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Abstract

This paper advocates a Virtual Vision paradigm and
demonstrates its usefulness in camera sensor network re-
search. Virtual vision prescribes the use of a visually and
behaviorally realistic virtual environment simulator in the
design and evaluation of surveillance systems. Impediments
to deploying and experimenting with appropriately complex
camera networks makes virtual vision an attractive alterna-
tive for many vision researchers who are motivated to in-
vestigate high level multi-camera control issues within such
networks. In particular, we present two prototype surveil-
lance systems comprising passive and active pan/tilt/zoom
cameras. We deploy these systems in a virtual train sta-
tion environment populated by autonomous, lifelike virtual
pedestrians. The easily reconfigurable virtual cameras sit-
uated throughout this environment generate synthetic video
feeds that emulate those acquired by real surveillance cam-
eras monitoring extensive public spaces. Our novel multi-
camera control strategies enable the cameras to collaborate
in persistently observing pedestrians of interest that move
across their fields of view and in capturing close-up videos
of pedestrians as they travel through designated areas. The
sensor networks support task-dependent camera node se-
lection and aggregation through local decision-making and
inter-node communication. Our approach to multi-camera
control is robust to node failures and message loss.

1. Introduction
Recent advances in camera and video technologies have

made it possible to network numerous video cameras to-
gether in order to provide visual coverage of extensive pub-
lic spaces such as airports and train stations. As the size of
the camera network grows and the level of activity in the
public space increases, it becomes infeasible for human op-
erators to monitor the multiple video streams and identify
all events of possible interest, nor even to control individual
cameras in performing advanced surveillance tasks, such as
zooming in on a moving subject of interest to acquire one or
more facial snapshots. Consequently, a timely challenge for

computer vision researchers is to design camera sensor net-
works capable of performing visual surveillance tasks auto-
matically, or at least with minimal human intervention.

We regard the design of an autonomous visual sensor
network as a problem in resource allocation and schedul-
ing, where the sensors are treated as resources required
to complete the desired sensing tasks. Imagine a situa-
tion where the camera network is asked to capture high-
resolution videos of every pedestrian that passes through a
designated area.1 Passive cameras alone cannot satisfy this
requirement. Active pan/tilt/zoom (PTZ) cameras must be
recruited to capture high-quality videos of pedestrians. Of-
ten there will be more pedestrians in the scene than the num-
ber of available cameras, so the PTZ cameras must intelli-
gently allocate their time among the different pedestrians.
A resource management strategy can enable the cameras to
decide autonomously how best to allocate their time in col-
lectively observing the various pedestrians in the scene. The
dynamic nature of the sensing task further complicates the
decision making process; e.g., the amount of time spent in
the designated area can vary dramatically between different
pedestrians, an attempted video recording by a PTZ camera
might fail due to occlusion, etc.

1.1. The Virtual Vision Paradigm
Deploying a large-scale surveillance system is a major

undertaking whose cost can easily be prohibitive for most
computer vision researchers interested in designing and ex-
perimenting with multi-camera systems. Moreover, privacy
laws impede the monitoring of people in public spaces for
experimental purposes. To overcome such obstacles, we
advocate Virtual Vision, a paradigm that prescribes visu-
ally and behaviorally realistic virtual environments for the
design of simulated surveillance systems and the meaning-
ful experimentation with such systems. Cost considerations
and legal impediments aside, the use of sufficiently realistic
virtual environments also offers significantly greater flexi-
bility during the design and evaluation cycle, thus enabling
many more iterations of the scientific method.

1The captured video can subsequently serve in further biometric anal-
ysis; e.g., with facial, gesture, and/or gait recognition routines.
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Figure 3. A large-scale virtual train station (Penn Station) populated by self-animating virtual humans.

Figure 1. Plan view of the virtual Penn Station environment with
the roof not rendered, revealing the concourses and train platforms
(left), the main waiting room (center), and the long shopping ar-
cade (right). (The yellow rectangles indicate station pedestrian
portals.) An example visual sensor network comprising 16 ac-
tive (pan-tilt-zoom) simulated video surveillance cameras is illus-
trated.

Figure 2. Synthetic video feeds from multiple virtual surveillance
cameras situated in the (empty) Penn Station environment.

