
Change Detection in a 3-d World

Thomas Pollard and Joseph L. Mundy
Brown University

Providence, RI 02912

Abstract

This paper examines the problem of detecting changes
in a 3-d scene from a sequence of images, taken by cam-
eras with arbitrary but known pose. No prior knowledge of
the state of normal appearance and geometry of object sur-
faces is assumed, and abnormal changes can occur in any
image of the sequence. To the authors’ knowledge, this pa-
per is the first to address the change detection problem in
such a general framework. Existing change detection algo-
rithms that exploit multiple image viewpoints typically can
detect only motion changes or assume a planar world geom-
etry which cannot cope effectively with appearance changes
due to occlusion and un-modeled 3-d scene geometry (ego-
motion parallax). The approach presented here can man-
age the complications of unknown and sometimes changing
world surfaces by maintaining a 3-d voxel-based model,
where probability distributions for surface occupancy and
image appearance are stored in each voxel. The probabil-
ity distributions at each voxel are continuously updated as
new images are received. The key question of convergence
of this joint estimation problem is answered by a formal
proof based on realistic assumptions about the nature of
real world scenes. A series of experiments are presented
that evaluate change detection accuracy under laboratory-
controlled conditions as well as aerial reconnaissance sce-
narios.

1. Introduction
The problem of detecting changes, typically moving ob-

jects, in image sequences taken from stationary cameras has
been well studied and many algorithms exist that solve the
problem with high accuracy. These algorithms are widely
used in surveillance systems as well as in preprocessing
video for a variety of computer vision applications. How-
ever there are many potential applications for change detec-
tion where the images are not taken from a stationary cam-
era, such as in aerial surveillance, where images are col-
lected from a range of different positions, orientations, and
at different times of day (see figure 1). Some work has been

done on detecting changes in aerial imagery, but it is lim-
ited by the range of camera motions allowed and the kinds
of changes detected.

The ultimate objective of the research initiated in this
paper is a solution to a large class of change detection prob-
lems where images are formed by cameras of arbitrary but
known position, orientation, and resolution and under very
different illumination conditions. The final solution should
be a system which processes an image at a time, updates
the world model from what has been learned, and discards
the image, having incorporated all of the image’s relevant
information in the model. This paper is the first step to-
ward that goal. The algorithm described here handles the
restricted case where the images are of approximately the
same resolution and are taken under similar lighting condi-
tions, but may still be taken from arbitrary viewpoints with
substantial foreground clutter. The objective of this paper is
to demonstrate the algorithm’s success at learning surface
color and geometry probabilities under these restrictions.

Figure 1. Change detection results for an urban scene after training
on a sequence of 40 aerial images. A) an unseen image. B) hand-
marked ground truth changes on this image. C) a planar change
detection algorithm applied to ground-registered images. D) voxel
algorithm change detection results. Voxel algorithm detects all
changes with minimal errors, while the planar algorithm makes
many large errors on the building.
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Under these general camera conditions the world can be
viewed from any direction, so some kind of 3-d model for
the world is needed. Doing change detection on some pre-
computed 3-d surface is an insufficient solution as there are
many situations where the world surface may be chang-
ing over time(i.e. parked cars leaving, buildings being
erected/demolished, etc.). The model presented in this pa-
per uses voxels to represent the world, which has the advan-
tage of being able to model the volumetric changes in the
scene as well as the appearance changes on the surfaces.

2. Previous Work

A typical change detection algorithm takes an image as
input, updates some appearance model of the scene from the
information learned from the image, and identifies changes
in that image. For stationary video the model of the scene
can be as simple as the running average intensity at each
pixel, or can be a more complicated probabilistic model
possibly involving pixel neighborhoods, e.g. a Markov ran-
dom field [5].

