
PEET: Prototype Embedding and Embedding Transition for Matching Vehicles
over Disparate Viewpoints

Yanlin Guo Ying Shan Harpreet Sawhney Rakesh Kumar

Email: {yguo, yshan, hsawhney, rkumar}@sarnoff.com

Address: Sarnoff Corporation, 201 Washington Road, Princeton, NJ 08534

Abstract

This paper presents a novel framework, Prototype
Embedding and Embedding Transition (PEET), for
matching objects, especially vehicles, that undergo drastic
pose, appearance, and even modality changes. The problem
of matching objects seen under drastic variations is
reduced to matching embeddings of object appearances
instead of matching the object images directly. An object
appearance is first embedded in the space of a
representative set of model prototypes (Prototype
Embedding (PE)). Objects captured at disparate temporal
and spatial sites are embedded in the space of prototypes
that are rendered with the pose of the cameras at the
respective sites. Low dimensional embedding vectors are
subsequently matched. A significant feature of our
approach is that no mapping function is needed to compute
the distance between embedding vectors extracted from
objects viewed from disparate pose and appearance
changes, instead, an Embedding Transition (ET) scheme is
utilized to implicitly realize the complex and non-linear
mapping with high accuracy. The heterogeneous nature of
matching between high-resolution and low-resolution
image objects in PEET is discussed, and an unsupervised
learning scheme based on the exploitation of the
heterogeneous nature is developed to improve the overall
matching performance of mixed resolution objects. The
proposed approach has been applied to vehicular object
classification and query application, and the extensive
experimental results demonstrate the efficacy and
versatility of the PEET framework.

1 Introduction

We present an approach to the problem of matching views
of objects, such as vehicles, across views with pose and
illumination variations. The application is that of
classification and class-based querying of vehicles using
exemplars as queries, in a wide area surveillance system
with non-overlapping, widely separated camera viewpoints.
Due to the separation of cameras, objects undergo pose,
appearance, and scale change from different viewpoints as
shown in Fig. 1. As a result, direct matching of views is in
general not reliable. An even more important reason for
avoiding direct matching is that for querying direct
matching requires linear access of all the objects in the
database which is not feasible when millions of objects are

in the database. Even indexing with quasi-invariant features
such as in [11] may not be feasible due to large appearance
variations.

In this paper, we propose a Prototype Embedding and
Embedding Transition (PEET) framework that is capable of
matching objects over pose, appearance, scale, and
potentially modality variations. For example, objects that
are seen from the top view (middle row in Fig. 1) and side
view (bottom row in Fig. 1) can be correctly matching via
PEET. Even multiple sensor data such as visible and IR can
be matched although that is not the focus of this paper. In
PEET, an object image is first embedded in a small
representative set of model prototypes that are rendered
from viewpoints similar to the camera pose since the
cameras are fixed. The same set of model prototypes is used
for all the cameras but each set is rendered with respect to
its respective camera’s viewpoint. Each object image in
each camera is then embedded within the space of the
respective camera’s prototypes. Embeddings in the space of
rendered prototypes result in low dimensional embedding
vectors as representations of objects instead of the dense
pixel or edge based representations in the original or
processed images. Object matching problem is now

Figure 1. Top Row: A single object viewed by different
cameras in disparate locations exhibits large
appearance change. Middle & Bottom Rows: A single
object viewed by multiple cameras in disparate
locations and various orientations exhibits large pose
change.

1-4244-1180-7/07/$25.00 ©2007 IEEE

formulated as the problem of matching embeddings.
Embeddings represent a given vehicle not as itself but as a
vector of distances for the given vehicle from the set of
prototypes. Intuitively, a sedan is represented in terms of
how far it is from prototypical sedans, SUVs, pickups, etc.
By pre-computing the mapping between the embedding
vectors disparate camera views and appearances can be
matched efficiently. Another important advantage of PEET
is that no training is required, and no expensive
computation is involved, which makes it especially suitable
for on-line classification and large database querying tasks.
We review the related work in Section 2, and explain
technical details in Section 3. Experimental results are
given in Section 4, and we conclude in Section 5.

2 Related Work

Vetter and Poggio first proposed the idea of learning shape
changes from the 2D prototype shapes of two distinctive
views [1]. Under certain linearity assumptions, they
decomposed the object image onto two sets of basis, one for
shape and the other for texture. Instead of computing a
linear projection within the space spanned by the basis
shapes/textures, our approach uses an embedding process
that requires only the distances of the query image with
respect to each basis image.

