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Abstract

We present a scalable approach to recognizing and de-

scribing complex activities in video sequences. We are in-

terested in long-term, sequential activities that may have

several parallel streams of action. Our approach inte-

grates temporal, contextual and ordering constraints with

output from low-level visual detectors to recognize complex,

long-term activities. We argue that a hierarchical, object-

oriented design lends our solution to be scalable in that

higher-level reasoning components are independent from

the particular low-level detector implementation and that

recognition of additional activities and actions can easily

be added. Three major components to realize this design

are: a dynamic Bayesian network structure for represent-

ing activities comprised of partially ordered sub-actions,

an object-oriented action hierarchy for building arbitrarily

complex action detectors and an approximate Viterbi-like

algorithm for inferring the most likely observed sequence

of actions. Additionally, this study proposes the Erlang dis-

tribution as a comprehensive model of idle time between

actions and frequency of observing new actions. We show

results for our approach on real video sequences containing

complex activities.

1. Introduction
Automatically monitoring and recognizing human activ-

ities is a long sought-after goal in the computer vision com-

munity. Successful implementation of a vision system with

these capabilities would enable new methods for automatic

surveillance monitoring, aware environments and computer

interfaces. Motivated by this goal, researchers have devel-

oped systems that attempt to automatically recognize and

in some cases label when actions and activities are occur-

ring. Significant progress has been made in recognizing

short-term actions [1, 2, 4, 5, 9, 14, 20] and, to a lesser

extent, monitoring and recognizing longer-term activities

[7, 15, 16, 18]; however, many challenges remain before

activity recognition systems can be deployed in general set-

tings.

This work furthers the idea that an understanding of the

semantics and temporal constraints of complex activities

is necessary for recognition and monitoring systems. This

work presents methods for representing and efficiently rea-

soning about these types of activity constraints. Scalable

methods for representing complex action and activity mod-

els are also explored.

In this paper a method for accurately monitoring, rec-

ognizing and labeling complex activities in video that in-

volve several sub-actions and objects and typically last sev-

eral minutes is developed. The proposed solution consists

of three major components: action detectors, a Dynamic

Bayesian Network (DBN) that encodes prior knowledge

of action ordering constraints, and an approximate Viterbi-

based inference algorithm that maintains an estimate of the

most likely activity state given a DBN and the output of a

set of detectors applied to an input video.

Throughout this work, the term action is used to refer

to a simple short-term motion with a specific purpose, and

activity is used to refer to a sequence of actions to achieve

a more complex and meaningful goal. Actions are atomic

components used to define an activity, which may be com-

posed of several sub-activities. The system is not limited to

instantaneous atomic actions, but instead uses a comprehen-

sive temporal model for actions. Three important concepts

used throughout the design to achieve activity monitoring

and detection are introduced: Object Orientation, Hierar-

chy of Objects, Actions and Activities and Contextual Dis-

ambiguation. They provide a principled way to include con-

textual information and modify or add to representations of

actions and activities. Finally, decoupled detection layers

allow for clear, modular and reusable representations of ac-

tivities. The following section contains a literature review of

recent work in the area. An overall description of the system

is given in Section 3. Details of our method are described

in Sections 4 and 5, and results on long video sequences are

shown in Section 6.
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Exact inference in a ADBN is problematic because of

the huge state-space. Notice that an action node beginning

its activation at time t and another at time t − 1 represent

two distinct samples. In a ADBN with n independent nodes

the number of possible assignments grows as O(t2n) where

t is the temporal window. Even though the intra-slice con-

nections may limit the number of truly independent nodes

the state-space grows exponentially in t. As a result, only

approximate inference methods can be efficient.

In general, filtering methods can be used to estimate the

posterior distribution over the current state of a ADBN at

time t given all previous observations. However, an esti-

mate of the posterior distribution is unnecessary. We are

only interested in the sequence of state assignments to a

ADBN that obey the constraints and best explain the evi-

dence. The Viterbi algorithm is often used to find the glob-

ally optimal assignment of states for an HMM. This is infea-

sible for ADBNs in general so we develop an approximate

Viterbi-like algorithm.

