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Abstract

We present a scalable approach to recognizing and de-
scribing complex activities in video sequences. We are in-
terested in long-term, sequential activities that may have
several parallel streams of action. QOur approach inte-
grates temporal, contextual and ordering constraints with
output from low-level visual detectors to recognize complex,
long-term activities. We argue that a hierarchical, object-
oriented design lends our solution to be scalable in that
higher-level reasoning components are independent from
the particular low-level detector implementation and that
recognition of additional activities and actions can easily
be added. Three major components to realize this design
are: a dynamic Bayesian network structure for represent-
ing activities comprised of partially ordered sub-actions,
an object-oriented action hierarchy for building arbitrarily
complex action detectors and an approximate Viterbi-like
algorithm for inferring the most likely observed sequence
of actions. Additionally, this study proposes the Erlang dis-
tribution as a comprehensive model of idle time between
actions and frequency of observing new actions. We show
results for our approach on real video sequences containing
complex activities.

1. Introduction

Automatically monitoring and recognizing human activ-
ities is a long sought-after goal in the computer vision com-
munity. Successful implementation of a vision system with
these capabilities would enable new methods for automatic
surveillance monitoring, aware environments and computer
interfaces. Motivated by this goal, researchers have devel-
oped systems that attempt to automatically recognize and
in some cases label when actions and activities are occur-
ring. Significant progress has been made in recognizing
short-term actions [1, 2, 4, 5, 9, 14, 20] and, to a lesser
extent, monitoring and recognizing longer-term activities
[7, 15, 16, 18]; however, many challenges remain before
activity recognition systems can be deployed in general set-
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tings.

This work furthers the idea that an understanding of the
semantics and temporal constraints of complex activities
is necessary for recognition and monitoring systems. This
work presents methods for representing and efficiently rea-
soning about these types of activity constraints. Scalable
methods for representing complex action and activity mod-
els are also explored.

In this paper a method for accurately monitoring, rec-
ognizing and labeling complex activities in video that in-
volve several sub-actions and objects and typically last sev-
eral minutes is developed. The proposed solution consists
of three major components: action detectors, a Dynamic
Bayesian Network (DBN) that encodes prior knowledge
of action ordering constraints, and an approximate Viterbi-
based inference algorithm that maintains an estimate of the
most likely activity state given a DBN and the output of a
set of detectors applied to an input video.

Throughout this work, the term action is used to refer
to a simple short-term motion with a specific purpose, and
activity is used to refer to a sequence of actions to achieve
a more complex and meaningful goal. Actions are atomic
components used to define an activity, which may be com-
posed of several sub-activities. The system is not limited to
instantaneous atomic actions, but instead uses a comprehen-
sive temporal model for actions. Three important concepts
used throughout the design to achieve activity monitoring
and detection are introduced: Object Orientation, Hierar-
chy of Objects, Actions and Activities and Contextual Dis-
ambiguation. They provide a principled way to include con-
textual information and modify or add to representations of
actions and activities. Finally, decoupled detection layers
allow for clear, modular and reusable representations of ac-
tivities. The following section contains a literature review of
recent work in the area. An overall description of the system
is given in Section 3. Details of our method are described
in Sections 4 and 5, and results on long video sequences are
shown in Section 6.



2. Related Work

Recently, many approaches to detecting short-duration
actions in video have been proposed. These approaches de-
velop some statistical feature, computed over the space-time
volume defined by a video segment, to characterize specific
actions [1, 2, 4, 5, 9, 14, 20]. Typically, a modest number
of action classes are used and a classifier is learned by clus-
tering the features computed for training sequences. New
examples are then discriminatively classified by comput-
ing the features and matching to the nearest action using
some distance metric. These methods show high recogni-
tion rates on short term, often periodic actions, however,
there is no notion of semantic meanings which are neces-
sary to develop an interpretive context.

