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Abstract

In this paper we use Motion and Appearance Contexts

for persistent tracking of objects in aerial imagery. The mo-

tion context in a given environment is a collection of tra-

jectories of objects which are representative of the motion

of the occluded or unobserved object. It is learned using

a clustering scheme based on the Lyapunov Characteristic

Exponent (LCE) which measures the mean exponential rate

of divergence of the nearby trajectories. The learned mo-

tion context is then used in a regression framework to pre-

dict the location of the unobserved object. The appearance

context of an occluded (target) object consists of appear-

ance information of objects which are currently occluded

or unobserved. It is incorporated by learning a distribution

of interclass variation for each target-unobservable object

pair. In addition, intra-class variation distribution is con-

structed for each occluded object using all of its previous

observations. Qualitative and quantitative results are re-

ported on challenging aerial sequences.

1. Introduction

This paper attempts to solve the problem of persistent

tracking and reacquiring of objects in aerial videos. Per-

sistent tracking implies the ability to track objects through

occlusions, while reacquiring implies the ability to maintain

the correct labels of objects when they leave and come back

into the field of view. Persistent tracking and reacquiring is

a challenging problem due to number of a reasons: i) the

motion of the platform on which camera is mounted is un-

constrained, ii) targets of interest move independently with

respect to the motion of the camera, iii) the field of view of

the camera is restricted, iv) appearances and shapes of the

objects change due to illumination and pose variation, and

v) terrain features act as sources of occlusion resulting in

loss of observations of target objects.

The main thrust of our proposed idea is to exploit the

contextual knowledge present in the environment. For the

aerial imagery this will consist of the information which is

necessary for interpreting the event that is taking place on

the ground. We employ two pieces of this contextual knowl-

edge, namely Motion Context and Appearance Context for

tracking and reacquiring target objects.

The Motion Context captures an intuitive observation

that the locomotive behavior of an object (e.g. car) pro-

vides information about locomotive behaviors of nearby ob-

jects (cars) that are in the same environment. This is true

because cars moving along the same stretch of a road are of-

ten subjected to similar constraints in terms of the paths that

they can take, shape of the path, road conditions, and speed

restrictions. Therefore, the motion of a car contains the in-

formation which can be used to interpret how neighboring

cars would behave. The Appearance Context captures the

notion that for an occluded object, a more discriminative

appearance model can be constructed if we have the knowl-

edge about which other objects are currently occluded or

unobserved. Building an appearance model that takes into

account the appearance of other unobservable objects will

make the model more discriminative, thus making it eas-

ier to establish the correspondence of the appearance of the

newly detected object with the appearances of cars in the

unobservable set. Figure 1 provides a pictorial description

of the motion and the appearance context.

2. Overview

The motion context is implemented in a regression

framework which is inspired by the research conducted in

the field of oceanography for search and rescue operations

at sea [1][2][3]. The goal in such a scenario is to narrow the

search area based on the best possible prediction of the lost

object, given its initial position and the motion of other ob-

jects. We have mapped this setting to the scenario of aerial

videos by defining the occluded or unobservable object on

the ground as the one for which we want to make the pre-

diction and we refer to it as the ‘predictand’. Tracks from

objects which are observable and are moving along or have

moved along the same path in the past as predictand, are

used to compute the likely location of the ‘predictand’ and
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Figure 1. An illustration of the the Motion and Appearance Context. The motion context of a car circled in red is defined by the cars circled in yellow that

have motion dynamics similar to the red car. Cars circled in blue are not part of the motion context of red car, since blue cars have motion dynamics which

are different from the red car. The appearance context of the red car consists of cars which are currently unobservable and are shown in the green rectangle

on the far right. It shows us that the appearance model of the red car only has to be discriminative with respect to this set, since the red car has to compete

only with these cars at the re-acquiring stage.

we refer to them as ‘predictors’.

Formally, let r1(0), r2(0), ..., rN (0) be the starting po-

sitions in the image plane of N objects O={Oi}
N
i=1 in the

image plane at t = 0. Corresponding to each Oi we have a

set Ci ⊂ O defining its motion context. The cardinality M

of Ci is less than or equal to N . Assume that the trajectories

of the first p = N − 1 objects r1(t), r2(t), ..., rp(t) are ob-

served during the time interval (0, T ), while the trajectory

of the last object, rN (t), is not observed. Now, the problem

is to make a prediction about the location of the unobserved

object ON , given trajectories of predictors in CN and the

initial predictand position rN (0). The optimal prediction in

the mean square sense [1] is E | r̂N (T ) − rN (T ) |→ min,

where r̂N is given by the conditional expectation r̂N (T ) =
E(rN (T ) | r1(t), r2(t), ..., rp(t), 0 ≤ t ≤ T ), based on

all the observations. However, this expectation is hard to

find explicitly as observed by Piterbarg et. al. [1]. To over-

come this problem a regression framework is used which

estimates the future location of the predictand by employ-

ing the data from the predictors in a least square sense. For

the clarity purposes the above formulation assumes that all

p objects are in the set CN .