Koller et al. [2] estimate a 3D deformable model of five
vehicle classes from a video sequence, and use parameters
for vehicle recognition and classification. Instead of using a
hand crafted 3D model, our approach uses exemplars that
either rendered from 3D model or automatically selected
from real vehicle images. Our approach does not require
precise model parameters for rendering exemplars.

Jacobs et al. [12] proposed vector of distances to other
images for a given image, rather than the direct pairwise
distance, as a robust measure of similarity for non-metric
distance measures between images, for instance distance
measures that are robust to outliers. Athitsos et. al. [3] use
Lipschitz embedding to approximate the Chamfer distance
for hand pose recognition with large database. Athitsos et.
al. [4] propose an approach using AdaBoost to learn the
embedding with the triangle inequality enforced. Grauman
et. al. [5] use Locality Sensitive Hashing-based embedding
(LSH-embedding) [6] to approximate the expensive Earth
Mover’s distance.

Shan et al. [7] also address the vehicle-matching problem
using the embeddings but require a mapping function to
align the matching scores. In our approach, we avoid this
problem using a novel two-level structure, which
normalizes the matching scores computed from different
camera, without explicitly solving a non-linear mapping
function.

On the application side, [8] also dealt with object matching
between non-overlapping cameras and on-line learning of

camera topology and path probabilities. Kettnaker&Zabih
[9] and Pasula et al. [10] proposed a nice framework for
object matching and feature learning. All these methods
rely on directly matching vehicle objects across multiple
cameras.

3 Proposed Algorithm

For the purposes of this paper, it is assumed that an in-
camera tracker tracks vehicles within the field of view of a
single camera and produces bounding boxes around
observed vehicles. We have used our own version of a fixed
camera tracker.

3.1 Overall Approach

We first describe the overall approach and then detail each
step. Fig. 2. outlines our overall approach. To match objects
observed in two different cameras, there are four major
steps in the PEET framework:

Step 1: The image-to-model matching is performed using
Prototype Embedding (PE) for camera 1. For an imaged
vehicle, the best N1 matching models for camera 1 are
selected based on embeddings. This step alone can be used
for object classification.

Step 2: Embedding Transition (ET) is carried out through
embeddings with model prototypes across the two cameras.
The same set of N1 models is rendered respectively for the
two cameras.

Step 3: The model-to-image matching is performed using
Prototype Embedding (PE) at camera 2. This time for each
of the N1 model prototypes, top N2 matched image objects
are chosen.

Step 4: Finally from the potential matching set of N1*N2
matched candidates, best matches are selected through
competition and combination. The results are query returns
for a given object.

Figure 2. Overall schema of PEET.

3.2 Image Exemplar Based Embedding

PEET is largely inspired by [3, 4] and [7]. In [7] a set of
representative image exemplars is first chosen for every

camera. For every object, say object i of dimension

ii MN × , viewed by every camera, say camera j , a
distance kjid ,, is computed between the object and every

exemplar k , },...,2,1{ Kk = . For a specific object i and
camera j , if we stack all the distances with respect to all
the exemplars together, we obtain a K dimensional vector

},...,,{ ,,2,,1,,, Kjijijiji ddd=d . For the same object

i seen by another camera 'j , we carry out the same routine
and get another K dimensional vector

},...,,{ ,',2,',1,',', Kjijijiji ddd=d . The two vectors

ji,d and ', jid are dubbed as embedding vectors. As can be
seen from Fig. 3, if the object aspects between the two
cameras j and 'j are similar, ji,d and ', jid are also very

similar, and the 2L distance or correlation between them
can be used to decide if the two objects are similar or not.
Therefore, we can effectively use a much lower
dimensional feature to represent a high dimensional object
(usually K << ii MN ×), and compute its similarity with
respect to other objects.

However, in the image exemplar based embedding, one
needs to manually select common representative image
exemplars for every camera, and not all the exemplars exist
for all observers. In addition, each distance value kjid ,, in
the embedding vector is supposed to reflect only the
similarity between the object and the image exemplar,
given that the illumination condition for the object instance
and the exemplar from the same camera is similar. Since
the tracker segmentation may not be perfect, the influence
from background will be reflected in the distance
computation and affect the matching.
The most significant disadvantage is that if the poses of the
two cameras are very different, then the two embedding
vectors for the same object will not be similar any more, as

shown in Fig. 4. In this case, we need to compute a
complex mapping function between the embeddings for the
object instances in the two cameras. And more generally,
for example, if one camera sees the front of an object, and
the other camera sees the back of an object, there might not
exist a continuous mapping function at all.