Motivated by success in natural language processing,
stochastic context free grammars (SCFGs) have been pro-
posed by several researchers as a method of including an in-
terpretive context for more complex activities that typically
last tens of seconds to minutes, are comprised of several
sub-actions and may involve interaction with several objects
[8, 11, 15]. CFG production rules define a grammar over ac-
tivities specifying expected orders of sub-actions. Parsing
mechanisms are used to translate underlying action detec-
tions into a coherent activity description. While these ap-
proaches show promising results on fairly complex scenes,
there is no notion of a temporal model and, furthermore,
only single-threaded activities are addressed.

Other researchers have applied Hidden Markov Mod-
els (HMMs) to video streams for recognizing activities
[7, 10, 12]. Several variant HMM topologies have been
proposed. Moore et al. define several HMMs for distinct
actions in conjunction with an object detection system to
exploit relationships between specific objects and actions
[10]. Oliver et al. propose layering HMMs as a way to
deal with model complexity and show results for activities
in an office setting [12]. Hongeng and Nevatia make use of
semi-HMMs that relax the Markovian assumption [7]. In
general, HMM techniques suffer when an activity consists
of concurrent or partially ordered streams of action, which
is often the case for interesting activities. In these cases an
HMM must enumerate an exponentially large state space.

A related class of approaches use dynamic Bayesian net-
works (DBNs) to model activities [3, 6, 13, 16]. Whereas
an HMM representation must consider the entire temporal
state space, DBNs divide the state space into constituent
variables and are able to leverage sparseness in the vari-
able relationships. Pinhanez and Bobick capture relative
temporal relationships, ’past’, ‘now’, ’future’, in a DBN
framework for activity detection [13]. Gong and Xiang ex-
plore several DBN topologies and report results on an air-
craft loading scenario [6]. DBNs have been shown to im-
prove low-level object trackers by leveraging rich event or-
dering constraints to deal with missing, spurious or frag-
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Figure 1. An overall schematic of our system for activity recogni-
tion.

mented tracks [3]. Shi et al. introduce a DBN framework
that makes use of event ordering constraints and provides
some simple modeling of event duration within the network
[16]. They show how the DBN can detect activities that may
consist of concurrent streams of action. DBN techniques
show promise for complex activity recognition tasks, but
there is room for improvement in terms of modeling sub-
action relationships, scaling to large numbers of activities
and choosing appropriate models of action duration.

3. Methodology

We use a hierarchical, modular approach to represent,
monitor and recognize activities developed through the de-
sign concepts of Object Orientation, Hierarchy of Objects,
Actions and Activities and Contextual Disambiguation each
of which are described in terms of our approach. An over-
all schematic of the proposed system is shown in Figure 1.
The three primary components of the system are the object-
action dictionary, the activity DBN and the inference mod-
ule. The object-action dictionary defines the action detec-
tors and initially processes the video frames. This compo-
nent makes use of the *Object Orientation’ and "Hierarchy
of Objects, Actions and Activities’ design principles. Ob-
jects are defined rather loosely and may include inanimate
objects such as cups, books, computers etc., people present
in the scene or even locations such as a doorway, hallway,
table etc. Each object may have associated attributes such
as current state, action descriptor, location, etc.. Objects in-
herit the attributes and visual descriptors defined for their
parent objects and may add new attributes and additional
contextual information to refine the interpretation of the vi-
sual descriptors.

The activity DBN (ADBN) component encodes prior in-
formation about an activity domain such as the expected
actions and ordering constraints between the actions. The
ADBN formulation allows activities to be defined hierar-
chically; activities may be comprised of sub-activities. This
allows for modular design of arbitrarily complex activities.
Additionally, the ADBN makes use of ’Contextual Disam-
biguation’ by enforcing temporal and ordering constraints
that provide powerful contextual cues for activity recogni-



tion. The contextual cues capture the observation that al-
though many actions may be observed in a video sequence,
and detectors for the actions may be noisy, observing the
actions in the correct order with correct temporal properties
is unlikely unless the specified activity is being performed.
Looking at the problem from the other way, given a se-
quence of observed actions that closely follows the ordering
constraints of an activity, if a single action is missing it is
probably due to detector error and the context can allow for
recovery.