Specifically, we demonstrate a surveillance system com-
prising static and active simulated video cameras that pro-
vide perceptive coverage of a large virtual public space; a
reconstruction of the original Pennsylvania Train Station in
New York City, which was demolished in 1963 (Fig. 1). The
virtual cameras situated throughout the expansive chambers
of the station generate multiple synthetic video feeds that
emulate those generated by real surveillance cameras mon-
itoring public spaces (Fig. 2). The train station is populated

by self-animating virtual pedestrians (Fig. 3). The advanced
pedestrian animation system combines behavioral, percep-
tual, and cognitive human simulation algorithms [17]. The
simulator can efficiently synthesize well over 1000 pedes-
trians performing a rich variety of activities in the extensive
indoor urban environment. Like real humans, the synthetic
pedestrians are fully autonomous. They perceive the vir-
tual environment around them, analyze environmental situ-
ations, make decisions and behave naturally within the train
station. They can enter the station, avoid collisions when lo-
comoting (even though portals and other congested areas),
queue in lines as necessary, say, to purchase train tickets at
the ticket booths in the main waiting room, sit on benches
when they are tired, purchase food from vending machines
when they are hungry, etc., and eventually proceed down
the stairs from the concourse area to the tracks to catch a
train. A graphics pipeline (OpenGL) renders the busy urban
scene with considerable geometric and photometric detail,
as shown in Fig. 3.

Our unique combination of advanced vision and graph-
ics technologies offers several advantages. First, the vir-
tual cameras are very easily relocated and reconfigured in
the virtual environment. Second, the virtual world pro-
vides readily accessible ground-truth data for the purposes
of surveillance algorithm/system validation. Third, surveil-
lance experiments in the virtual environment are perfectly
repeatable. Fourth, simulation time can be prolonged rel-
ative to real, “wall-clock time”; i.e., arbitrary amounts of
computation can be performed per simulation time unit,
thereby enabling competence assessments of collections of
sophisticated visual algorithms that cannot run in real time
on current surveillance hardware. Finally, our simulator
runs on (high-end) commodity PCs, obviating the need to
grapple with special-purpose hardware and associated soft-
ware.

1.2. The Surveillance System

Within the virtual vision paradigm, we develop and eval-
uate a visual sensor network consisting of fixed, wide field-
of-view (FOV) passive cameras and PTZ active cameras.



We develop novel multi-camera control strategies that en-
able the simulated camera nodes to collaborate both in
tracking pedestrians of interest that move across the FOVs
of different cameras and in capturing close-up videos of
pedestrians as they travel through designated areas. The net-
work supports task-dependent node selection and aggrega-
tion through local decision-making and inter-node commu-
nication. Treating node assignment conflicts as a constraint
satisfaction problem, we propose a solution that is robust
against node failures and message loss as it lacks a central
controller.

For the task of capturing high-quality videos of pedestri-
ans as they move through a designated area, we assume that
the wide-FOV stationary cameras are calibrated,2 which en-
ables the network to estimate the 3D locations of pedes-
trians through triangulation. However, we do not require
the PTZ cameras to be calibrated. Rather, during an initial
learning phase, the PTZ cameras learn a coarse mapping
between 3D world locations and the gaze-direction by ob-
serving a single pedestrian in the scene. A precise mapping
is unnecessary since we model each PTZ camera as an au-
tonomous agent that can invoke a search behavior to find the
pedestrian using only coarse hints about the pedestrian’s 3D
position. The network uses a weighted round-robin strat-
egy to assign PTZ cameras to the various pedestrians. Each
pedestrian creates a new sensing request in the task queue.
Initially, each sensing request is assigned the same priority;
however, the decision making process uses domain-specific
heuristics, such as the distance of the pedestrian from a
camera or the heading of the pedestrian, to evaluate con-
tinuously the priorities of the sensing requests. The PTZ
cameras handle each task in priority sequence. A warning
is issued when a sensing request cannot be met.

1.3. Contributions and Overview

The contributions of the research reported herein are as
follows: First, we develop a pedestrian tracker that operates
upon the synthetic video captured by our virtual cameras,
essentially to faithfully emulate a state-of-the-art tracker
operating upon real video. Second, we develop new gaze-
direction controllers for active PTZ cameras. Third, we pro-
pose a sensor management scheme that appears well suited
to the challenges of designing camera networks for surveil-
lance applications that are potentially capable of fully auto-
matic operation. Finally, we demonstrate the advantages
of the virtual vision paradigm in designing, experiment-
ing with, and evaluating a prototype large-scale surveillance
system.