3.3 Prototype Embedding (PE)

 To overcome the above-mentioned problems in image
exemplar based embedding, we replace the image
exemplars with prototype exemplars. As shown in Fig. 6, a
set of representative object models are chosen and rendered
at each camera location. Similar to image exemplar based
embedding, if the shape of the two objects i and 'i are
similar, their embedding distances ji,d and ji ,'d (shown in
read and blue curves) are also very similar, and the

2L distance or correlation between them can be used to
decide if the two objects are similar or not.

Figure 5. Some representative vehicle
prototypes and their edge maps.

Some of the representative rendered vehicle prototypes and
their edge maps are shown in Fig. 5. Note that each
semantic part of a vehicle is rendered with a different color,
so that the edge between different parts can be easily
extracted. Since our object matching is based on geometric

Figure 3. Image exemplar based embedding illustration.
(For simplicity, subscripts denoting object and view
indices are omitted in the distance representation.)

Figure 4. Exemplar Embedding cannot match objects
with large pose change in this example. A complex
mapping function needs to be computed between the
embedding distances from the two cameras.

properties of vehicles, the distance is defined to reflect the
geometric aspect of vehicles. For example, Chamfer
distance, after robust alignment and outlier rejection,
between the edge maps of images or an image and a
prototype is a good shape similarity measurement.
Compared with image exemplar based embedding,
prototypes are easily rendered for all observers, and perfect
segmentation of the object from the background is not
needed. But simple replacement of images with prototypes
does not solve the problem of reliably matching objects
viewed from drastically different poses shown in Fig. 4. We
resolve this problem with Embedding Transition (ET)
described in Section 3.4.
3.4 Embedding Transition (ET)

For matching vehicles across cameras, we need to employ
an embedding transition scheme. First, as with object
images, we treat each rendered model as an image Mi , and
embed each model itself in the space of
the K representative prototypes and obtain a K -
dimensional embedding vector for the model

},...,,{ ,,2,,1,,, KjMijMijMijMi ddd=d , as shown in

Fig. 7. The set of embedding vectors jMi ,d ,

},...,2,1{ KiM = are pre-computed and stored in the
database. Given the embedding vectors for each object
image, and those for each model prototype, we can compare
any image embedding vector ji,d with respect to each of

the model embedding vectors jMi ,d , },...,2,1{ KiM = ,
and compute the following, as shown in Fig. 8:

• Given an image, return the best matched images;
• Given an image, return the best matched models

(prototypes);
• Given a model (prototype), return the best matched

images.
With this knowledge, we can now robustly and accurately
match vehicles across cameras, as demonstrated in Fig. 2. It

is easy to see that within each camera, images and
prototypes share similar pose and modality. And across
cameras, the pose and modality change is naturally handled
by the rendering the same set of pre-chosen prototypes with
corresponding pose and modality in difference camera
locations.

3.5 Asymmetry Between Image and Model Prototype
Matching through Embeddings

Even though we treat images and rendered models similarly
in PEET, we have to point out that the accuracy of
retrieving the best-matched models for a given image is
different from the accuracy of retrieving the best matched
images from a given model. The total number of models is
usually in the order of 10 – 40, and for each class the total
number of sub-class models is even smaller, usually 3-4.
The total number of image objects is usually in the order of
hundreds. Therefore, given an image object, most likely all
the corresponding models will be selected as the top
matched models, and very rarely a non-corresponding
model will be chosen as the top match, if the image
resolution is good enough. While given a rendered model,
there will be many image chips that will potentially match
the model, and more often than not, a non-corresponding
image chip can be chosen. As a remedy, in the third step of
PEET, i.e., the model-image Prototype Embedding (PE)

Figure 6. A Schematic of Prototype Embedding.

Figure 7. A Schematic of Model embedding.

Figure 8. Model-Image embedding transition example.

step, we introduce the forward-backward matching
verification strategy. Given a model, for every returned
image chip through PE, we also compute the matched
models for the image chip, and require that the top K’ (K’ =
2 to 4) matched models be in the same class as the query
model. This backward matching step greatly mitigates the
mistake of selecting the non-corresponding image chips,
and hence largely increases the overall cross-sensor
matching accuracy. In other words, when retrieving image
objects through a model prototype query, we require
mutually consistent matching between the model
embedding and the image embeddings.

