the sequence “Drunk” has ro-
tational camera motion. Both these cases are ill-conditioned
for our algorithm and thus, the recovered structure is pro-
jectively distorted. Besides these sequences, unless the al-
gorithm breaks down due to any numerical instability, the
metric reconstructions obtained are at par with other state of
the art algorithms.

Note that all our experiments are performed without im-
posing any bounds on the camera parameters. If one ex-
plicitly enforces prior information, for instance, that aspect
ratio typically lies between 0.25 and 3, the reconstruction
quality in even the scenes such as “Basemnt” which are ill-
conditioned can be improved. Further, the reconstructions

evaluated above are the raw output of our algorithm. Due to
the fact that interior point solvers only solve the LMI relax-
ation up to an ε tolerance, in practice a subsequent bundle
adjustment step can be used to further refine the solution.

7. Conclusion
Autocalibration is a mature research topic and yet none of

the previously existing approaches are capable of handling
many of the hard, non-convex constraints that should be
imposed according to the theory of autocalibration. In this
paper we present a solution that guarantees a theoretically
correct estimate of the dual absolute quadric. Experiments
show that the resulting algorithm is scalable, stable and
robust, with performance comparable to the state-of-the-art
methods in the field.
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