The remainder of the paper is organized as follows: Sec-
tion 2 covers relevant prior work. We explain the low-level
vision emulation in Section 3. In Section 4, we describe
the PTZ active camera controllers and propose a scheme
for learning the mapping between 3D world locations and

2This assumption is justifiable given the success of automated static
camera calibration schemes [13, 6].

gaze directions. Section 5 introduces our scheduling strat-
egy. We present our results in Section 7 and our conclusions
and future research directions in Section 8.

2. Related Work
The Virtual Vision approach to designing surveillance

systems with the help of a virtual environment wherein sim-
ulated cameras generate synthetic video feeds of a popula-
tion of lifelike pedestrians autonomously performing var-
ious activities was first proposed in [18]. The paradigm
was developed further in our recent work on sensor net-
works [14].

Previous work on multi-camera systems has dealt with
issues related to low and medium-level computer vision,
namely identification, recognition, and tracking of mov-
ing objects [3, 9]. The emphasis has been on tracking and
on model transference from one camera to another, which
is required for object identification across multiple cam-
eras [10]. Many researchers have proposed camera network
calibration to achieve robust object identification and clas-
sification from multiple viewpoints, and automatic camera
network calibration strategies have been proposed for both
stationary and actively controlled camera nodes [13, 6].

Little attention has been paid, however, to the problem
of controlling or scheduling active cameras when there are
more objects to be monitored in the scene than there are ac-
tive cameras. Some researchers employ a stationary wide-
FOV camera to control an active tilt-zoom camera [4, 19].
The cameras are assumed to be calibrated and the total cov-
erage of the cameras is restricted to the FOV of the sta-
tionary camera. Zhou et al. [19] track a single person us-
ing an active camera. When multiple people are present in
the scene, the person who is closest to the last tracked per-
son is chosen. The work of Hampapur et al. [8] is perhaps
closest to ours in that it deals with the issues of deciding
how cameras should be assigned to various people present
in the scene. Costello et al. [5] evaluate various strategies
for scheduling a single active camera to acquire biometric
imagery.

The problem of online scheduling has been studied ex-
tensively in the context of scheduling jobs on multitasking
computer systems [1, 16] as well as for packet routing in
networks [11, 7].

3. Pedestrian Tracking
Our system employs appearance-based models to track

pedestrians. Pedestrians are segmented in order to con-
struct color-based signatures (appearance models), which
are then matched across subsequent frames. Zooming can
drastically change the appearance of a pedestrian, thereby
confounding conventional appearance-based schemes. We
address this problem by maintaining HSV color histograms
for several camera zoom settings for each pedestrian. Thus,
an important feature of our pedestrian tracking routine is its
ability to operate over a range of camera zoom settings.



(a) (b) (c)

Figure 4. Tracking pedestrians 1 and 3. Pedestrian 3 is tracked
successfully; however, (a) track is lost of pedestrian 1 who blends
in with the background. (b) The tracking routine loses pedestrian
3 when she is occluded by pedestrian 2, but it regains track of
pedestrian 3 when pedestrian 2 moves out of the way (c).

Figure 5. Camera behavioral controller.

The tracking module emulates the abilities and, impor-
tantly, the limitations of a state-of-the-art tracking system.
In particular, it can lose track due to occlusions, poor seg-
mentation (the quality of segmentation depends upon the
amount of noise introduced into the process), or bad illumi-
nation (Fig. 4). Tracking sometimes locks onto the wrong
pedestrian, especially if the scene contains multiple pedes-
trians with similar visual appearance; i.e., wearing simi-
lar clothes. Tracking also fails in group settings when the
pedestrian cannot be segmented properly.

The implementation details of our pedestrian tracking
module are presented elsewhere [15].