3.6 Un-supervised Learning with PEET

Another aspect of PEET based matching is that if the
resolutions of the two cameras are very different, the
matching performance is different in the two directions. For
example, if camera 1 is of higher resolution than camera 2,
then retrieving the matched images in camera 2 for a given
query image in camera 1 is better behaved than retrieving
the matched images in camera 1 for a given query image in
camera 2. This is because prototype embedding is
susceptible to errors in alignment and distance computation
if the image resolution is poor. As a result the “represent-
ability” of the corresponding embedding vector is not
reliable, thus leading to mistakes in model retrieval.

Figure 9. Un-supervised Learning with PEET.

To improve the relatively worse performance in the low-
resolution high-resolution matching direction, we can
take advantage of this heterogeneous matching behavior for
the two different directions. Specifically, since matching
images from high-resolution low resolution is good, for
each high-resolution image in camera 1 (hi-res), we can
generate K (usually 3-5) matched low-resolution images in
camera 2 (lo-res) using PEET matching. Suppose we
establish such a match between N1 image objects in hi-res
to the lo-res camera. This results in N1*N2 pairs of
matched image objects between hi-res and lo-res. Now we
can establish a mapping between these N1*N2 embedding

vectors, but this time we specify the input vectors of the
mapping function to be the embedding vectors of images in
camera 2 (low-res), and the output vectors to be those of
images in camera 1 (high-res). With these N1*N2
embedding vector pairs, we use a Radial Basis Function
(RBF) mapping to learn the mapping between them, as
shown in Fig. 9.
Our intuition to choose RBF arises from the fact that
vehicular objects usually consist of limited number of
planar surfaces, and the total number of vehicle classes is
also limited, therefore a weighted sum of some basis
functions of the embedding vectors should be able to
characterize the transformation between the two sets of
embedding vectors in the two view points if the pose
change is not drastically different.

3.7 Function Approximation & Mapping

The relationship between object classes and image features
under arbitrary conditions (lighting, pose, and modality) is
highly non-linear. However, for nearly fixed conditions, the
relationship becomes tractable. As shown in Fig. 10, for
each individual camera, objects lie in a low-dimensional
manifold (as shown in the upper left or bottom right
corner). If we tessellate the low dimensional space with
enough objects, then for a new object (shown with a red
bounding box), its class can be easily obtained by a proper
function approximation scheme, i.e., prototype embedding
in this case. To handle the highly complex function form
for classification under different camera conditions (for
example, across camera 1 & 2 in Fig. 10), PEET uses the
same set of object prototype to tessellate all the local low
dimensional space, and object classification becomes a non-
parametric discrete function mapping problem.
As shown in Fig. 11, function mapping between local
spaces can be simple continuous or discrete parametric
mapping (first two rows), and it can also be a discrete non-

Figure 10. Space tessellation using prototype models.

parametric mapping (third row). In Embedding Transition,
we simply replace each date point in discrete non-
parametric mapping with object model prototype (fourth
row), and the non-parametric mapping can learned if
enough data points are available in each local space.

Figure 11. Embedding Transition (ET) as non-
parametric discrete function mapping.

4 PEET Applications and Experimental Results

We apply the PEET for vehicle classification and querying
in a large area visual surveillance system. The system
consists of a network of non-overlapping cameras for
tracking vehicles over an area of roughly 4 square kms. in
modest to heavy traffic. Each camera covers typically 2 and
at some locations 3 lanes of traffic; both the near and far
lanes are covered. Vehicles typically appear larger in the
near lane cameras and usually both top and side views are
visible. Far lane cameras see mostly side views and vehicle
resolution is smaller (usually 0.5 – 0.9 times smaller) (Fig.
1). We selected 12 representative cameras and collected
data for around 30 minutes, with each camera seeing around
200 different vehicles passing through during the period of
time. We use a frame-to-frame tracker to obtain image
object chips with their approximate bounding boxes as
shown in Fig. 1. We also manually created the ground truth
for vehicle classes for all the observed vehicles in each
camera.

4.1 Object Classification with Relatively High-
Resolution Camera

We have tested our classification algorithm extensively on
the above mentioned live surveillance system. We choose
two representative data sets for our experiment. The first

data set (DS1) was collected in the morning with moderate
shadows, and the second data set (DS2) was collected in the
afternoon with moderate to heavy shadows.
We classify all the vehicles (S) into five classes: Sedan
(S1), SUV/Mini-Van (S2), Delivery Van/Bus (S3), Pickup
Truck/Truck (S4), and none-of-the-above. We compute
three types of classification performance:

1) TD: True Detection Rate. TD measures for a
certain class, out of all detected vehicles belonging
to the class, how many vehicles truly have the
correct class label.

