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Abstract 

This paper presents a novel framework, Prototype 
Embedding and Embedding Transition (PEET), for 
matching objects, especially vehicles, that undergo drastic 
pose, appearance, and even modality changes. The problem 
of matching objects seen under drastic variations is 
reduced to matching embeddings of object appearances 
instead of matching the object images directly. An object 
appearance is first embedded in the space of a 
representative set of model prototypes (Prototype 
Embedding (PE)). Objects captured at disparate temporal 
and spatial sites are embedded in the space of prototypes 
that are rendered with the pose of the cameras at the 
respective sites. Low dimensional embedding vectors are 
subsequently matched. A significant feature of our 
approach is that no mapping function is needed to compute 
the distance between embedding vectors extracted from 
objects viewed from disparate pose and appearance 
changes, instead, an Embedding Transition (ET) scheme is 
utilized to implicitly realize the complex and non-linear 
mapping with high accuracy. The heterogeneous nature of 
matching between high-resolution and low-resolution 
image objects in PEET is discussed, and an unsupervised 
learning scheme based on the exploitation of the 
heterogeneous nature is developed to improve the overall 
matching performance of mixed resolution objects. The 
proposed approach has been applied to vehicular object 
classification and query application, and the extensive 
experimental results demonstrate the efficacy and 
versatility of the PEET framework. 
   

1  Introduction 

We present an approach to the problem of matching views 
of objects, such as vehicles, across views with pose and 
illumination variations. The application is that of 
classification and class-based querying of vehicles using 
exemplars as queries, in a wide area surveillance system 
with non-overlapping, widely separated camera viewpoints. 
Due to the separation of cameras, objects undergo pose, 
appearance, and scale change from different viewpoints as 
shown in Fig. 1. As a result, direct matching of views is in 
general not reliable. An even more important reason for 
avoiding direct matching is that for querying direct 
matching requires linear access of all the objects in the 
database which is not feasible when millions of objects are 

in the database. Even indexing with quasi-invariant features 
such as in [11] may not be feasible due to large appearance 
variations. 

 
In this paper, we propose a Prototype Embedding and 
Embedding Transition (PEET) framework that is capable of 
matching objects over pose, appearance, scale, and 
potentially modality variations. For example, objects that 
are seen from the top view (middle row in Fig. 1) and side 
view (bottom row in Fig. 1) can be correctly matching via 
PEET. Even multiple sensor data such as visible and IR can 
be matched although that is not the focus of this paper. In 
PEET, an object image is first embedded in a small 
representative set of model prototypes that are rendered 
from viewpoints similar to the camera pose since the 
cameras are fixed. The same set of model prototypes is used 
for all the cameras but each set is rendered with respect to 
its respective camera’s viewpoint. Each object image in 
each camera is then embedded within the space of the 
respective camera’s prototypes. Embeddings in the space of 
rendered prototypes result in low dimensional embedding 
vectors as representations of objects instead of the dense 
pixel or edge based representations in the original or 
processed images.  Object matching problem is now 

 
 

 
Figure 1. Top Row: A single object viewed by different 
cameras in disparate locations exhibits large 
appearance change. Middle & Bottom Rows: A single 
object viewed by multiple cameras in disparate 
locations and various orientations exhibits large pose 
change. 
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formulated as the problem of matching embeddings. 
Embeddings represent a given vehicle not as itself but as a 
vector of distances for the given vehicle from the set of 
prototypes. Intuitively, a sedan is represented in terms of 
how far it is from prototypical sedans, SUVs, pickups, etc. 
By pre-computing the mapping between the embedding 
vectors disparate camera views and appearances can be 
matched efficiently. Another important advantage of PEET 
is that no training is required, and no expensive 
computation is involved, which makes it especially suitable 
for on-line classification and large database querying tasks. 
We review the related work in Section 2, and explain 
technical details in Section 3. Experimental results are 
given in Section 4, and we conclude in Section 5.  

2 Related Work 

Vetter and Poggio first proposed the idea of learning shape 
changes from the 2D prototype shapes of two distinctive 
views [1]. Under certain linearity assumptions, they 
decomposed the object image onto two sets of basis, one for 
shape and the other for texture.  Instead of computing a 
linear projection within the space spanned by the basis 
shapes/textures, our approach uses an embedding process 
that requires only the distances of the query image with 
respect to each basis image. 
  