For implementing the appearance context we keep a set

U ⊂ O of the currently unobservable objects at all times t.

The appearance of each object Oi undergoing occlusion is

encoded in terms of the intra-class variation with respect to

all of the observations of Oi, and pairwise interclass vari-

ation with respect to observations of objects in U . Let the

cardinality of U be l, then for each Oi we have (l + 1) sets

of intra and interclass variation vectors. The variation vec-

tors in each set are assumed to be drawn from a separate

Gaussian pdf where means and variances of these pdf’s are

computed using the corresponding variation vectors. Now,

in order to establish whether a newly detected blob B is ac-

tually Oi, we construct intra-class and inter-class variation

vectors of B are with respect to previous observations of Oi

and observation of objects in U , respectively. Similarity is

computed by looking at how well the intra and inter-class

variation vectors of B are described by the pdf’s of inter

and intra-class variation of Oi.

3. Related Work

Over the last few years a number of algorithms have

been proposed for linking tracks in a multiple camera setup

[5][6][8][7]. Huang et. al. [5] employed a probabilis-

tic approach to model appearances and transition times for

tracking cars across cameras, while Kettnaker et. al. [6]

used positions, velocities, and transition times in a Bayesian

framework for this purpose. Similarly, Javed et. al. [8]

and Glibert et. al [7] proposed a supervised and an unsu-

pervised framework for learning camera topologies, respec-

tively. However in the setting of aerial videos topographic,

appearance and learning based constraints used by afore-

mentioned approaches are not easily extendable.

Recently, Amitha et. al. [9] proposed a framework for

linking tracks across occlusions in the setting of aerial im-

agery. This work builds upon their previous work [10]. In

[9], the problem is solved in two stages where at the first

stage pairwise associations between tracks were established

using temporal ordering, proximity of predicted location,

and matching of appearance templates. While the second

stage is used to handle the splitting and merging of objects.

The main difference between their approach and the method

proposed in this paper is that they do not employ any con-

textual knowledge of the object’s kinematics or appearance

at the association stage. The state of the art methods for

modelling appearances of cars in the setting of aerial im-

agery use representations based on edges [11][12], line fea-

tures [13], and shape features [14]. However, none of these

approaches exploit the contextual knowledge available in

the scene.

4. Framework

In this section, we will present theoretical and implemen-

tation details of the proposed framework.

4.1. Modelling Motion Context

Let N be the total number of objects observed up until

time T , which are represented by the set O. Let VT ⊆ O



be the objects which are visible in the current frame of the

video. P ⊂ O is the set of objects whose locations are be-

ing predicted. Corresponding to each Oi ∈ P we have a set

Ci ⊂ O of objects which act as the predictors for Oi. Lastly,

we maintain a set of trajectories R, where ri(0, ..., T ) is the

trajectory corresponding to object Oi. Our goal is to predict

the next location ri(t) of object Oi ∈ P at time t where

t > T , given its last location ri(T ). Note that ri(t) is a

vector consisting of the image location [xi(t), yi(t)]. The

starting and current locations rj(T ) of all M predictors in

Ci are also known. Given this information the current loca-

tion of the object Oi ∈ P will be predicted by using the fol-

lowing regression: ri(t) = A(t)ri(T )+ b(t)+ zi(t), where

A(t) is an unknown 2x2 matrices and b(t) is an unknown 2-

dimensional vector. While zi(t) is a stochastic process with

a zero mean uncorrelated for a fixed T .

The unknown matrix A(t) and vector b(t) for Oi are

computed using the initial and the current locations of pre-

dictors in the set Ci. There are six unknown parameters, i.e.,

four entries of matrix A and two entries of vector b. There-

fore the constraint that we always need to have at least three

or more predictors in the set Ci to solve the system [1]. In

case we have less than three predictors, only appearance is

used for re-acquisition.