2) MD: The Mis-Classification Rate. MD measures
for a certain class, out of all the vehicles that have
that class label according to ground truth, how
many are not classified as belonging to that class.

3) TD_all: Overall Detection rate for all classes.
Tables 1 & 2 show the classification performance (using the
first step in PEET) for DS1 for four cameras -- 1, 3, 7, and
11. Tables 3 & 4 show the classification performance of
DS2 for four cameras -- 1, 3, 7, 11, and 15. These are all
near lane cameras, hence the resolution is relatively high,
typically 200x100 pixels per vehicle. Note that there are
much less pickup trucks and delivery vans in the datasets
than sedans, SUVs, and mini-vans, therefore the
performance on classes S3 & S4 is not as statistically
meaningful.

Table 1. True & Overall Detection Rates for DS1

Table 2. Miss Detection Rate for DS1

 MD (S1) MD(S2) MD (S3) MD(S4)
cam1 0% 13.85% 9% 39.13%
cam3 2.74% 13.85% 0.00% 54.17%
cam7 0.00% 18.57% 33.30% 50.00%
cam11 1.32% 7.81% 25.00% 36.00%

Table 3. True & Overall Detection Rates for DS2

 TD(S1) TD (S2) TD (S3) TD (S4) TD_all (S)
cam1 97.52% 86.09% 46.67% 87.80% 90.06%
cam3 94.37% 86.21% 42.86% 96.55% 89.34%
cam7 97.35% 83.33% 63.64% 96.30% 90.12%
cam11 95.19% 76.53% 50.00% 85.71% 84.62%
cam15 94.23% 84.21% 58.33% 95.24% 88.73%

 TD(S1) TD (S2) TD (S3) TD (S4) TD_all (S)
cam1 87.65% 96.55% 62.50% 93.33% 88.82%
cam3 86.59% 94.92% 47.37% 100.00% 85.96%
cam7 82.80% 89.06% 72.73% 100.00% 85.39%
cam11 92.59% 85.51% 83.33% 100.00% 89.56%

Table 4. Miss Detection Rate for DS2

 MD (S1) MD(S2) MD (S3) MD(S4)
cam1 7.65% 10.81% 30.00% 12.20%
cam3 2.90% 15.73% 0.00% 28.21%
cam7 5.98% 6.59% 0 31.58%

cam11 16.10% 15.73% 0.00% 14.29%
cam15 2.00% 13.51% 0.00% 37.50%

4.2 Object Classification with Relatively Low-
Resolution Camera

For the far lane cameras, the image resolution is much
smaller, typically around 70x30 pixels per vehicle. If the
same algorithm (the 1st step in PEET) is used for
classification, the performance is poor because of the
limited resolution. However, since we are confident about
the classification performance with near lane, high-
resolution cameras, we can utilize the heterogeneous nature
in matching different resolution image objects as discussed
in Section 3.6. Specifically, as described in Section 3.6, we
learn a mapping between the embedding vectors of low-
resolution and high-resolution objects, and convert the
embedding vectors of far lane objects to those of near lane
objects. Then we treat these converted embedding vectors
as if they were obtained from the high-resolution cameras,
and use the standard classification scheme (the 1st step in
PEET) to perform classification. The performance
comparison of with-mapping (NEW) and without-mapping
scheme (OLD) for two cameras (2 & 4) is shown in Table
5. We can see that the learning based mapping scheme has
greatly improved the true detection rate and reduced the
miss-classification rate for all the classes of the far lane
objects, including pickup trucks and delivery vans.

Table 5. Far Lane Object Classification Performance
Comparison w/ & w/o Learning Based Mapping

Cam 2 Cam 4
 NEW OLD NEW OLD

TD (S1) 90.54% 60.56% 88.75% 91.43%
MD (S1) 6.94% 18.87% 2.74% 33.33%
TD (S2) 80.00% 57.14% 90.00% 63.64%
MD (S2) 15.79% 48.94% 16.67% 6.67%
TD (S3) 100.00% 100% 70.00% 75.00%
MD (S4) 50.09% 86.96% 25.00% 52.63%
TD (S4) 80.95% 58.33% 100.00% 87.50%
MD (S4) 26.09% 46.15% 25.00% 22.22%

4.3 Object Querying Across Disparate Cameras

Figure12. Demonstration of object querying. The
leftmost column shows the vehicle images used as queries.
Each of the corresponding rows on the right show the
vehicle objects returned as matches ordered from best to
worst.