Koller et al. [2] estimate a 3D deformable model of five 
vehicle classes from a video sequence, and use parameters 
for vehicle recognition and classification. Instead of using a 
hand crafted 3D model, our approach uses exemplars that 
either rendered from 3D model or automatically selected 
from real vehicle images.  Our approach does not require 
precise model parameters for rendering exemplars.  
 
Jacobs et al. [12] proposed vector of distances to other 
images for a given image, rather than the direct pairwise 
distance, as a robust measure of similarity for non-metric 
distance measures between images, for instance distance 
measures that are robust to outliers. Athitsos et. al. [3] use 
Lipschitz embedding to approximate the Chamfer distance 
for hand pose recognition with large database.   Athitsos et. 
al. [4] propose an approach using AdaBoost to learn the 
embedding with the triangle inequality enforced. Grauman 
et. al. [5] use Locality Sensitive Hashing-based embedding 
(LSH-embedding) [6] to approximate the expensive Earth 
Mover’s distance. 
 
Shan et al. [7] also address the vehicle-matching problem 
using the embeddings but require a mapping function to 
align the matching scores.  In our approach, we avoid this 
problem using a novel two-level structure, which 
normalizes the matching scores computed from different 
camera, without explicitly solving a non-linear mapping 
function.  
 
On the application side, [8] also dealt with object matching 
between non-overlapping cameras and on-line learning of 

camera topology and path probabilities. Kettnaker&Zabih 
[9] and Pasula et al. [10] proposed a nice framework for 
object matching and feature learning. All these methods 
rely on directly matching vehicle objects across multiple 
cameras. 

3 Proposed Algorithm  

For the purposes of this paper, it is assumed that an in-
camera tracker tracks vehicles within the field of view of a 
single camera and produces bounding boxes around 
observed vehicles. We have used our own version of a fixed 
camera tracker. 

3.1 Overall Approach 

We first describe the overall approach and then detail each 
step. Fig. 2. outlines our overall approach. To match objects 
observed in two different cameras, there are four major 
steps in the PEET framework: 

Step 1: The image-to-model matching is performed using 
Prototype Embedding (PE) for camera 1. For an imaged 
vehicle, the best N1 matching models for camera 1 are 
selected based on embeddings. This step alone can be used 
for object classification. 

Step 2:  Embedding Transition (ET) is carried out through 
embeddings with model prototypes across the two cameras. 
The same set of N1 models is rendered respectively for the 
two cameras.  

Step 3: The model-to-image matching is performed using 
Prototype Embedding (PE) at camera 2. This time for each 
of the N1 model prototypes, top N2 matched image objects 
are chosen.  

Step 4: Finally from the potential matching set of N1*N2 
matched candidates, best matches are selected through 
competition and combination. The results are query returns 
for a given object. 

 
Figure 2. Overall schema of PEET. 

 

3.2 Image Exemplar Based Embedding 

PEET is largely inspired by [3, 4] and [7]. In [7] a set of 
representative image exemplars is first chosen for every 



camera. For every object, say object i  of dimension 

ii MN × , viewed by every camera, say camera j , a 
distance kjid ,, is computed between the object and every 

exemplar k , },...,2,1{ Kk = . For a specific object i  and 
camera j , if we stack all the distances with respect to all 
the exemplars together, we obtain a K dimensional vector 

},...,,{ ,,2,,1,,, Kjijijiji ddd=d . For the same object 

i seen by another camera 'j , we carry out the same routine 
and get another K dimensional vector 

},...,,{ ,',2,',1,',', Kjijijiji ddd=d . The two vectors 

ji,d and ', jid are dubbed as embedding vectors.  As can be 
seen from Fig. 3, if the object aspects between the two 
cameras j and 'j are similar, ji,d and ', jid are also very 

similar, and the 2L distance or correlation between them 
can be used to decide if the two objects are similar or not. 
Therefore, we can effectively use a much lower 
dimensional feature to represent a high dimensional object 
(usually K << ii MN × ), and compute its similarity with 
respect to other objects.  