4. PTZ Active Camera Controller
We treat every PTZ active camera as a behavior-based

autonomous agent. The overall behavior of the camera
is determined by the pedestrian tracking module and the
current task. The camera behavioral controller, which we
model as an augmented finite state machine (Fig. 5), en-
ables an autonomous camera to achieve its high-level sens-
ing goals as determined by the current task. Typical sensing
goals might be, “look at the pedestrian i at location (x, y, z)
for t seconds,” or “track the pedestrian whose appearance
signature is h.” Our approach severs the ubiquitous master-
slave relationship between the originator of the sensing goal
and the camera in the sensor network that will perform the
sensing action [19]. Communication requirements and scal-
ability considerations aside, the master-slave relationship
between multiple cameras is undesirable as it requires the

camera network to be calibrated. Unfortunately, active PTZ
cameras are notoriously difficult to calibrate; moreover, the
calibration deteriorates over time and needs to be recom-
puted. Our camera network model does not require cali-
brated active cameras, so it is easier to change the topology
of the network by adding, removing, and/or modifying cam-
eras.3

When carrying out a new sensing request, the camera
selects a suitable FOV setting and either chooses an ap-
propriate gaze direction using the estimated 3D location
of the pedestrian, or performs an exploratory sweep when
the pedestrian’s 3D location is unavailable. Upon the suc-
cessful identification of the pedestrian within the FOV, the
camera uses fixation and zooming algorithms to follow the
subject [15]. The fixation and zooming routines are image
driven and do not require any 3D information such as cam-
era calibration or a global frame of reference.

4.1. Gaze Direction Computation

Computing an appropriate gaze direction in order to
bring a subject within the FOV of a camera requires a map-
ping between the 3D locations in the world and the internal
gaze-direction parameters (i.e., the pan-tilt settings) of the
camera. This mapping is established automatically during
an initial learning phase by tracking and following a single
pedestrian in the scene.

During learning, a pedestrian is directed to move around
in the scene. The pedestrian is tracked by the calibrated
stationary cameras and the 3D location of the pedestrian
is estimated continuously through triangulation. The PTZ
cameras are instructed to track the pedestrian and a look-up
table is computed for each PTZ camera, which associates
the 3D (x, y, z) location of the pedestrian with the corre-
sponding internal pan-tilt settings (α, β) of the camera. We
model the relationship between (x, y, z) and (α, β) as a ra-
dial basis function (RBF) network that is trained by using
the stored (x, y, z) and (α, β) values [2].

Subsequent to the learning phase, given any new 3D
point �p, the system can estimate the values for α and β of
any camera that can observe the point by using the learned
RBF model. This technique provides only a coarse mapping
between the 3D points and the camera pan-tilt settings. In
practice, however, the mapping is accurate enough to bring
the pedestrian within the field of view of the camera.

5. Camera Scheduling
The camera scheduling problem shares many character-

istics with a network packet routing problem [5], where net-
work packets are serviced by a router upon arrival. The
packet routing problem is an online scheduling problem, as

3For the camera scheduling scheme, we assume that the stationary cam-
eras are calibrated in order to estimate the 3D position of a pedestrian. It
should, however, be noted that the 3D location of the pedestrian is not
required by a PTZ camera for the purposes of fixation/zooming/tracking.



the arrival times of packets are not known a priori. More-
over, a packet must be served for a finite duration before
it expires and is subsequently dropped by the router. Simi-
larly, in our context, the arrival times of pedestrians entering
the scene are not known beforehand and a pedestrian must
be observed for some minimum duration by one of the PTZ
cameras before (s)he leaves the scene. That minimum time
serves as the deadline.

The packet routing problem, however, does not account
for all aspects of the problem we confront. First, contin-
uing with network terminology, we have multiple routers
(one for every PTZ camera) instead of just one. This aspect
of our problem is better modeled using scheduling policies
for assigning jobs to different processors. Second, we typ-
ically must deal with additional sources of uncertainty: 1)
it is difficult to estimate when a pedestrian might leave the
scene and 2) the amount of time for which a PTZ camera
should track and observe a pedestrian to record high-quality
video that is suitable for further biometric analysis can vary
depending upon multiple factors; e.g, a pedestrian suddenly
turning away from the camera, a tracking failure, an occlu-
sion, etc. Third, not every PTZ camera is equally suitable
for observing any particular pedestrian, and the suitability
of a PTZ camera with respect to observing a pedestrian
changes over time.

We propose a weighted round-robin scheduling scheme
with a static First Come, First Serve (FCFS+) priority pol-
icy that strikes a balance between two competing goals:
1) to capture high-quality video for as many as possible,
preferably all, pedestrians in the scene and 2) to view each
pedestrian for as long or as many times as possible. At one
extreme, the camera can follow a pedestrian for his entire
stay in the scene, essentially ignoring all other pedestrians,
whereas, at the other extreme, the camera would repeatedly
observe every pedestrian in turn for a single video frame,
thus spending most of its time transitioning between differ-
ent pan/tilt/zoom settings.