The third component of the system is the inference
mechanism. Here, the ordering and temporal constraints
imposed by the ADBN are combined with output from the
action detectors defined by the object-action dictionary to
generate an estimate of the current state, and the sequence
of states leading up to it. The modular hierarchical, object-
oriented nature of the system design affords great flexibil-
ity in terms of underlying detector implementation and sup-
ported activity domains.

4. Dynamic Bayesian Networks for Activity
Recognition

We use a constrained form of Dynamic Bayesian Net-
works (DBNs) to encode the temporal structure and or-
dering constraints found in many activities. DBNs are
Bayesian networks that, in addition to representing depen-
dencies between states, also represent a temporal probabil-
ity model over the states. The DBN representation takes
advantage of sparseness in the dependencies both between
states in the same time slice and across time. Addition-
ally, DBNSs can represent arbitrary distributions in the state-
space. These properties make them a good choice for mod-
eling real-world scenarios. A general DBN, NV, is defined

in Equation 1. )
V' Set of state variables

N =A{V,E,S}:{ E Setof evidence variables (1)

S Set of edges

An edge in s; € S may be between two state variables,
which defines a transition constraint, or between some e; €
FE and some v; € V, which defines links between states and
observations. The state variables may be either discrete or
continuous. The operation of the DBN is dependent upon
a prior distribution over the states, a sensor model and a
transition model.

4.1. Representing Activities with DBNs: ADBNs

An activity has already been defined as a sequence of ac-
tions required to achieve some meaningful goal. Activities
are defined hierarchically such that each activity is made
up of one or more sub-activities and each sub-activity is it-
self made up of sub-activities or a sequence of atomic ac-
tions. Atomic actions are the simplest representations in
the framework and are tied directly to underlying detection

mechanisms. This conceptual hierarchy allows for modular
construction of complex activities as shown in Figure 2.
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Figure 2. An example of how activities are represented hierarchi-
cally. Each node may either be atomic or hierarchically composed
of a sub-activitiy.

‘We propose a special form of a DBN called an Activity
Dynamic Bayesian Network (ADBN) defined as follows:

e V: Set of atomic actions that make up an activity.

e FE: Evidence nodes that incorporate probabilities from

visual detectors and a temporal model. There is one
e; € Eforeachv; € V.

e S: Edges between state nodes enforce ordering con-
straints. So if s; = (vg,Vg41), vx must occur before
vk+1- Additionally, there is a single edge between each
v; and its associated e;.

Each v; € V — (‘waiting’, ’active’, finished’). These
states correspond to the intuitive notion of the flow of ac-
tion through a step-wise process. While a sub-action has
not yet occurred it is labeled as ‘waiting’. When it is cur-
rently happening it should be labeled ’active’ and after it
has occurred it should be labeled ’finished’.

The information contained by the graph N = {V, E, S}
defines a single slice in time for the ADBN. To form the
semi-infinite ADBN required for reasoning over the tempo-
ral dimension, this layer is replicated for each time slice.
Inter-temporal edges are added from each node to its corre-
sponding node in the next time slice as well as to all nodes
it is connected to within the slice. Intuitively, this specifies
that when in some state at time ¢, at time ¢ + 1 it is possible
to remain in the same state or go to the next ordered state
defined by S. An example activity and a partial expansion
over time of its associated ADBN are shown in Figure 3.

This representation bears resemblance to causality mod-
els developed in previous works such as PNF networks [13]
and PNETs [16]. We adopt two constraints introduced in
the work on PNETs, partial-ordering and one-time activa-
tion. The partial ordering constraint enforces the rule that a
parent node must not be activated after any child node has
been activated. The one-time activation constraint only al-
lows for a node to be activated for one time span, although
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Figure 3. An expansion of a ADBN defining the activity of making
coffee with intra and inter temporal links shown.

the span may last many frames. These constraints are flexi-
ble enough to allow for modeling many activities, but allow
the number of search paths to be significantly pruned by the
inference procedure.