Another application of PEET is object querying in a large
database, where we need to retrieve all the objects that
belong to the same class as the query independent of the
camera in which they were observed. We use the same data
sets (DS1 & DS2) for testing. The query performance is
illustrated in Fig. 12. The image chips in the left most
column are query objects viewed from one camera, and
chips in each row are all the retrieved objects viewed from
other cameras for that particular query (only top six returns
are shown because of limited space). Quantitative results
are shown in Table 6, where the accuracy is computed as
the total number of correctly matched objects within the top
three returns over the total number of query objects.

Table 6. Object Query Performance for Both Same and
Different Side Objects

Cross Camera Query for
Same Side Lanes

Cross Camera Query for
Different Side Lanes

 Accuracy Accuracy
cam001-003 97.63% cam001-002 93.60%
cam001-007 97.25% cam008-011 88.00%
cam011-015 97.87% cam003-016 94.44%
cam004-002 95.18% cam004-007 91.02%
cam012-008 95.79% cam001-012 94.06%

Note that the query and retrieved objects can be seen on
either the same side or the opposite side cameras. Also in
our application appearance querying is similarity querying
and not exact matching.

5 Conclusions

We have demonstrated that Prototype Embedding is a
computationally expedient way to handle vehicle
classification and querying in a system with cameras that
view vehicles over a large area with disparate pose and
illumination conditions. Furthermore, we also demonstrated
that Embedding Transition could be used to associate
vehicle appearances across cameras with significantly
different resolutions. Results on representative datasets
collected over a large area show encouraging results.
The idea of Embedding Transition needs to be further
investigated for disparate view matching. Furthermore,
embeddings can be defined as vectors of distances for parts
of objects rather than whole objects as described in this
paper. Finer scale classification and querying may be
afforded by such a part based representation.

6 Acknowledgement

This work was performed under a DARPA/DOI Contract No.
NBCHC030085.

Approved for Public Release, Distribution Unlimited.

References

[1] T. Vetter and T. Poggio. Linear object classes and image
synthesis from a single example image. IEEE Trans. Pattern
Analysis and Machine Intelligence (PAMI), 19(7):733–742, 1997.

[2] D. Koller, K. Daniilidis, and H.-H. Nagel. Model-based object
tracking in monocular image sequences of road traffic scenes.
International Journal of Computer Vision (IJCV), 10(3):257–281,
1993.

[3] V. Athitsos and S. Sclaroff. Estimating 3D hand pose from a
cluttered image. In Proceedings IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR03), page 432, 2003.

[4] V. Athitsos, J. Alon, S. Sclaroff, and G. Kollios. Boostmap: A
method for efficient approximate similarity rankings. In
Proceedings IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR04), pages 268–275, 2004.

[5] K. Grauman and T. Darrell. Fast contour matching using
approximate Earth Mover’s Distance. CVPR04, volume I, pages
220–227, 2004.

[6] P. Indyk and N. Thaper. Fast image retrieval via embeddings.
In International Conference on Computer Vision (ICCV03), 2003.

[7] Ying Shan, Harpreet S. Sawhney, Rakesh Kumar, "Vehicle
Identification between Non-Overlapping Cameras without Direct
Feature Matching", IEEE International Conference on Computer
Vision (ICCV05)

[8] O. Javed, Z. Rasheed, K. Shafique, and M. Shah. Tracking
across multiple cameras with disjoint views. In International

Conference on Computer Vision (ICCV03), volume 2, pages 952–
957, 2003.

[9] V. Kettnaker and R. Zabih. Bayesian multi-camera
surveillance. In Proceedings IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR99), 1999.

[10] H. Pasula, S. J. Russell, M. Ostland, and Y. Ritov. Tracking
many objects with many sensors. In International Joint
Conferences on Artificial Intelligence (IJCAI99), pages 1160–
1171, 1999.

[11] D. Nistér and H. Stewénius, Scalable Recognition with a
Vocabulary Tree, CVPR 2006.

[12] D. Jacobs, D. Weinshall, Y. Gdalyahu, ``Class Representation
and Image Retrieval with Non-Metric Distances''. IEEE Trans.
on Pattern Analysis and Machine Intelligence. 22(6):583-600,
2000.