A widely-used technique for detecting change in station-
ary video is to maintain a Gaussian mixture model at each
pixel. This was first presented in Grimson etal [8] and
improved in many later papers, the most relevant to our
work being KaewTraKulPong and Bowden [4]. Algorithms
of this class can handle common appearance changes such
as objects entering and leaving the scene, moving vegeta-
tion, and slow changes in illumination. A thorough sur-
vey of such algorithms is given in [7]. There has been
limited research regarding change detection algorithms for
non-stationary cameras. Mittal and Huttenlocher [6] apply
stationary change detection techniques to image mosaics,
but their work is restricted to cameras with no motion par-
alax, i.e. rotation about the camera’s optical center. There is
a substantial related literature on motion detection [3, 10, 9]
but these techniques are restricted to detecting moving ob-
jects in a single continuous video sequence.

The change detection algorithm presented in this paper
models the world scene with voxels, small units of volume
analogous to pixels, used by the space-carving community
to estimate surfaces from video or other image sets. Recent
work has developed space-carving in a probabilistic frame-
work, most notably [2, 11, 1]. Broadhurst et al.[2] provided
some inspiration for the techniques in this paper in particu-
lar, most notably their choice of occlusion model, but while
space carving is concerned with estimating exact surfaces
from a fixed set of images, the change detection problem
requires a flexible model of the world that can adapt as ad-
ditional images are taken.

Figure 2. Voxel notation. X is voxel on the world surface S ly-
ing on the ray R(X) and projecting into image I at pixel IC(X).
However VR(X) is the voxel that actually produced color IC(X).

3. Algorithm

This section contains a description of the voxel model of
the world, an algorithm for updating it as new images come
in, and an algorithm for detecting changes in new images.
The modeling process involves simultaneous estimation of
both the surface of the world and a color model at each point
on the surface.

To begin, a bounded volume containing all of the 3-d
world of interest is partitioned into voxels, see figure 2. At
any point in time, a voxel X has two possible states: a sur-
face in the world; or in empty space or inside a solid object.
The state of X being a surface voxel is denoted by X ∈ S.
It will prove beneficial to cast the surface occupancy prob-
lem into a Bayesian framework, so it makes sense to talk
about probabilities like P (X ∈ S) which measure one’s
belief that X is a surface voxel.

For any image I with known camera C the voxel volume
can be partitioned into rays of voxels that project into com-
mon locations in the image. The ray to which voxel X be-
longs is denoted by R(X) and the color intensity to which
X maps in the image by IC(X). For any ray the voxels
X ′ ∈ R(X) can be ordered with the inequality X ′′ > X ′,
when X ′′ is further along the ray from the camera center
than X ′. Also for each ray there is exactly one voxel which
produced the intensity seen in the image and this voxel is
denoted by VR(X) or simply by V when the ray is under-
stood.

In this paper only grey scale images are addressed, but
the algorithm is easily generalized to color imagery, and
hereafter pixel intensity will be referred to as color for
convenience. The prediction of pixel colors observed in
the images is based on the Gaussian mixture color mod-
els, however there exists the complication that for any pixel
in the image there are many voxels in the world that can



potentially produce the observed color. The solution is to
maintain a mixture of Gaussians model at each voxel to
be used when it is time to consider the possibility that this
voxel produced the observed color. The probability density
P (IC(X)|VR(X) = X) has a mixture of Gaussians distribu-
tion for voxel X .

Given a sequence of images {It} and cameras {Ct},
for the first image the surface probability, P 0(X ∈ S),
for each voxel X is initialized to some common constant
and the mixture of Gaussians model is initialized with the
pixel color observed, I0

C0(X). After observing image It+1

the surface estimates P t(X ∈ S) and color distributions
P t(IC(X)|VR(X) = X) for each voxel X must be updated.
These two probabilities are updated separately as described
in the sections 3.1 and 3.2. Section 3.3 discusses what can
be said about convergence of the proposed model and sec-
tion 3.4 gives equations for detecting change in a new im-
age after the model has been trained on sufficiently many
images.

