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Abstract

Automatic detection of dynamic events in video sequences
has a variety of applications including visual surveillance and
monitoring, video highlight extraction, intelligent transporta-
tion systems, video summarization, and many more. Learn-
ing an accurate description of the various events in real-world
scenes is challenging owing to the limited user-labeled data
as well as the large variations in the pattern of the events.
Pattern differences arise either due to the nature of the events
themselves such as the spatio-temporal events or due to miss-
ing or ambiguous data interpretation using computer vision
methods. In this work, we introduce a novel method for rep-
resenting and classifying events in video sequences using re-
versible context-free grammars. The grammars are learned us-
ing a semi-supervised learning method. More concretely, by
using the classification entropy as a heuristic cost function, the
grammars are iteratively learned using a search method. Ex-
perimental results demonstrating the efficacy of the learning al-
gorithm and the event detection method applied to traffic video
sequences are presented.

1. Introduction
Dynamic event detection from video sequences is a funda-

mental problem in computer vision with several applications
including, video surveillance and monitoring, video indexing
and highlight extraction, intelligent transportation systems, and
many more. Spatio-temporal trajectories are a class of events
that are commonly observed in video sequences. The said
events arise due to varying spatial occupancies and temporal
scales of moving targets in a scene. Additionally, real-world
scenes present challenges to a learning system in the form of
inaccurate data interpretation from uncontrolled scenes as well
as limited user labeled data. Automatically learning the event
descriptions under the above mentioned settings is the main
contribution of this work.

The standard approach to dynamic event detection consists of
employing state space models such as the hidden Markov mod-
els (HMM). While robust, learning such models for complex
data requires hierarchical [4, 12], as well as variable duration

models. This in turn increases the number of design parame-
ters for setting up the model as well as the free parameters for
model estimation. On the other hand, context-free grammars
(CFGs) with their flexible representation provide more expres-
sive power with more straightforward design.

While SCFGs have been applied to a limited extent for event
detection from image sequences [5, 9], little attention has been
paid to learning the grammar from data. This work addresses
the problem of learning the event grammars, namely, the set
of terminal symbols, the non-terminals, the rules, and the rule
probabilities from the data.

This paper is organized as follows: After introducing the prob-
lem in Section 1, related works are presented in Section 2. The
learning problem is then formally introduced in Section 3. The
semi-supervised learning method is then discussed in Section 4.
Section 5 presents some experimental results of event detection
on a real-world application, namely, traffic monitoring from
video sequences. Finally, Section 7 concludes the paper.

2. Related Work

Approaches to detecting spatio-temporal events range from
dimensionality reduction methods such as in [8, 10], to the fre-
quently used state space models such as the hidden Markov
models (HMM) and their variations [4, 11]. While robust, state
space models such as HMMs require hierarchical and time-
duration modelling for representing events with varying tem-
poral and spatial scales. This in turn increases the complexity
of the design.

Context-free grammar approaches have been recently applied
for event recognition in video sequences. The flexibility of rep-
resentation afforded by these methods allows one to model a
larger set of variations in the data for a particular kind of event.
Ivanov and Bobick [5] employed stochastic context-free gram-
mars (SCFG) for recognizing gestures by combining a HMM
at lower level with SCFG. Recently, Ryoo and Aggarwal [13]
combined Bayesian networks and HMM in the lower levels
with events represented as context-free grammars for recogniz-
ing complex human interactions. Hamid et al. [2] developed
an approach to detect anomalous activites in video sequences
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using hand-coded tri-grams. Similarly, Hakeem and Shah [1]
employed graphical networks with hand-coded grammars for
detecting activites in videos. In order to deal with ambiguities
in image-based inference, Moore and Essa [9] introduced an
interesting approach using addition, deletion, and insertion op-
erations in the SCFGs.

Until now, to the authors’ knowledge all video-based event de-
tection approaches employing variants of probabilistic gram-
mars are restricted to recognition or classification of activi-
ties using a pre-specified grammar. This work addresses the
problem of automatically learning the grammar both structure,
namely, the set of rules, non-terminals, and terminal symbols,
and the parameters, namely, the rule probabilities. Most previ-
ous work in learning grammars, both structure and parameters
exists in language modelling [6, 16], and bioinformatics [15].
An interesting approach to estimating the parameters of the
grammar for learning good estimates of the histogram proba-
bilities is in [3].

3. Problem Statement

Given a spatio-temporal pattern S, expressed as a string of
actions S = {a1, a2, . . . , an}, with 1, . . . , n being the discrete-
time sampling intervals, we seek the grammar Gi correspond-
ing to an event class Ei that can generate the said pattern.