 
However, in the image exemplar based embedding, one 
needs to manually select common representative image 
exemplars for every camera, and not all the exemplars exist 
for all observers. In addition, each distance value kjid ,,  in 
the embedding vector is supposed to reflect only the 
similarity between the object and the image exemplar, 
given that the illumination condition for the object instance 
and the exemplar from the same camera is similar. Since 
the tracker segmentation may not be perfect, the influence 
from background will be reflected in the distance 
computation and affect the matching.  
The most significant disadvantage is that if the poses of the 
two cameras are very different, then the two embedding 
vectors for the same object will not be similar any more, as 

shown in Fig. 4.  In this case, we need to compute a 
complex mapping function between the embeddings for the 
object instances in the two cameras. And more generally, 
for example, if one camera sees the front of an object, and 
the other camera sees the back of an object, there might not 
exist a continuous mapping function at all.    

 

3.3 Prototype Embedding (PE) 

 To overcome the above-mentioned problems in image 
exemplar based embedding, we replace the image 
exemplars with prototype exemplars. As shown in Fig. 6, a 
set of representative object models are chosen and rendered 
at each camera location.  Similar to image exemplar based 
embedding, if the shape of the two objects i and 'i are 
similar, their embedding distances ji,d and ji ,'d (shown in 
read and blue curves) are also very similar, and the 

2L distance or correlation between them can be used to 
decide if the two objects are similar or not.   

 

Figure 5. Some representative vehicle 
prototypes and their edge maps. 

Some of the representative rendered vehicle prototypes and 
their edge maps are shown in Fig. 5. Note that each 
semantic part of a vehicle is rendered with a different color, 
so that the edge between different parts can be easily 
extracted. Since our object matching is based on geometric 

 

Figure 3. Image exemplar based embedding illustration. 
(For simplicity, subscripts denoting object and view 
indices are omitted in the distance representation.) 

 
Figure 4. Exemplar Embedding cannot match objects 
with large pose change in this example. A complex 
mapping function needs to be computed between the 
embedding distances from the two cameras. 



properties of vehicles, the distance is defined to reflect the 
geometric aspect of vehicles. For example, Chamfer 
distance, after robust alignment and outlier rejection, 
between the edge maps of images or an image and a 
prototype is a good shape similarity measurement. 
Compared with image exemplar based embedding, 
prototypes are easily rendered for all observers, and perfect 
segmentation of the object from the background is not 
needed. But simple replacement of images with prototypes 
does not solve the problem of reliably matching objects 
viewed from drastically different poses shown in Fig. 4. We 
resolve this problem with Embedding Transition (ET) 
described in Section 3.4. 
3.4 Embedding Transition (ET) 

 
For matching vehicles across cameras, we need to employ 
an embedding transition scheme. First, as with object 
images, we treat each rendered model as an image Mi , and 
embed each model itself in the space of 
the K representative prototypes and obtain a K -
dimensional embedding vector for the model 

},...,,{ ,,2,,1,,, KjMijMijMijMi ddd=d , as shown in 

Fig. 7. The set of embedding vectors jMi ,d , 

},...,2,1{ KiM = are pre-computed and stored in the 
database. Given the embedding vectors for each object 
image, and those for each model prototype, we can compare 
any image embedding vector ji,d with respect to each of 

the model embedding vectors jMi ,d , },...,2,1{ KiM = , 
and compute the following, as shown in Fig. 8:  

•  Given an image, return the best matched images; 
• Given an image, return the best matched models 

(prototypes); 
• Given a model (prototype), return the best matched 

images. 
With this knowledge, we can now robustly and accurately 
match vehicles across cameras, as demonstrated in Fig. 2. It 

is easy to see that within each camera, images and 
prototypes share similar pose and modality. And across 
cameras, the pose and modality change is naturally handled 
by the rendering the same set of pre-chosen prototypes with 
corresponding pose and modality in difference camera 
locations.  