3.1. Updating the Surface Probabilities

This section describes the procedure for updating the sur-
face probability P t(X ∈ S) for voxel X with information
from It+1. The assumption is made that It+1

C(X) (from here
on simply IX ) is the only relevant pixel in It+1 for updating
voxel X , as pixel neighborhoods are not used in this paper.
With this assumption it is a consequence of Bayes rule that:

P t+1(X ∈ S) = P t(X ∈ S)
P t(IX |X ∈ S)

P t(IX)
(1)

After expanding the color probability terms by voxels along
R(X) that actually produced the color, the multiplier for
P t(X ∈ S) in equation 1 equals:∑

X′∈R(X)

P t(IX |V = X ′)P t(V = X ′|X ∈ S)∑
X′∈R(X)

P t(IX |V = X ′)P t(V = X ′)
(2)

P t(IX |V = X ′) is computed using the mixture of Gaus-
sians color model stored in voxel X ′ after training on the
first t images. The only question left is how to compute
P t(V = X ′) and P t(V = X ′|X ∈ S).

Consider P t(V = X ′), which is the probability that
voxel X ′ produced the pixel color in the image consider-
ing only the voxel surface probabilities along the ray, and
not any color information. From a geometric viewpoint, the
voxel will produce the color if and only if the voxel is on
the surface and it is unoccluded:

P t(V = X ′) = P t(X ′ ∈ S)P t(X ′ is not occluded) (3)

Experiments were done with several occlusion models and
similar results obtained each time, so the model with the

most immediate physical interpretation is used here,

P t(X ′ is not occluded ) =
∏

X′′<X′

(1−P t(X ′′ ∈ S)), (4)

which is the probability that all voxels between X ′ and the
camera contain empty space. This completes the definition
of P t(V = X ′).The equation for P t(V = X ′|X ∈ S) is
the same except that any instances of P t(X ∈ S) in the
above have probability 1. Note that the update equations
for P t+1(X ∈ S) have been derived using only the current
surface and color probabilities for voxels lying in the same
ray, and so are computable. To better understand the update
multiplier in equation 2, rewrite it as follows:

preXt+visXt∗P t(IX |V =X)

preXt+visXt

[
P t(X)P t(IX |V =X)+

(
1−P t(X)

)
postXt

] (5)

where:

visXt =
∏

X′′<X

(
1−P t(X′′)

)
=P t(X′ is not occluded)

preXt =
∑

X′<X

(
P t(IX |V =X′)P t(X′)

∏
X′′<X′

(
1−P t(X′′)

))

postXt =
∑

X′>X

(
P t(IX |V =X′)P t(X′)

∏
X≤X′′<X′

(
1−P t(X′′)

))

preXt and postXt are the probabilities of seeing the color
when considering only the voxels on the ray above and be-
low X respectively. It follows that the update multiplier is
greater than 1 if and only if X explains the color better than
the voxels below it.

3.2. Updating the Color Models

The update equations for the mixture of Gaussians color
model used here are a modified version of the equations pro-
posed in [4], which are an enhanced version of the Stauffer
and Grimson change detection algorithm [8]. In this imple-
mentation a Gaussian mixture model is a combination of K
Gaussian distributions with means µk, standard deviations
σk, and weights wk that are discussed later in this subsec-
tion. Each mode has distribution:

ηk(y) =
1√

2πσk

e
− (y−µk)2

2σ2
k (6)

and the full mixture distribution is:

p(y) =
K∑

k=1

wk

W
ηk(y), W =

K∑
k=1

wk (7)

As in [4] the modes are ranked by wk/σk and to train the
distribution on a new color c and weight dw the first mode



for which c lies within 2.5 standard deviations of the mean
is updated with the following equations:

wn+1
k = wn

k + dw

µn+1
k = µn

k +
dw

dw + wn
k

(c− µn
k )

(σn+1
k )2 = (σn

k )2 +
dw

dw + wn
k

((c− µn
k )2 − (σn

k )2) (8)

These equations are the same as the EM-algorithm derived
result in [4] in the case where the weights are constant. If c
is not within 2.5 standard deviations of any mode, the least
probable mode is destroyed and replaced with a high vari-
ance mode with mean c and weight dw.

The new weighting scheme is introduced here to han-
dle the problem of many voxels projecting into the same
pixel. Consider a ray R containing voxels {X ′}. It is not
known for certain which voxel produced the color in the
image, but the probability of each voxel X ′ producing the
color, P t(V = X ′), can be computed. To be fair, all of
the voxels {X ′} along the ray must be trained on the color
seen, but how little or how much a color effects a voxel’s
Gaussian mixture model can be controlled by choosing ap-
propriate update weights, and the natural answer is to use
the P t(V = X ′) as such weights, so that a voxel’s color
model is updated proportionately to how likely it is that the
voxel produced the color seen. For a sometimes occluded
surface voxel this scheme prevents occluding surface colors
from seriously corrupting the voxel’s color model.