Given a fully specified SCFG, that is with fixed non-terminals
and terminals, the inside-outside algorithm [7] is the optimiza-
tion algorithm for estimating the rule probabilities. However,
automatically learning the structure, namely, the terminal sym-
bols, the non-terminals, the productions, and the parameters of
the grammar is a much difficult problem. However, when cer-
tain assumptions can be made about the data such as the avail-
ability of bracketting information or partially available gram-
mar structure, the grammars can be induced in polynomial
time [14, 17].

In this work, we assume that the data contains bracketting in-
formation and that the grammars are structurally reversible. A
structurally reversible grammar is one of type where among all
the non-terminals that might derive a given terminal string, no
one is an extension of the other. In other words representing
upper case English alphabets as non-terminals and Greek let-
ters as terminals, when, A → α and B → β, then A = B.
Again, when A → αBβ and B → αCβ, then B = C.

4. Event Detection Using Stochastic Context-Free
Grammars

4.1. Pattern Representation

An action sequence or a pattern is represented as a discrete
set of primitive actions obtained by sampling from a target’s
trajectory. The sampling intervals are fixed beforehand. A
primitive action is composed of the spatial location and the cur-
rent local motion of the target obtained from an estimator such

Figure 1. Example cell-based representation of the spatial region. The
cells are shown as white regions with the corresponding labels. An
example trajectory of a lane-changing vehicle is shown in black.

as a Kalman filter.1 The local motions are discretized into one
of “straight moving”, “stopped or slow moving”, “fast mov-
ing”, “left” and “right turning” through thresholding of the lo-
cal velocity estimates and simple heuristics for turn detection.
The spatial location is again obtained from the region occupied
by the target in the image. For this purpose, the image is dis-
cretized into an arbitrary number of cells as shown in Fig. 1.
The cells can either be laid out by the user or randomly gener-
ated.

The actions are represented as a pair of local motion and the
spatial region corresponding to the local motion. An exam-
ple string is depicted in Fig. 2, where C1, C5, C6 correspond
to the discrete spatial cells and (straight, fast)correspond to
the local motion. An action is C1(straight) for example,
while a bracketted set of actions are represented in boxes as
C1(straight)C5(fast) in the Fig. 2. The entire set of actions
represents a string pattern.

4.2. Learning Event Grammars

The set of events in the scene are assumed to arise from
k different classes. In general, the same underlying distribu-
tion D(s, y) is assumed to produce both the test and training
examples. Learning consists of estimating the conditional dis-
tribution D(y|s,Ω) where y is the output for the input pattern
s = a1, a2, . . . , an, where a1, a2, . . . , an are the set of actions
in the pattern, and Ω is the model that maps inputs to the out-
puts in a discriminative learning setting. The learning problem
can be formulated as maximizing the conditional likelihood of
the output label y given the input string s and classes 1, . . . , k
as,

∆ =
N∑

i=1

k∏
j=1

Mi∑
l=1

p(y(i)|s(i, l); Ωj). (1)

Entropy is the clearest way of characterizing the uncertainty
in the posterior probabilities of the classification labels y for
an input pattern s = a1, . . . , aM . a1, . . . , aM are the sampled
actions (spatial location and motion) obtained from the trajec-
tory. In other words, an entropy zero corresponds to perfect
classification, or the case when utmost one class is attributable

1In our case, we use an extended switching Kalman filter for tracking the
targets in the scene.



to the given input string. The conditional classification entropy
represented as shown in Eqn. 2, provides a convenient measure
for representing the cost for augmenting the grammar of a class
using a particular example.

H(y|s = {a1, . . . , aM}) = −
k∑

i=1

M∑
j=1

p(y|aj , Gk)log(p(y|aj ;Gk))

(2)
s is the string pattern consisting of component sampled actions
s = a1, . . . , aM , while y is the output label for the pattern s.
There are k classes of events and Gk is the grammar for class
k.

The learning method iteratively searches through the set of un-
labeled examples, and adds the example with the least con-
ditional classification entropy. The conditional classification
entropy is essentially a heuristic cost metric for guiding the
search algorithm, where, the algorithm is essentially a best-
first search. As a result, the solution produced by the search
algorithm is optimal when the conditional entropy is an admis-
sible heuristic. However, it is not possible to guarantee that the
chosen cost metric will always overestimate the cost to goal.
Hence, the solution is not guaranteed to be optimal. However,
in this work, our focus is on obtaining a satisfysing solution if
not an optimal one.

Another useful metric for the search algorithm is the empiri-
cal conditional entropy. Assuming uniform prior to all classes,
1, . . . , k, the said entropy can be represented as,

H(y|S) =
N∑

i=1

k∑
j=1

Mi∑
l=1

p(y(i)|ai
l;Gj) log

1
p(y(i)|ai

l;Gj)
.