The least square estimates of A(t) and b(t) are obtained

as Â(t) = S(t)S−1(T ) and b̂(t) = m(t) − Â(t) − m(T ),
where m(t) = 1

p

∑p
i=1 ri(t) is the center of mass of the pre-

dictor cluster. The value of S(t) is calculated using the re-

lation S(t) =
∑p

i=1(ri(t)−m(t))(ri(0)−m(0))
′

. Finally,

the obtained estimator is used to predict the unobservable

object Oi using r̂i(t) = m(t)+S(t)S(0)−1(ri(0)−m(0)).
The important step in this formulation is the calculation of

set Ci corresponding to each Oi. Knowing this set, finding

solutions for the above equations is straight forward.

4.2. Selecting Predictors

Predictors for each unobservable object are selected us-

ing a methodology based on the concept of LCE. We will

now briefly describe the LCE before presenting the algo-

rithm for the selection of predictors.

4.2.1 Lyapunov Characteristic Exponent

LCE is used as a tool for measuring the chaoticity in the

dynamical systems [4]. It does this by measuring the rate

of exponential divergence between the neighboring trajec-

tories in the phase space. For a given dynamical system ẋ =
f(x), the maximum LCE is defined as γ = limt→∞χ(t),

with χ(t) = 1
t
ln

|ξ(t)|
|ξ0|

, where ξ(t) is the solution of the dif-

ferential equation of the system while ξ(0) is the initial state

of the system. The values χ(t) are called the LCE, and for

practical calculation it is not possible to take the limit up to

infinity. Therefore, we follow its evolution up to some pre-

specified number of steps. In most cases we do not have

the differential equations governing the temporal evolution

of the dynamical system. This is also true for the situation

that we are dealing with in this paper where the motion of

objects in the scene are governed by a set of unknown dif-

ferential equations. To overcome this problem we use an

alternative approach to computing LCE first proposed by

Wolf et. al. [16] where the definition of LCE is replaced

by χ(t) = 1
N

ln dt

d0

, where dt is the distance between two

trajectories at time t, initially separated by d0.

4.2.2 Predictor Selection

Using LCE to compute predictor set Ci for a given predic-

tand Oi ∈ P requires some special considerations. First

the ‘predictand trajectory’ ri(t) is labelled as the reference

trajectory and the locations of all the other trajectories in R

are computed relative to the reference trajectory. Pairwise

LCE is computed between the reference trajectory and the

remaining trajectories, one at a time using Equation 1.

In order to be able to correctly predict the position ri(t)
of the unobserved object Oi at time t, we have to select a

set of meaningful predictors Ci to be used in the regression

framework. The term ‘meaningful predictor’ is used to em-

phasize the object that is following or has followed a track

similar to that of the predictand between some time interval

tc = (ts, te) where 0 < ts < te and ts < te < T . This im-

plies that a section rj(t
j
s, t

j
e) of trajectory rj(t) ∈ R during

some time tjc = (tjs, t
j
e) is similar to the track ri(t) of the

predictand in the last F = (tje − tjs) frames of the sequence,

where F is a parameter defining the observation window.

Note that superscript j in tjs and tje is referring to the fact

that there is a separate start and end time corresponding to

each potential predictor track rj(t). However, the value of

F will remain the same. In our case the measure of similar-

ity is the LCE, thus in order to assemble a set of predictors

for a particular predictand, we search all the tracks in R for

a section rj(t
j
s, t

j
e), where the motion of the object is most

similar to that of the predictand.

First, we define track section Z of Oi ∈ P as Z = ri(t−
F, t), where t is the current time. Second, we perform the

following search. For every possible section tjc = (tjs, t
j
e) of

potential predictor’s track rj(t), we extract a section Zc =
rj(t

j
s, t

j
e). Third, we normalize the track section Zc with

cn
Z

Z
))(),(( iZiZdist

cn

))1(),1(( −− iZiZdist
cn

Figure 2. A portion of a potential predictor trajectory shown within a red

ellipse is first normalized with respect to the predictand trajectory shown

within a yellow ellipse. The Euclidian distance between points of the tra-

jectory at each time instant is used in Equation 1 to compute the LCE.



(a) (b) (c)

Figure 3. Illustrates the predictor selection procedure. (a) The set of tra-

jectories that have been observed so far in this scene. This set contains tra-

jectories generated from observed objects and trajectories that have been

predicted in the past. (b) Shows the predictand trajectory. (c) Predictor se-

lection result returned by our selection procedure emphasizing the objects

whose motion dynamics are similar to the predictand trajectory.

respect to the predictand’s track section Z, so that they both

start at the same point. Let us call the normalized track

Zcn. Finally, we compute the LCE between predictand’s

and object’s track sections Z and Zcn as

γ(Z, Zcn) =
1

F

F∑

i=2

ln
dist(Z(i), Zcn(i))

dist(Z(i − 1), Zcn(i − 1))
, (1)

where, in our definition, dist(Z(i), Zcn(i)) is

the Euclidian distance between two track points

(x(i), y(i)) and (xcn(i), ycn(i)) given by dist =√
(x(i) − xcn(i))2 + (y(i) − ycn(i))2.