3.3. Convergence

A key question is under what conditions this simultane-
ous modeling of geometry and appearance is guaranteed to
converge, which shall be defined to occur when empty space
voxels have their surface probabilities go to 0 and true sur-
face voxels have their surface probabilities go to 1 and color
models go to a single Gaussian mode with the minimum al-
lowed variance. The convergence of a voxel is highly de-
pendent on the range of viewing directions and local color
variation in the world and in general cannot be met for ev-
ery voxel in a scene. For example the exact surface of a
uniformly colored roof viewed only from the air cannot be
determined, as many voxels lying above and below the ac-
tual roof have color models identical to those of the true
surface voxels. Still general conditions can be derived that
guarantee a voxel’s convergence. The case of convergence
of a surface voxel X is discussed in detail below, and the
argument for an empty space voxel is similar.

The first assumption made is that when it is unoccluded
the surface at X projects the same color in each image,
though in practice convergence can still occur when there
are minimal variations in observed color. Suppose first
that X is unoccluded in all views. Then X will see the

same color in each image and eventually P t(IX |V = X)
is guaranteed to be maximal (as the mixture model vari-
ance is capped in practice). In particular it will be greater
than postXt, so the update multiplier in equation 5 will be
greater than 1 and the surface probability for this voxel will
be increasing with each new image. Increasing, but not nec-
essarily to 1, and in regions of ambiguous projection in the
world it will converge to something less than 1. The denom-
inator of equation 5 can be rewritten as:

preXt + visXt ∗ P t(IX |V = X) + ...

visXt
(
1− P t(X)

)[
postXt − P t(IX |V = X)

]
(9)

and after substituting into equation 5 it is clear that the sur-
face probabilities for X as a function of images trained on
are a sequence of form:

pt+1 = pt
at

at − bt(1− pt)
(10)

where:

at = preXt + visXt ∗ P t(IX |V = X) (11)

bt = visXt
[
P t(IX |V = X)− postXt

]
This sequence converges up to 1 provided that the {bt} are
bounded from below (or contain a bounded subsequence).
So there are two conditions for convergence of the voxel’s
surface probability to 1. Firstly visXt must be bounded
from below, which will be automatically true for a voxel
unoccluded in all views as the empty space voxels above it
have decreasing surface probabilities via a modification of
the above argument. Secondly P t(IX |V = X) − postXt

must be bounded, requiring the voxels lying below the sur-
face at X to be trained on some range of colors distinct from
the color at X . If these conditions are met, X will converge.

If X is occluded in some views, by what has been shown
above the occluding voxels will converge after enough im-
ages, preventing the occluding surfaces’ colors from cor-
rupting the color model at X . After sufficiently many im-
ages of the true surface color, the mixture distribution at X
will be maximal, and we are in the same situation as before,
and the surface probabilities here will again converge to 1.
And so the following has been proven:

Convergence Theorem 1 A voxel X lying on a world sur-
face will converge provided that the surface images a con-
stant color in all views, and that all voxels X ′ near X lying
beneath the surface frequently project into some pixels of
sufficiently different color from the true surface color at X .

3.4. Detecting Change

Suppose that the model has been trained on an image
sequence and it is desired to detect change in a new image



Figure 3. Change detection results for model town sequence. A)
an unseen image. B) hand-marked ground truth changes on this
image. C) a planar change detection algorithm applied to ground-
registered images. D) voxel algorithm change detection results.
Planar algorithm has significant errors do to unmodeled geometry.

I with camera C. Consider a pixel IX which backprojects
into a ray R of voxels {X ′}. The probability of seeing this
color is then,

P (IX) =
∑

X′∈R

P t(IX |V = X ′)P t(V = X ′) (12)

which are all computable quantities. These probabilities are
then thresholded for all the pixels in the image to obtain a
binary mask representing the detected change.