(3)
where S = s1, . . . , sN is the set of patterns. ai

l refers to an
action al occurring in the pattern si. Again, the empirical con-
ditional entropy is the lowest when the co-dependence of the
label y and the patterns S are high. The algorithm makes use of
the empirical conditional entropy as a stopping criterion for the
search algorithm. Thus, the algorithm halts refinement when
either no more examples below a prespecified conditional clas-
sification entropy threshold are left for update, or when the em-
pirical conditional classification entropy of the remaining ex-
amples falls below a set threshold Eth. The basic algorithm is
summarized in Table 1.

As depicted in Table 1, after learning a preliminary model with
a few labeled training examples, the SCFG model for each class
is iteratively refined until convergence. Using the set of exam-
ples associated to a class, the grammar structure is built from
the terminals. Terminals may be merged to form non-terminals,
following which, the rule probabilities are computed. This is
done by computing histogram counts of rules applied for pars-
ing.

As mentioned earlier, the grammar structure is assumed to be
available before-hand in the form of bracketed expressions. An

Input: Unlabeled Examples U = 1, . . . , N ,
Labeled Examples L = 1, . . . , Nl,
Classes k
Output: Grammar Set G1, G2, . . . , Gk

GRAMMAR-LEARN(U, L)
1 G← UPDATE-GRAMMAR(L, 1, . . . , k)
2 compute empirical conditional entropy Eh

3 Eh ←
PN

i=1

Pk
j=1

PMi
l=1 p(y(i)|ai

l; Gj)×
4 log 1

p(y(i)|ai
l
;Gj)

5 while U 6= {} ∨ Eh > Eth

6 do for i← 1→ N
7 do classU(i)← CLASSIFY(Ui, G)
8 compute conditional classification entropy hi

9 hi ←
Pk

i=1

PM
j=1 p(y|aj , Gk)log(p(y|aj ; Gk))

10 CHOOSE Ui S.T. hi == MIN(h1,...,i)
11 G′ ← UPDATE-GRAMMAR(U, classU(i))
12 Ehnew ←

PN
i=1

Pk
j=1

PMi
l=1 p(y(i)|ai

l; G
′
j)×

13 log 1
p(y(i)|ai

l
;G′

j)

14 if Ehnew − Eh > α
15 then reset Grammar to G
16 hi ←∞
17 GOTO 10
18 else Eh ← Ehnew

19 GOTO 5

Table 1. Algorithm for grammar update. The grammar for the typ-
ical classes is updated incrementally using the strings with the least
entropy.

example is depicted in Fig. 2. As shown, non-terminals are cre-
ated from the terminal pairs (individual actions represented in
the brackets) which are then merged with the newly created or
previously existing non-terminals in the grammar. This helps to
obtain a concise description of the rules. This process is sim-
ilar to the non-terminal merging operation proposed by Stol-
cke [17].

The only prior knowledge the learning algorithm requires is
some knowledge of the structure of the grammar and a small
set of supervised examples. In most real-world domains such
as traffic intersection monitoring and human activity recogni-
tion, it is impossible to obtain a large amount of supervised
learning examples as well as specify the structure of the scene.
The proposed learning algorithm can easily be applied to data
arising from the said applications with minimal user provided
knowledge.

4.3. Event Classification and Error Recovery

Once the grammar for each class is learned, a novel pattern
is classified by parsing it with all the available grammars. The
grammar which produces the successful parse of the pattern is
attributed as producing the pattern. For parsing we make use
of the standard Earley parsing method. In the case of multi-
ple classifications, ties are broken arbitrarily. In order to allow
for missing data, the algorithm skips sub-strings for obtaining



Figure 2. An example action sequence with bracketed structure and non-terminal creation. The boxes around the strings represent the bracketed
structure. The terminals consist of the spatial cell occupied by the target such as C1, and the corresponding local motion, such as straight, fast,
slow, left, right turn . The non-terminals are depicted as M1, M2, M3, etc.

a successful parse. The adopted method is similar to the error
recovery methods used in [9] with the exception that the al-
gorithm just implements the skip mechanism instead of all the
skip, add, and delete methods.

5. Experimental Results
Objective The objective of the experiments was to test the

efficacy of the proposed learning method on real-world image
sequences.

5.1. Experiment Description

For the experiments we chose scenes from outdoor traffic in-
tersections such as depicted in the Fig. 3. Traffic intersections
are one of the most complex scenes both for target localiza-
tion as well as event detection. The uncontrolled environmen-
tal effects such as occlusions and changing illumination make
target localization a challenging task. The resulting ambigu-
ity in the observed data in addition to the significant overlaps
between various events make event recognition difficult. The

Figure 3. An example traffic scene used in the experiments.

target statistics including their locations, speeds, accelerations
etc. are obtained through a vision-based tracking algorithm as
described in [18]. The individual trajectories are sampled at
discrete intervals to obtain a string of primitive events or ac-
tions. An action is computed based on the local motion as well
as the spatial location.
5.2. Results

Fig. 4 and Fig. 5 show some examples of event classifica-
tions for different trajectories.2An advantage of applying the
SCFGs is that a trajectory can be classified even with partial

2Although the classification results are depicted on the same image, these
trajectories arise from different vehicles under different traffic conditions.