Using this formulation, several desirable properties
emerge. First, the high-level description of an activity given
by the ADBN is in some sense independent from the under-
lying world state detectors. The only requirement is that
the detectors can provide some probabilistic estimate of the
likelihood of each sub-action occurring. Second, the ADBN
formulation provides a natural way to hierarchically model
activities. Ultimately, each ADBN is comprised of a se-
quence of atomic actions, however, sub-activities can them-
selves be represented by ADBNs and plugged in as pre-
specified components. Lastly, ADBNs can represent mul-
tiple parallel streams of action and can efficiently encode
all valid partial orderings of parallel action streams.

4.2. Modeling Temporal Extent

When describing activities that happen over time, tem-
poral frequency and duration can be a powerful cue. Al-
though ADBNs can incorporate arbitrary probabilistic de-
scriptions of temporal behavior as evidence variables, most
researchers have either ignored temporal modeling [10, 12,
8] or used very simple models like Gaussians [7, 16]. When
Gaussians are used to model temporal extent for activity
recognition they must either be learned for each sub action
in the model, or generalized for a set of disparate actions.
Learning these distributions requires time consuming label-
ing and even then a Gaussian may not provide a meaningful
temporal model for the action since the semantic description
of actions is often independent of whether it is performed
for a long or short duration or interrupted for some indef-
inite period. Finally, this model does not incorporate any
information about temporal relationships between actions
such as occurrence rate and idle time. Our approach does
not explicitly model the duration of each action. For many
cases a single distribution cannot meaningfully capture the
variation in how the action is performed. The duration can
vary greatly depending on the situation and it is unrealistic
to expect to have a general duration model for many actions.

Instead of modeling the duration of each action we sug-

gest modeling the duration of ’no action’: the time pe-
riod between the end of an action and the beginning of the
next action. We call this the ’idle time model’. Thus we
have only one type of event to model, and we can assume
each occurrence to be independent. To address the problem
of modeling temporal relationships we propose the Erlang
Distribution, which is closely related to the Poisson distri-
bution. The Poisson distribution is a probabilistic model
for the number of events occuring over some time period
whereas the Erlang distribution models the probability of
an elapsed time occurring between k independent events.

The general form of the Erlang distribution is given in
Equation 2.

kik—1_,—)\t
Ptk = 2

Here, £ is called the shape parameter and corresponds to
the number of events being modeled. A is called the rate pa-
rameter and represents the expected number of events dur-
ing a unit time. The function is defined over temporal val-
ues ¢ > 0. Since we are only interested in modeling a single
event k = 1. This special case of the Erlang distribution is
the exponential distribution given in Equation 3.
Ae ™M >0

san = {07 120 ®

Only a single event is modeled and as a result we only
need to specify a single parameter, A, for an entire ADBN.
This takes advantage of the powerful constraints offered
by temporal modeling without running into the problem of
representing heterogeneous actions with a simplified dis-
tribution or learning separate distributions for each action.
Although we do not explicitly model action duration, our
method does not exclude an action duration model. When
such a model exists, it can be easily included as an aug-
menting component of an action detector by weighting the
observation likelihood of the action. Section 4.3 demon-
strates the power of this temporal model in pruning search
paths for activity recognition.

4.3. Inference Procedure

Given a ADBN that defines some activity, the goal of
an inference procedure is to produce the most likely ex-
planation for the underlying evidence. This corresponds
to choosing a label from (*waiting’, "active’, *finished”) for
each action node in V' during each frame that maximizes the
probability given the past states of the ADBN, the current
probabilistic measures of the world captured by the nodes
e; € E, and the constraints defined by the edges s; € S.
Using the simplifying assumption that each action happens
only once in the course of the activity, an equivalent formu-
lation is to maintain a sample that assigns each node v; € V
a start-time, start(v;) and an end-time, end(v;) that maxi-
mizes the probability given the evidence.