First we set up our notation: Xt is the random variable

for a time-slice of the ADBN at time t, x1:t is a sequence

of state assignments leading up to the current time, ot is the

observation at time t, and o1:t is a sequence of observations

leading up to the current time. The goal of our approximate

Viterbi algorithm is to find the state assignments, x∗

1:t with

maximal probability given all evidence. We can derive the

recursive relationship shown in Equation 4 and use it for

inference.
max
x1:t

P(x1:t,Xt+1|o1:t+1) = αP(ot+1|Xt+1) ×

max
xt

(

P(Xt+1|xt) max
x1:t−1

P (x1:t−1,xt|o1:t)

)

(4)

Each sample has a specific state assignment and the associ-

ated probability as given in the Equation 4. When the ob-

servation at time t+1 is available, we propagate the sample

according to the transition model and update the probabil-

ity. Since it is infeasible to maintain all samples, we keep

a set of high probability assignments and discard the rest.

In practice, the probability of a sample P (x1:t−1,xt|o1:t)
is updated as follows:
P (x1:t−1,xt|o1:t) = P (ot|xt)P (xt|xt−1)P (x1:t−1|o1:t−1)

The first term on the right side of the equation is the obser-

vation probability measured by detectors. The second term

is the transition probability specified by a ADBN, and the

last is the probabilty of the path through the ADBN leading

up to the sample i.e. the probability of the generating sam-

ple. P (xt|xt−1) reflects the idle time model (and action du-

ration model if used), probability of missed detections and

the connectivity of nodes in the ADBN.

The prior model, shown in Equation 5, specifies that ini-

tially the ADBN is in a default start state.

P (X0) =

{

1 : x0 = 〈finished,waiting,...waiting〉

0 : for all other assignments to x0

(5)
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Figure 4. An example sequence of observation probability for an

action A, compared to the unit idle time penalty e
−λ (blue dotted

line; λ = 1 is used here).

The exponential distribution model for the idle time be-

tween actions allows particles to be systematically pruned.

As an example, consider Figure 4, which shows the obser-

vation likelihoods of an action A. There are four possible

cases:

1. A = waiting and oA
t ≤ e−λ

2. A = waiting and oA
t > e−λ

3. A = active and oA
t ≤ e−λ

4. A = active and oA
t > e−λ

In case 1, there is no reason to change A’s state to active,

since the resulting probability of the change will be always

smaller than that of no-change for all possible future state

assignments. In cases 2 and 3, both choices of assignment

change must be explored since, depending on future obser-

vations, either choice can have higher probability. In case

4, the observation probability of the child nodes of A is also

considered. If all of the child observation probabilities are

smaller than the threshold e−λ, A will keep the state of ac-

tive, since this gives the maximal probability. Otherwise, all

possibilities are investigated in the next time step. For rel-

atively accurate detectors (especially low false-positive de-

tectors), this propagation rule substantially prunes the num-

ber of expansions. This pruning procedure may not be ap-

plicable to filtering methods as it could distort the posterior

estimate.

5. Underlying Action Representations
Although the ADBN formulation for activity recognition

is decoupled from the specific underlying sensor implemen-

tation, it does ultimately require input from the visual sig-

nal. Specifically, it needs a probabilistic detector for each

sub-action that comprises the activity. In general it is not

immediately clear how to do this in domains where a large

number actions may be observed and each action may ex-

hibit significant variation. We propose an object-oriented

framework for building probabilistic action detectors from

the visual signal.

Our framework for creating action detectors is called an

’Object-Oriented Activity Knowledge Base’ . Like object-

oriented programming, in this framework objects are the

building blocks. This object-centric view allows compo-

sition and inheritance to be used to build arbitrarily com-

plex and descriptive action models of a domain. Objects
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Figure 9. Here we show a comparison of the output of individual action detectors with the labels assigned by our method and ground truth.

The gray-scale values represent the probabilities output by each action detector where darker represents higher probability.

motions.
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