4. Results
This section presents change detection results on vari-

ous image sequences. Camera matrices for all images are
computed from manual correspondences to within 1 pixel
error. In each experiment, changes are detected at different
thresholds on 5-6 images for which ground truth change is
hand marked for comparison. The false positive error rate
is the fraction of mislabeled pixels in all images to the total
number of pixels. Results are also given for a change de-
tection algorithm where Gaussian mixture models are con-
fined to a single world plane and images are registered to
this plane,[4]. This planar algorithm performs better than
one might expect in the presence of significant motion par-
alax, however many of the buildings viewed are uniformly
textured and different positions on the surface can be rep-
resented by a single Gaussian mixture model. The error
rates for both algorithms are presented as receiver operat-
ing characteristic (ROC) curves which plot the fraction of
correctly detected changes against the fraction of falsely de-
tected changes.

The first sequence is a collection of 40 images taken of
a lifelike miniature town constructed from detailed model

Figure 4. Change detection ROC curves for the voxel algorithm
applied to the model town sequence with different numbers of
training images. 20 images is sufficient to produce good change
detection, with more images providing marginal improvement.

railroad kits and shot under a diffuse lighting condition.
Each image was taken with a different arrangement of
miniature cars and other clutter to simulate a dynamic envi-
ronment. A sample image and detected changes are shown
in figure 3, which displays the strengths and weaknesses
of the algorithm presented here. The true changes in the
scene are correctly marked and most errors occur at object
boundaries in the image. These alignment errors occur be-
cause the color distributions at the true surface voxels pro-
ducing these pixels are very sensitive to camera projection
errors. For example, at a voxel on a black to white edge in
the world the color model will be trained on pixel samples
that are black, white, and everything in between, yielding a
high variance mixture distribution that tends to mark any-
thing as change. This problem will be addressed by taking
voxel neighborhoods into account in future work.

In one experiment on this model town sequence, the pro-
posed voxel algorithm is run three times on the image set
with a different number of training images in each run. ROC
curves are given in figure 4. As seen, 20 images is enough
to produce highly accurate change detection results with ad-
ditional images providing marginal improvement.

In another experiment with the model town, both voxel
and planar change detection algorithms are trained on the 40
image sequence and changes detected on three different 5-
image sets taken at varying viewing angles. ROC curves are
given in figure 5. The voxel algorithm performs far better
at all angles and though the accuracy of both algorithms
degrades as the cameras move from a high angle to a more
grazing angle, the planar algorithm performance degrades
more rapidly.

Experiments are also done on two 40-image aerial se-
quences shot from helicopter. A sample frame from one se-
quence and detected changes are shown in figure 1. Many of



Figure 5. Change detection ROC curves for the model town sequence. Results are given for different viewing angles, measured from the
normal to the ground plane. Voxel algorithm gives superior all around performance, with a greater difference at larger angles.

Figure 6. Sample images and change detection ROC curves for
two aerial sequences. Violations of the constant color assump-
tion cause more false positives in this sequence than for the model
town, but the voxel algorithm still outperforms the planar algo-
rithm significantly.

the false changes detected are specular highlights on parked
cars and metal roofs, and this is to be expected as they
are violations of the constant color intensity assumption.
The voxel algorithm outperforms the planar algorithm by
a wider margin in this real world scene as demonstrated by
the ROC curves for both sequences shown in figure 6.

5. Conclusions and Further Work
This paper presented the first fully general model for

change detection for images taken from arbitrary posed
cameras. Conditions for the convergence of the update al-
gorithm have been derived and convergence proved. The
algorithm has been shown to produce excellent results on a
number of real and miniature scenes. Quantitative compar-
isons with a planar based model demonstrate the power of
using a volumetric description of the world. The limitations
and shortcomings of the algorithm have been explored and
found to be manageable. This algorithm presents a general

framework so it will be easy to adapt new techniques as they
are developed.

Future work will involve relaxing the constant resolution
and illumination restrictions put on the images taken of the
scene. Also some initial experiments have been performed
to physically predict shadows from the learned geometry.
This approach shows promise toward overcoming the need
for a constant color intensity assumption.
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