Exact inference in a ADBN is problematic because of
the huge state-space. Notice that an action node beginning
its activation at time ¢ and another at time ¢ — 1 represent
two distinct samples. In a ADBN with n independent nodes
the number of possible assignments grows as O(t2") where
t is the temporal window. Even though the intra-slice con-
nections may limit the number of truly independent nodes
the state-space grows exponentially in £. As a result, only
approximate inference methods can be efficient.

In general, filtering methods can be used to estimate the
posterior distribution over the current state of a ADBN at
time ¢ given all previous observations. However, an esti-
mate of the posterior distribution is unnecessary. We are
only interested in the sequence of state assignments to a
ADBN that obey the constraints and best explain the evi-
dence. The Viterbi algorithm is often used to find the glob-
ally optimal assignment of states for an HMM. This is infea-
sible for ADBNSs in general so we develop an approximate
Viterbi-like algorithm.

First we set up our notation: X is the random variable
for a time-slice of the ADBN at time ¢, x;.; iS a sequence
of state assignments leading up to the current time, oy is the
observation at time ¢, and o7 .; is a sequence of observations
leading up to the current time. The goal of our approximate
Viterbi algorithm is to find the state assignments, x7., with
maximal probability given all evidence. We can derive the
recursive relationship shown in Equation 4 and use it for

inference.

r)rclaXP(XLhXtJrl‘Ol:tJrl) = OéP(0t+1|Xt+1) X
1:t

Xt

max (P(Xmlxt)}g}ax1 P(Xlztlaxt|01:t)> 4

Each sample has a specific state assignment and the associ-
ated probability as given in the Equation 4. When the ob-
servation at time ¢ + 1 is available, we propagate the sample
according to the transition model and update the probabil-
ity. Since it is infeasible to maintain all samples, we keep
a set of high probability assignments and discard the rest.
In practice, the probability of a sample P(x1.t—1,X¢|01.¢)
is updated as follows:

P(Xlztfla tholzt) = P(0t|xt)P(Xt|Xt71)P(X1:t71|01:t71)

The first term on the right side of the equation is the obser-
vation probability measured by detectors. The second term
is the transition probability specified by a ADBN, and the
last is the probabilty of the path through the ADBN leading
up to the sample i.e. the probability of the generating sam-
ple. P(x¢|x;_1) reflects the idle time model (and action du-
ration model if used), probability of missed detections and
the connectivity of nodes in the ADBN.

The prior model, shown in Equation 5, specifies that ini-
tially the ADBN is in a default start state.

P(X) = 1 :x¢ = (finished,waiting,...waiting) 5)

0 : for all other assignments to X
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Figure 4. An example sequence of observation probability for an
action A, compared to the unit idle time penalty e > (blue dotted

line; A = 1 is used here).

The exponential distribution model for the idle time be-
tween actions allows particles to be systematically pruned.
As an example, consider Figure 4, which shows the obser-
vation likelihoods of an action A. There are four possible
cases:

1. A = waiting and of* < e

2. A = waiting and of* > e~

3. A =active and o < e

4. A = active and of* > e™*
In case 1, there is no reason to change A’s state to active,
since the resulting probability of the change will be always
smaller than that of no-change for all possible future state
assignments. In cases 2 and 3, both choices of assignment
change must be explored since, depending on future obser-
vations, either choice can have higher probability. In case
4, the observation probability of the child nodes of A is also
considered. If all of the child observation probabilities are
smaller than the threshold e=*, A will keep the state of ac-
tive, since this gives the maximal probability. Otherwise, all
possibilities are investigated in the next time step. For rel-
atively accurate detectors (especially low false-positive de-
tectors), this propagation rule substantially prunes the num-
ber of expansions. This pruning procedure may not be ap-
plicable to filtering methods as it could distort the posterior
estimate.