 

3.5 Asymmetry Between Image and Model Prototype 
Matching through Embeddings 

Even though we treat images and rendered models similarly 
in PEET, we have to point out that the accuracy of 
retrieving the best-matched models for a given image is 
different from the accuracy of retrieving the best matched 
images from a given model. The total number of models is 
usually in the order of 10 – 40, and for each class the total 
number of sub-class models is even smaller, usually 3-4. 
The total number of image objects is usually in the order of 
hundreds.  Therefore, given an image object, most likely all 
the corresponding models will be selected as the top 
matched models, and very rarely a non-corresponding 
model will be chosen as the top match, if the image 
resolution is good enough. While given a rendered model, 
there will be many image chips that will potentially match 
the model, and more often than not, a non-corresponding 
image chip can be chosen. As a remedy, in the third step of 
PEET, i.e., the model-image Prototype Embedding (PE) 

 
Figure 6. A Schematic of Prototype Embedding. 

 
Figure 7. A Schematic of Model embedding. 

 
Figure 8.  Model-Image embedding transition example. 



step, we introduce the forward-backward matching 
verification strategy. Given a model, for every returned 
image chip through PE, we also compute the matched 
models for the image chip, and require that the top K’ (K’ = 
2 to 4) matched models be in the same class as the query 
model. This backward matching step greatly mitigates the 
mistake of selecting the non-corresponding image chips, 
and hence largely increases the overall cross-sensor 
matching accuracy. In other words, when retrieving image 
objects through a model prototype query, we require 
mutually consistent matching between the model 
embedding and the image embeddings. 

3.6  Un-supervised Learning with PEET 

Another aspect of PEET based matching is that if the 
resolutions of the two cameras are very different, the 
matching performance is different in the two directions. For 
example, if camera 1 is of higher resolution than camera 2, 
then retrieving the matched images in camera 2 for a given 
query image in camera 1 is better behaved than retrieving 
the matched images in camera 1 for a given query image in 
camera 2. This is because prototype embedding is 
susceptible to errors in alignment and distance computation 
if the image resolution is poor. As a result the “represent-
ability” of the corresponding embedding vector is not 
reliable, thus leading to mistakes in model retrieval. 

 

Figure 9. Un-supervised Learning with PEET. 

 
To improve the relatively worse performance in the low-
resolution  high-resolution matching direction, we can 
take advantage of this heterogeneous matching behavior for 
the two different directions. Specifically, since matching 
images from high-resolution  low resolution is good, for 
each high-resolution image in camera 1 (hi-res), we can 
generate K (usually 3-5) matched low-resolution images in 
camera 2 (lo-res) using PEET matching. Suppose we 
establish such a match between N1 image objects in hi-res 
to the lo-res camera. This results in N1*N2 pairs of 
matched image objects between hi-res and lo-res. Now we 
can establish a mapping between these N1*N2 embedding 

vectors, but this time we specify the input vectors of the 
mapping function to be the embedding vectors of images in 
camera 2 (low-res), and the output vectors to be those of 
images in camera 1 (high-res).  With these N1*N2 
embedding vector pairs, we use a Radial Basis Function 
(RBF) mapping to learn the mapping between them, as 
shown in Fig. 9.  
Our intuition to choose RBF arises from the fact that 
vehicular objects usually consist of limited number of 
planar surfaces, and the total number of vehicle classes is 
also limited, therefore a weighted sum of some basis 
functions of the embedding vectors should be able to 
characterize the transformation between the two sets of 
embedding vectors in the two view points if the pose 
change is not drastically different.            

3.7 Function Approximation & Mapping 

 

 
The relationship between object classes and image features 
under arbitrary conditions (lighting, pose, and modality) is 
highly non-linear. However, for nearly fixed conditions, the 
relationship becomes tractable. As shown in Fig. 10, for 
each individual camera, objects lie in a low-dimensional 
manifold (as shown in the upper left or bottom right 
corner). If we tessellate the low dimensional space with 
enough objects, then for a new object (shown with a red 
bounding box), its class can be easily obtained by a proper 
function approximation scheme, i.e., prototype embedding 
in this case.  To handle the highly complex function form 
for classification under different camera conditions (for 
example, across camera 1 & 2 in Fig. 10), PEET uses the 
same set of object prototype to tessellate all the local low 
dimensional space, and object classification becomes a non-
parametric discrete function mapping problem. 
As shown in Fig. 11, function mapping between local 
spaces can be simple continuous or discrete parametric 
mapping (first two rows), and it can also be a discrete non-

 

Figure 10. Space tessellation using prototype models. 



parametric mapping (third row). In Embedding Transition, 
we simply replace each date point in discrete non-
parametric mapping with object model prototype (fourth 
row), and the non-parametric mapping can learned if 
enough data points are available in each local space.     
 