We model each PTZ camera as a processor whose
weights are adjusted dynamically. The weights quantify the
suitability of a camera for viewing a particular pedestrian.
They are determined by two factors: 1) the adjustments the
camera must make in its PTZ settings to look at the pedes-
trian and 2) the distance separating the pedestrian from the
camera. A camera that requires small adjustments in its
PTZ settings usually needs less lead time (the total time re-
quired by a PTZ camera to locate and fixate on a pedestrian
and initiate the video recording) than a camera that must
adjust itself more drastically in order to bring the pedes-
trian into view. Consequently, we assign a higher weight
to a camera that needs the least amount of redirection. On
the other hand, a camera that is closer to a pedestrian is
more suitable for observing this pedestrian, as such an ar-
rangement can potentially avoid occlusions, tracking loss,
and subsequent re-initialization, by reducing the chance of
another pedestrian intervening between the camera and the
subject being recorded. We assume that the sensor net-

Figure 6. A camera network for video surveillance consists of cam-
era nodes that can communicate with other nearby nodes. Collab-
orative tracking requires that cameras organize themselves to per-
form camera handover when the tracked subject moves out of the
sensing range of one camera and into that of another.

work stores information about the pedestrians present in the
scene, including their arrival times and the most current es-
timates of their positions and headings. Scene information
is available to the scheduler, which assigns cameras to the
various pedestrians present in the scene. We specify the
minimum length of time that a PTZ camera must spend ob-
serving a pedestrian. The cameras use the 3D information
to choose an appropriate gaze direction in order to bring the
pedestrian into view.

6. Collaborative Tracking
Let us consider how a sensor network of dynamic cam-

eras may be used in the context of video surveillance
(Fig. 6). A human operator spots one or more suspicious
pedestrians in one of the video feeds and, for example, re-
quests the network to “track this pedestrian,” “zoom in on
that pedestrian,” or “track the entire group.” The success-
ful execution and completion of these tasks requires intelli-
gent allocation and scheduling of the available cameras; in
particular, the network must decide which cameras should
track the pedestrian and for how long. In our approach, we
assume only that a pedestrian can be identified by differ-
ent cameras with reasonable accuracy and that the camera
network topology is known a priori. A direct consequence
of this approach is that the network can easily be modified
through removal, addition, or replacement of camera nodes.

In response to a sensing task, such as, “observe pedes-
trian i during his stay in the region of interest,” wide-FOV
passive and PTZ active cameras organize themselves into
groups with the aim of fulfilling the task. The group,
which formalizes the collaboration between member cam-
eras, evolves throughout the lifetime of the task; i.e., mem-
ber cameras that are not relevant to the task are dropped
and new cameras are recruited as they are needed. At any
given time, multiple groups can be active, each performing
its respective task. Group formation is carried out through
local processing at each camera and inter-camera commu-
nication. Unlike the camera scheduling mechanism, which
assumes calibrated stationary cameras to maintain the scene
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Figure 7. (a) Single camera, 20 pedestrians, (b) single camera, 20 pedestrian that tend to linger, (c) two cameras, 20 pedestrians, and (d)
four cameras, 20 pedestrians.

model and a central scheduler that uses the scene model to
assign PTZ cameras to different pedestrians, the collabora-
tive tracking strategy does away altogether with any scene
model, camera calibration, and central controller. A camera
node can communicate with nearby camera nodes (those
that are within its wireless communication range). Fur-
thermore, we assume that each camera node can indepen-
dently compute its relevance to a task [15]. Inspired by
the behavior-based autonomous agent design philosophy,
we leverage the interaction between the individual nodes to
generate global task-directed behavior.

When a suspicious pedestrian is selected (either by a hu-
man operator, or automatically by a video analysis proce-
dure) in a camera c, a group is initiated. Initially, the group
has only one member, camera c, which also acts as the
group’s supervisor. To recruit new cameras for the current
task, camera c asks nearby cameras to compute their rele-
vance to the task. Some of the nearby cameras send their
relevance to camera c, and those cameras with relevance
values greater than a predefined threshold are asked to join
the group. One of the member cameras acts as the multi-
camera group supervisor, and this camera decides which
new nodes should be asked to join the group. The super-
visor node removes a member camera from the group when
the camera ceases to be relevant to the task; e.g., when the
pedestrian has moved out of the sensing range of a camera.
Group formation is relatively straightforward when there is
no resource contention—i.e., when multiple tasks do not re-
quire the same camera for successful operation—the super-
visor simply chooses cameras with higher relevance values
with respect to the current task. A group vanishes when
none of the cameras can perform the current task; e.g., when
the tracked pedestrian leaves the designated area.