5. Underlying Action Representations

Although the ADBN formulation for activity recognition
is decoupled from the specific underlying sensor implemen-
tation, it does ultimately require input from the visual sig-
nal. Specifically, it needs a probabilistic detector for each
sub-action that comprises the activity. In general it is not
immediately clear how to do this in domains where a large
number actions may be observed and each action may ex-
hibit significant variation. We propose an object-oriented
framework for building probabilistic action detectors from
the visual signal.

Our framework for creating action detectors is called an
"Object-Oriented Activity Knowledge Base’ . Like object-
oriented programming, in this framework objects are the
building blocks. This object-centric view allows compo-
sition and inheritance to be used to build arbitrarily com-
plex and descriptive action models of a domain. Objects
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are arranged hierarchically according to ’is-a’ relationships
where more general classes of objects are represented ear-
lier in the hierarchy. A set of possible actions is associated
with each object. The object is responsible for implement-
ing a detector that outputs a probability for the particular ac-
tion given the input signals. The outputs of these detectors
are cascaded to child objects that can apply more filtering
to build detectors for their own associated actions.

An activity knowledge base for the kitchen domain is
shown in Figure 5. The video stream is fed as input to
the object hierarchy. Each object in the hierarchy can be
thought of as a filter that acts upon the probabilistic outputs
of its ancestors and any new features calculated from the
input video stream. Detection probabilities from multiple
objects can be combined as a single probability for input to
a ADBN as shown in ’CrackEgg’ and ’CookBread’ nodes.
New objects and their associated actions can easily be added
by inserting a node into the hierarchy and defining the rel-
evant detectors. This does not require modifying existing
objects and their actions — making the solution scalable.

Although the action detectors are object-centric, purely
motion based detectors are not precluded from the frame-
work. For example, the related work on motion descriptors
described in Section 2 is largely concerned with motion sig-
natures of the human body and do not consider interactions
with objects in the world. This type of detector could be in-
corporated into the framework by including a ’person’ ob-
ject and defining all the motion descriptors as detectors for
the possible actions. In this way the implementation is in-
dependent of the specific types of features calculated over
the input video making it flexible and applicable to a wide
array of domains.

6. Experimental Results

To demonstrate the utility of our activity recognition ap-
proach we have tested the framework on several real video
sequences of activities including a cooking sequence in-
volving 30 distinct actions and lasting several minutes. The
results highlight the challenges of long-term activity recog-
nition and strengths of our approach. We provide a detailed

general

analysis of our system’s performance on recognizing cook-
ing activities. Additional results included in the supplemen-
tal materials are multiple cooking sequences and manipula-
tion of a toddler learning toy.

6.1. Cooking Sequence

Our goal is to simultaneously recognize activities and ac-
curately label when atomic actions are occuring. We show
results for recognition on a challenging cooking sequence
in which french toast is prepaired. The ADBN that en-
codes prior information about action ordering constraints
for the french toast activity is shown in Figure 6. Notice
there are several parallel paths in the ADBN encoding par-
tial ordering. The ADBN intuitively and efficiently models
both independence and dependence among the steps. The
french toast activity lasts several minutes and involves 30
sub-actions and 10 objects, making it a difficult scenario
that shows the strength of our approach.

6.2. Implementation details

A list of objects for this scenario is shown in Figure 5
where the leaves of the object-oriented action knowledge
base represent the objects of interest in the scene. The in-
put video frames are taken from an rgb+depth camera setup.
Given a sequence of video frames, three basic image statis-
tics are computed for each object using the color and depth
information: a probability of the object being removed, oc-
cluded or present. Additionally, we implemented a hand
tracking module that maintains an estimate of the current
position and velocity of hand movement.