 
Figure 11. Embedding Transition (ET) as non-
parametric discrete function mapping. 

 

4 PEET Applications and Experimental Results 

We apply the PEET for vehicle classification and querying 
in a large area visual surveillance system. The system 
consists of a network of non-overlapping cameras for 
tracking vehicles over an area of roughly 4 square kms. in 
modest to heavy traffic. Each camera covers typically 2 and 
at some locations 3 lanes of traffic; both the near and far 
lanes are covered. Vehicles typically appear larger in the 
near lane cameras and usually both top and side views are 
visible. Far lane cameras see mostly side views and vehicle 
resolution is smaller (usually 0.5 – 0.9 times smaller) (Fig. 
1). We selected 12 representative cameras and collected 
data for around 30 minutes, with each camera seeing around 
200 different vehicles passing through during the period of 
time. We use a frame-to-frame tracker to obtain image 
object chips with their approximate bounding boxes as 
shown in Fig. 1. We also manually created the ground truth 
for vehicle classes for all the observed vehicles in each 
camera. 

4.1 Object Classification with Relatively High-
Resolution Camera 

We have tested our classification algorithm extensively on 
the above mentioned live surveillance system. We choose 
two representative data sets for our experiment. The first 

data set (DS1) was collected in the morning with moderate 
shadows, and the second data set (DS2) was collected in the 
afternoon with moderate to heavy shadows.  
We classify all the vehicles (S) into five classes: Sedan 
(S1), SUV/Mini-Van (S2), Delivery Van/Bus (S3), Pickup 
Truck/Truck (S4), and none-of-the-above.  We compute 
three types of classification performance: 

1) TD: True Detection Rate. TD measures for a 
certain class, out of all detected vehicles belonging 
to the class, how many vehicles truly have the 
correct class label. 

2) MD: The Mis-Classification Rate. MD measures 
for a certain class, out of all the vehicles that have 
that class label according to ground truth, how 
many are not classified as belonging to that class. 

3) TD_all: Overall Detection rate for all classes.  
Tables 1 & 2 show the classification performance (using the 
first step in PEET) for DS1 for four cameras -- 1, 3, 7, and 
11. Tables 3 & 4 show the classification performance of 
DS2 for four cameras -- 1, 3, 7, 11, and 15. These are all 
near lane cameras, hence the resolution is relatively high, 
typically 200x100 pixels per vehicle.  Note that there are 
much less pickup trucks and delivery vans in the datasets 
than sedans, SUVs, and mini-vans, therefore the 
performance on classes S3 & S4 is not as statistically 
meaningful. 

Table 1. True & Overall Detection Rates for DS1 

 

Table 2. Miss Detection Rate for DS1 

 MD (S1) MD(S2) MD (S3) MD(S4) 
cam1 0% 13.85% 9% 39.13%
cam3 2.74% 13.85% 0.00% 54.17%
cam7 0.00% 18.57% 33.30% 50.00%
cam11 1.32% 7.81% 25.00% 36.00%
 

Table 3. True & Overall Detection Rates for DS2 

 TD(S1) TD (S2) TD (S3) TD (S4) TD_all (S) 
cam1 97.52% 86.09% 46.67% 87.80% 90.06%
cam3 94.37% 86.21% 42.86% 96.55% 89.34%
cam7 97.35% 83.33% 63.64% 96.30% 90.12%
cam11 95.19% 76.53% 50.00% 85.71% 84.62%
cam15 94.23% 84.21% 58.33% 95.24% 88.73%
 

 TD(S1) TD (S2) TD (S3) TD (S4) TD_all (S)
cam1 87.65% 96.55% 62.50% 93.33% 88.82% 
cam3 86.59% 94.92% 47.37% 100.00% 85.96% 
cam7 82.80% 89.06% 72.73% 100.00% 85.39% 
cam11 92.59% 85.51% 83.33% 100.00% 89.56% 



Table 4. Miss Detection Rate for DS2 

 MD (S1) MD(S2) MD (S3) MD(S4) 
cam1 7.65% 10.81% 30.00% 12.20% 
cam3 2.90% 15.73% 0.00% 28.21% 
cam7 5.98% 6.59% 0 31.58% 

cam11 16.10% 15.73% 0.00% 14.29% 
cam15 2.00% 13.51% 0.00% 37.50% 

 