Inter-group conflicts, which arise when multiple groups
require the same cameras, are resolved within a Constraint
Satisfaction Problem (CSP) framework [12]. Here, each
group is treated as a variable whose domain consists of non-
empty subsets of the set of relevant cameras. The CSP is
centralized at the supervisor of one of the conflicting groups
and solved using backtracking. Under the assumption that
the quality of a solution can only increase as we assign val-
ues to more variables, our scheme guarantees optimal sen-
sor assignment. The solution is then sent to every affected

camera. A limitation of our approach to conflict resolution
is that, currently, a camera can be engaged only in a single
task at a time.

Our proposed communication model also takes into con-
sideration camera and inter-camera communication fail-
ures. A communication failure is treated as a node fail-
ure. The supervisor responds to a member camera fail-
ure by simply removing it from the group. On the other
hand, supervisor failure resolution is more involved. When
a member camera detects a supervisor camera failure, it
selects itself to be the group supervisor, thereby initiating
a single-camera group. An actual or perceived supervisor
camera failure can therefore give rise to multiple single-
node groups performing the same task. These groups are
later merged to form one group, establishing collaboration
between these cameras. For the technical details, we refer
the reader to [15].

The proposed scheme lies between a fully distributed
and a totally centralized scheme. Group formation is dis-
tributed and independent of the size of the network, while
group conflict resolution is centralized within groups. We
conclude that our scheme is scalable when group sizes are
kept small. Indeed, we expect group sizes to be small due
to spatial constraints.

7. Results

To conduct camera scheduling experiments, we popu-
lated the virtual train station with up to twenty autonomous
pedestrians, who enter, wander, and exit the main waiting
room of their own volition. We tested our scheduling strat-
egy in various scenarios using anywhere from 1 to 18 PTZ
active cameras. For each trial, we placed a wide-FOV pas-
sive camera at each corner of the main waiting room. We
also affixed a fish-eye camera to the ceiling of the waiting
room. These passive cameras were used to estimate the 3D
location of the pedestrians. As expected, the chances that a
given set of cameras can observe the pedestrians present in
the scene increase when there are fewer pedestrians or when
pedestrians tend to linger longer in the area (Fig. 7).

In Fig. 8, we compare the weighted and non-weighted
scheduling schemes (averaged over multiple runs). The
weighted scheduling scheme outperforms its non-weighted
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Figure 8. Comparisons of Weighted (W, circled curve) and Non-Weighted (NW) scheduling schemes. The weighted scheduling strategy,
which takes into account the suitability of a camera for recording a particular pedestrian, outperforms its non-weighted counterpart as is
evident from its (a) higher success rates and (b) shorter lead, (c) processing, and (d) wait times. The displayed results are averaged over
several runs of each trial scenario. Trials 1–6 involve 5 pedestrians and 1, 2, 3, 4, 5, and 6 cameras, respectively. Trials 7–12 involve
10 pedestrians and 3, 4, 5, 6, 7, and 8 cameras, respectively. Trials 13-18 involve 15 pedestrians and 5, 6, 9, 10, 11, and 12 cameras,
respectively. Trials 19–24 involve 20 pedestrians with 5, 8, 10, 13, 15, and 18 cameras, respectively.

counterpart. The weighted scheduling scheme has higher
success rates, which is defined as the fraction of pedestri-
ans successfully recorded, and lower average lead time, pro-
cessing time (the time spent recording the video of a pedes-
trian), and wait time (the time elapsed between the entry
of a pedestrian and when the camera begins fixating on the
pedestrian). The lower average lead and processing times
are a direct consequence of how we compute the suitabil-
ity of a camera for recording a pedestrian. As expected,
the average wait times typically decrease as we increase the
number of cameras.