The sub-actions we are interested in detecting and label-
ing are the nodes, v; € V, of the ADBN shown in Figure 6.
Each of these nodes takes input from the underlying action
detector of the associated object in the form of a probabilis-
tic measurement. The temporal model specifies a distribu-
tion over the idle times between actions. Then, the inference
procedure is used to combine the detector and temporal-
modeling information with knowledge of past states to pro-
vide an estimate of the current activity state.

There are only two tunable parameters for the ADBN
and inference implementation; the number of samples
maintained by the inference procedure and a A that speci-
fies the rate for the Erlang distribution described in Section
4.2. The implementation is written entirely in Matlab and
runs in ~5 frames/sec depending on the number of samples
maintained.

6.3. Results

Some sample output frames of the implementation run
over a french toast sequence are shown in Figure 7. The
graph shown under each frame mimics the structure of Fig-
ure 6 and darkened nodes represent the current best state
estimate output by the inference procedure. The output for
the 1194 frame sequence is included in the supplemental
materials.
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Figure 7. Some sample output frames of our ADBN with approximate Viterbi inference.

An activation plot showing typical output of our method
run over a french toast video sequence is shown in Figure 9.
The atomic actions are listed on the y axis and frame num-
bers on the x axis. The output probabilities of the action
detectors are shown in gray scale values on the plot. The
hand-labeled ground truth appear as green triangles and the
output labels of the ADBN with approximate Viterbi infer-
ence are shown as red circles. Notice that the underlying
action detectors exhibit significant noise. Relying on these
alone to label the sequence would result in very poor re-
sults. In contrast, our method’s labels closely follow the
ground truth. No actions are labeled out of order and only
3, ‘remove_breadl’ remove_bread2 and ’place_bread2’ , are
mislabeled in time. Furthermore, our method recovers from
the labeling error of ‘remove_bread1’ for following actions.

Pf:o%:emage of Positives Correctly Labeled Ple:&centage of Negatives Correctly Labeled

90| 90
80| 80
70| 70
5 60 § 60}
£ 50 £ 50
S 40| < 40
;’ 30 ;c.) 30
20| 20,
10| 10
0! 0
T2 3 4 5 67 891 T2 3 & 5 0 7 8 9 1
Threshold Threshold

Receiver Operating Characteristic (ROC)
100

3

10 ‘ Detectors

20 A DBN Inference

True Positive Rate (%)

False Positive Rate (%)
Figure 8. Performance characteristics of our ADBN inference
method versus raw action detectors.

Performance characteristics on frame by frame labeling

of individual actions for our method compared to the prob-
abilistic action detectors are shown in Figure 8. The top
distribution shows the percentage of positive examples cor-
rectly labeled by our method, the green horizontal line, ver-
sus the raw detectors for threshold values from O to 1. Sim-
ilarly, the middle distribution shows performance for label-
ing negative frames correctly. These plots show that our
method always outperforms the detectors in terms of cor-
rectly labeling negative frames. The detectors do label more
of the positive frames correctly for some thresholds at the
cost of significant error on the negatives (false positives).
This is further illustrated by the bottom plot showing the
ROC for the detectors and the (true-positive, false-positive)
point for our method. Our method correctly labeled 77%
of all positive frames while maintaining an extremely low
false-positive rate of .03%.

7. Discussion and Future Work

In this paper we have developed an efficient method for
monitoring recognizing and labeling complex activities in
video sequences. Furthermore, our design incorporated hi-
erarchical modeling of activities, object-centric design of
the underlying action detectors and the use of contextual
information making it a flexible, scalable approach. Exper-
iments on long video sequences illustrate the power of this
approach.

The current system requires the topology of the ADBN
to be specified by hand. We plan to explore approaches
for automatically learning models that encode the structure
inherent in activities. We are also exploring different un-
derlying action detectors. We are interested in applying our
ADBN and approximate Viterbi inference procedure on top
of a motion descriptor model of action to describe long-term
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Figure 9. Here we show a comparison of the output of individual action detectors with the labels assigned by our method and ground truth.
The gray-scale values represent the probabilities output by each action detector where darker represents higher probability.

motions.
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