Figure 7. Generalization risk performance for training with varying
numbers of labeled and unlabeled examples.

information as shown in Fig. 6, where only part of the vehicle’s
trajectory was available due to a large occlusion along the
remaining trajectory of the vehicle.

Fig. 7 illustrates the effect of the ratio of labeled to unlabeled
examples on the generalization performance of the classifier.
The x-axis corresponds to the ratio of the number of labeled to
unlabeled examples. The maximum number of labeled exam-
ples was 60 and unlabeled 290. As can be seen, the effect of
increasing the number of labeled examples is that the margin
of generalization risk of using only labeled examples and com-
bining labeled and unlabeled examples is reduced. This means
that the effect of unlabeled examples diminishes as the number
of labeled examples is increased. However, adding unlabeled
examples still improves performance. The risk is computed by
testing the classification performance of all the learned gram-
mars on a testset different from those used in the training ex-
amples.

As a benchmark experiment, we compared the classification
performance of the proposed SCFG with a spectral clustering
method as presented in [8]. In the tests, 1069 trajectories were
used for testing. Being an unsupervised clustering method, all
the datasets were directly presented to the spectral clustering al-
gorithm. For training the SCFG, a total of 250 examples from
a different data-set was used. Out of the 250, 50 trajectories
were labeled or 5-6 examples on an average per event class.3

3One should note that not all the unsupervised examples are necessary for
updating the grammar. The learning algorithm stops as soon as convergence



(a) North-south motion. (b) South-north motion for a stop-n-go
vehicle.

(c) South-west motion.

Figure 4. Trajectory classification by the SCFG for event classes north-south, south-north, and south-west.

(a) East-west motion. (b) East-south motion. (c) West-north motion.

Figure 5. Trajectory classification by the SCFG for east-west, east-south, and west-north motions.

The results of the classification performance are depicted in
Table. 2. One thing to note is that none of the test examples
consisted of atypical motions such as U-turns, or reversing mo-
tions as these cannot be detected using the spectral clustering
algorithm as it just makes use of the shape of the trajectories
for clustering. While one can compare the performance of the
algorithm against anomalous activity recognition methods such
as [19], we leave that as work for future. Examples consisted of
a mix of fully-visible and partially visible trajectories as were
obtained from the tracking algorithm. Predictably, the cluster-
ing method fails when presented with partial trajectories. With
the SCFGs, it is possible to detect complex motions including
weaving motions such as those resulting from lane changes.
hierarchical models for such detection.

6. Discussion and Future Work

The SCFG-based event detection method can provide robust
classification in challenging environments even when presented
with partial information. As shown in the results, it is possible
to extract reliable grammars for event recognition with a small
set of labeled examples and a relatively small set of unlabeled
examples. An advantage of this is that the method can easily
scale to novel environments. The conditional classification en-
tropy serves as a reasonable cost criterion to search for new
grammars. However, since it is not possible to guarantee the
feasibility of the heuristic, the algorithm is not guaranteed to
generate the optimal grammar. However, in this work, our fo-
cus is obtaining a reasonable grammar for the data rather than

results after the update from a few examples.

on obtaining the optimal one.

The comparison of the performance of the results with the spec-
tral clustering algorithm was merely done to assess the per-
formance of the algorithm in comparison to another activity
recognition algorithm. A better alternative for comparisons
would involve other structure learning algorithms such as hid-
den Markov models. This work considered the feasibility of the
learning approach for event detection. Extensive experiments
on more real-world scenes and other applications including hu-
man activity recognition would be necessary to verify the ap-
plicability of the event detection method.

The current work examined the problem of event detection
based on the activities of individual targets. One scope for fu-
ture work is the problem of analyzing events arising from target
interactions such as those arising in human activity monitoring,
video annotation, and many more. This results in more com-
plex and involves diverse events that need to be learned from
the data.

7. Conclusions

This work presented a stochastic context-free grammar
(SCFG) based method for event detection and classification
in real-world image sequences. The main contribution of this
work is a search-based iterative learning algorithm for learning
the grammar structure and parameters for each class of motion
using a semi-supervised learning strategy. Results demonstrat-
ing the feasibility of the learning algorithm and its applicability
in real-world image sequences are presented.



(a) East-south motion. (b) North-east motion. (c) South-west motion.

Figure 6. Accurate detection can be obtained even only when a small portion of the trajectory is visible.

Classifier Correct Incorrect
SCFG 825 (77%) 244 (23%)

Spectral Clustering 669 (62%) 400 (38%)
Table 2. Results of classification on a data-set containing 1069 examples obtained from tracking video sequences in an outdoor scene.
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