If γ(Z,Zcn) ≤ α, where α is a threshold derived em-

pirically, we add object Oj to the set of predictors Ci of

predictand Oi. We also add tje to a new set Bi where the

cardinalities of Bi and Ci are the same. Note that the closer

the value of γ is to 0, the more similar the motion of pre-

dictor Oj between frames tjs and tje is to the motion of the

predictand between frames t − F and t. The process of

computing a LCE between the reference trajectory and a

potential predictor trajectory is summarized in Figure 2.

Once an object has been added to the predictor set Ci of

predictand Oi, we keep the same predictor in set Ci until

predictor’s and predictand’s tracks begin to diverge. Thus,

for all subsequent frames we call the above procedure to en-

sure that the motion of predictor Oj ∈ Ci between frames

tjs + p and tje + p, is similar to the motion of the predictand

Oi between frames t−F +p and t+p, where p is the frame

counter. If the tracks of the predictand and the predictor be-

gin to diverge, we remove the predictor from the set. Figure

3 shows one particular result where, for the reference tra-

jectory shown in Figure 3(b), we were able to construct the

corresponding predictor set shown in Figure 3(c) from the

input tracks displayed in Figure 3(a).

4.3. Modelling Appearance Context

The appearance model of each object Oi is constructed

using the contextual knowledge about which objects are in

set P . All of the observations of Oi are defined by a set

Xi = (xn | n = 1, ....L), where L is the total number of

observations. For each Oi we define a variable y, which is a

function y = f(x, xi) of a pair of observations x ∈ X and

xi ∈ X . We define a matrix Λi, which contains the values

of y for all possible pairs of observations in Xi. The matrix

Λi is then the matrix of intra-class variation for object Oi.

Similarly, for object Oi the inter-class variation data is com-

puted separately for each Oj ∈ P . Let us define a matrix of

inter-class variation vectors between Oi and Oj ∈ P by Ωj
i .

Note that Ω′s use the contextual knowledge by considering

inter-class variation with respect to only those O′s that are

currently unobservable, thus providing an extra piece of in-

formation that is going to help in reacquiring Oi after an oc-

clusion. In our implementation, we define function f(x, x
′

)
as f(x, x

′

) = x − x
′

. The input observation xn for each

object consists of RGB pixel values of the object region.

Target Reacquiring -

• for each incoming frame f get Vf .

– for each new object Ok in Vf

∗ find if Ok is in P by computing distance between current

location of Ok and last predicted location of Pi that is

within (f − u) frames.

∗ If distance < thresh, set Ok = Pi.

∗ Remove Pi from P .

– for each old object Ol in Vf

∗ Update the predictor set Ci by calling

PredictorSelection(rl(0, ..., f), Ci, Bi, G)

——————————————————————————-

returns C:PredictorSelection(R(0...., f), C, B, G, O)

• for each track ri(0, .., f − 1) in G except the track R(0, ..., f − 1)

– if Oi not member of C then for each time instance j = F to

(f − 1)

∗ Z = R(f − F, f) , Zc = ri(j − F, j)

∗ Zcn = normalize(Z, Zc)

∗ Compute γ by using Equation 1

∗ if γ < α then add Oi to C and add j to B

– else

∗ Pick entry corresponding to Ci from B, call it j.

∗ Zc = ri(j − F + 1, j + 1), Z = R(f − F, f)

∗ Zcn = normalize(Z, Zc)

∗ Compute γ by using Equation 1

∗ if γ > α then remove Ci from C and add Bi from B,

otherwise B(i) = B(i) + 1

Assuming that differences between the pair of samples

originate from additive Gaussian noises, we construct a

multivariate Gaussian probability density function for inter-

class (Λi) and intra-class variation (Ωj
i ) sets by treating each

column as a vector of random variables. For simplicity,

we assume each variable to be independent and estimate

the mean and standard deviation using the standard formu-

las. Now, when a new object Ok is detected we proceed

as follows to find out if it is one of the unobservable ob-

jects whose locations we are predicting using motion con-

text. The region belonging to Ok is extracted, resized to the

predefined size, vectorized and is represented by s. For each

Oj ∈ P , an intraclass variation vector set is constructed by

using all of the pairwise combinations of s and observation

in Xj . From this vector set, we pick up that particular vector

whose distance from the learned pdf of intraclass variation



for Oj is minimum. The same process is repeated for all

other Oj ∈ P and the O which has the minimum distance

is selected. A second stage of verification is then performed

with respect to inter-class variation pdf’s of Oj . If the dis-

tance of s is minimum with respect to all these, final appear-

ance based association is carried out.