In our collaborative tracking experiments to date, we
have tested our visual sensor network system with up to 16
stationary and pan-tilt-zoom cameras (Fig. 1), and we have
populated the virtual Penn Station with up to 100 pedes-
trians. The sensor network correctly assigned cameras in
most cases. As the number of pedestrians that appear simi-
lar grows, the tracking module has increasing difficulty fol-
lowing the same pedestrian, and poor pedestrian tracking
adversely affects the performance of the camera network.

For the example shown in Fig. 9, we placed 16 active
PTZ cameras in the train station, as shown in Fig. 1. An op-
erator selects the pedestrian with the red shirt in Camera 7
(Fig. 9(5)) and initiates the “follow” task. Camera 7 forms
the task group and begins tracking the pedestrian. Subse-
quently, Camera 7 recruits camera 6, which in turn recruits
Cameras 2 and 3 to track the pedestrian. Camera 6 becomes
the supervisor of the group when Camera 7 loses track of the
pedestrian and leaves the group. Subsequently, Camera 6
experiences a tracking failure, promotes Camera 3 to group
supervisor, and leaves the group. Cameras 2 and 3 track
the pedestrian during her stay in the main waiting room,
where she also visits a vending machine. When the pedes-
trian starts walking towards the concourse, Cameras 10 and
11 take over the group from Cameras 2 and 3. Cameras
2 and 3 leave the group and return to their default modes.
Later, Camera 11, which is now acting as the group’s super-
visor, recruits Camera 9, which tracks the pedestrian as she
enters the concourse.

(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

(11) (12) (13) (14) (15)

(16) (17) (18) (19) (20)

Figure 9. A pedestrian is successively tracked by multiple cameras
(see Fig. 1) for 15 minutes as she makes her way through the sta-
tion to the concourse. (1-4) Cameras 1, 9, 7, and 8 observing the
station (elapsed time: 30 sec). (5) Operator selects a pedestrian in
feed 7 (1.7 min). (6) Camera 7 has zoomed in on the pedestrian
(2 min). (7) Camera 6, which is recruited by Camera 7, acquires
the pedestrian (2.2 min). (8) Camera 6 zooms in on the pedestrian
(3 min). (9) Camera 7 reverts to its default mode after losing track
of the pedestrian—it is now ready for another task (3.5 min). (10)
Camera 6 has lost track of the pedestrian (4.2 min). (11) Camera 2
(3 min). (12) Camera 2, which is recruited by Camera 6, acquires
the pedestrian (4 min). (13) Camera 2 tracking the pedestrian (4.3
min). (14) Camera 3 is recruited by the Camera 6; Camera 3 has
acquired the pedestrian (4 min). (15) Camera 3 zooming in on the
pedestrian (5 min). (16) Pedestrian is at the vending machine (6
min). (17) Pedestrian is walking towards the concourse (13 min).
(18) Camera 10 is recruited by Camera 3; Camera 10 is tracking
the pedestrian (13.4 min). (19) Camera 11 is recruited by Camera
10 (14 min). (20) Camera 9 is recruited by Camera 10 (15 min).



8. Conclusion
We envision future surveillance systems to be networks

of stationary and active cameras capable of providing per-
ceptive coverage of extended environments with minimal
reliance on a human operator. Such systems will require not
only robust, low-level vision routines, but also novel sensor
network methodologies. As was our earlier work in [14],
the work presented in this paper is a step toward the realiza-
tion of these new generations of sensor networks.

We have described two prototype surveillance systems
capable of autonomously carrying out high-level visual
surveillance tasks. Our first surveillance system comprised
calibrated passive and uncalibrated active cameras, and it
relied upon a scheduling strategy for managing multiple ac-
tive cameras in order to capture close-up videos of pedes-
trians as they travel through designated areas. The second
surveillance system intelligently managed multiple passive
and active cameras to track pedestrians of interest that move
across the FOVs of different cameras. Here, we assumed
uncalibrated passive and active cameras.

We have demonstrated our prototype surveillance sys-
tem in a virtual train station environment populated by au-
tonomous, lifelike pedestrians. This simulator has facil-
itated our ability to design large-scale visual sensor net-
works and experiment with them on commodity personal
computers. The future of such advanced simulation-based
approaches appears promising for the purposes of low-cost
design and facile experimentation.

In future work, we intend to tackle the scalability issue
by investigating distributed scheduling and conflict resolu-
tion strategies. Additionally, we are investigating the com-
bination of camera scheduling and camera grouping within
a unified framework.
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