4.2 Object Classification with Relatively Low-
Resolution Camera  

For the far lane cameras, the image resolution is much 
smaller, typically around 70x30 pixels per vehicle. If the 
same algorithm (the 1st step in PEET) is used for 
classification, the performance is poor because of the 
limited resolution. However, since we are confident about 
the classification performance with near lane, high-
resolution cameras, we can utilize the heterogeneous nature 
in matching different resolution image objects as discussed 
in Section 3.6. Specifically, as described in Section 3.6, we 
learn a mapping between the embedding vectors of low-
resolution and high-resolution objects, and convert the 
embedding vectors of far lane objects to those of near lane 
objects. Then we treat these converted embedding vectors 
as if they were obtained from the high-resolution cameras, 
and use the standard classification scheme  (the 1st step in 
PEET) to perform classification. The performance 
comparison of with-mapping (NEW) and without-mapping 
scheme (OLD) for two cameras (2 & 4) is shown in Table 
5. We can see that the learning based mapping scheme has 
greatly improved the true detection rate and reduced the 
miss-classification rate for all the classes of the far lane 
objects, including pickup trucks and delivery vans. 

Table 5. Far Lane Object Classification Performance 
Comparison w/ & w/o Learning Based Mapping 

Cam 2 Cam 4 
  NEW OLD NEW OLD 

TD (S1) 90.54% 60.56% 88.75% 91.43%
MD (S1) 6.94% 18.87% 2.74% 33.33%
TD (S2) 80.00% 57.14% 90.00% 63.64%
MD (S2) 15.79% 48.94% 16.67% 6.67%
TD (S3) 100.00% 100% 70.00% 75.00%
MD (S4) 50.09% 86.96% 25.00% 52.63%
TD (S4) 80.95% 58.33% 100.00% 87.50%
MD (S4) 26.09% 46.15% 25.00% 22.22%

 

4.3 Object Querying Across Disparate Cameras 

 

 

Figure12. Demonstration of object querying. The 
leftmost column shows the vehicle images used as queries. 
Each of the corresponding rows on the right show the 
vehicle objects returned as matches ordered from best to 
worst. 

 
Another application of PEET is object querying in a large 
database, where we need to retrieve all the objects that 
belong to the same class as the query independent of the 
camera in which they were observed. We use the same data 
sets (DS1 & DS2) for testing. The query performance is 
illustrated in Fig. 12. The image chips in the left most 
column are query objects viewed from one camera, and 
chips in each row are all the retrieved objects viewed from 
other cameras for that particular query (only top six returns 
are shown because of limited space). Quantitative results 
are shown in Table 6, where the accuracy is computed as 
the total number of correctly matched objects within the top 
three returns over the total number of query objects. 

Table 6.  Object Query Performance for Both Same and 
Different Side Objects 

 
 

Cross Camera Query for 
Same Side Lanes 

Cross Camera Query for 
Different Side Lanes 

 Accuracy  Accuracy 
cam001-003 97.63% cam001-002 93.60% 
cam001-007 97.25% cam008-011 88.00% 
cam011-015 97.87% cam003-016 94.44% 
cam004-002 95.18% cam004-007 91.02% 
cam012-008 95.79% cam001-012 94.06% 



Note that the query and retrieved objects can be seen on 
either the same side or the opposite side cameras.  Also in 
our application appearance querying is similarity querying 
and not exact matching. 

5 Conclusions 

We have demonstrated that Prototype Embedding is a 
computationally expedient way to handle vehicle 
classification and querying in a system with cameras that 
view vehicles over a large area with disparate pose and 
illumination conditions. Furthermore, we also demonstrated 
that Embedding Transition could be used to associate 
vehicle appearances across cameras with significantly 
different resolutions. Results on representative datasets 
collected over a large area show encouraging results. 
The idea of Embedding Transition needs to be further 
investigated for disparate view matching. Furthermore, 
embeddings can be defined as vectors of distances for parts 
of objects rather than whole objects as described in this 
paper. Finer scale classification and querying may be 
afforded by such a part based representation. 
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