5. Experiments and Results

In this section, we report the experimental performance

of our target tracking and reacquiring approach. In each ex-

periment, we demonstrate that the approach is able to reac-

quire objects accurately across occlusions and as well as

for the case of entries and exits from the field of view of the

camera. The first set of videos employed for testing consists

of challenging sequences taken from the Getty-Images web-

site. In these the types of occlusions include single overhead

bridge to multiple overhead bridges. The second set con-

sists of the VIVID data corpus. The detection and tracking

within each sequence were done automatically for all the

sequences using the COCOA system [15]. Three sequences

were used in total including two from VIVID and one from

Getty-Images web site. The VIVID sequence contains a

convoy of cars tracked by the UAV. Due to rapid camera

motion, a particular car remains visible only for short du-

rations of time before going out of the field of view of the

camera. In absence of a reacquisition methodology the ob-

tained tracks were broken.The sequence taken from Getty-

Images captures a busy road intersection, where cars are

moving along multiple paths at any given time.

The experiment on VIVID data set is conducted in the

following manner. The detected objects are tracked and

once they become unobservable, their positions are pre-

dicted using the motion context framework discussed in

Section 4.1 and 4.2. Whenever a new object enters in the

field of view of the camera, we match it with all of the pre-

dicted tracks using spatial and appearance constraints using

motion and appearance context. Qualitative results for three

different tracks, which were repaired by our method, are

shown in Figures 4 (b), 4 (d), and 4 (f). Figure 4 (d) shows

the scenario where the object motion is linear. Figure 4 (g)

shows repairing results on a rather challenging maneuver.

Here the cars are making a U-turn and with camera tracking

only part of the convoy for the most part. We would like

to stress that a prediction model based on a linear motion

assumption like Perera at. al. [9] will not be able to han-

dle these kinds of situations. However, reacquisition results

shown in Figure 4(h) clearly demonstrate the robustness and

richness of our algorithm where we are able to assign the

correct labels even after the cars have made the U-turn. An-

other set of results is presented in Figure 4(e) where a car

leaves and enters the field of view multiple times. We are

able to maintain the correct label throughout the sequence

as depicted by Figure 4(f). Note that in Figure 4(h), the

noisiness of the tracks near the matching points can be ex-

plained in terms of the error present in the prediction model.

Figure4(a) shows a track completion result for the road in-

tersection scenario. It shows that our algorithm was able

to keep the same label for the car as it re-appears from the

other side of the bridge.

For analyzing the prediction accuracy, we proceeded as

follows. For a given sequence with short and rare periods

of occlusion and enough potential predictors, we allowed

an object to be observed for F frames. After this period

of observation, we artificially added the object to the list of

unobservable objects, and predicted its position using our

motion framework. At the end of the sequence, for every

position of the predicted track of length N , we computed

the distance between the predicted position pi and the ac-

tual position ti of the object. Next, for each sub-interval

of length n of the track, we computed the mean prediction

error as MPEn = 1
n

∑n
i=1 dist(pi, ti). The mean predic-

tion error calculated for two particular tracks can be seen

in Figure 4(f) and 4(m). As can be seen from these fig-

ures, the mean prediction error increases with the duration

of the prediction. The increase is greater when the ob-

ject undergoes non-linear motion as in Figure 4 (m), in-

dicating the difficulties of the linear regression model in

predicting the position of the object. However, the error

is still sufficiently small for the track repair to work, as

was shown in Figure 4 (l). Similarly, we computed the

variance of the error for each sub-interval of length n as

V ariancen = 1
n

∑n
i=1(MPEn − dist(pi, ti))

2. Figures

4(k) and 4(n) show the variance calculated for the tracks

shown in Figure 4(i) and 4(l), respectively.

6. Conclusion

In this paper we have developed two new ideas of mo-

tion and appearance contexts. We have demonstrated their

application for the task of target tracking and re-acquistion

in aerial imagery. The future work includes development of

a mechanism for robustly fusing the motion and appearance

context information.
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