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Abstract

In this paper, a generic rule induction framework based
on trajectory series analysis is proposed to learn the event
rules. First the trajectories acquired by a tracking system
are mapped into a set of primitive events that represent
some basic motion patterns of moving object. Then a min-
imum description length (MDL) principle based grammar
induction algorithm is adopted to infer the meaningful rules
from the primitive event series. Compared with previous
grammar rule based work on event recognition where the
rules are all defined manually, our work aims to learn the
event rules automatically. Experiments in a traffic cross-
road have demonstrated the effectiveness of our methods.
Shown in the experimental results, most of the grammar
rules obtained by our algorithm are consistent with the ac-
tual traffic events in the crossroad. Furthermore the traffic
lights rule in the crossroad can also be leaned correctly with
the help of eliminating the irrelevant trajectories.

1. Introduction

In visual surveillance, there has been increasing interest
in recognizing object behaviors, interpreting the high level
semantics of dynamic scenes. Trajectory that records the
object’s position from entering to exiting a scene is one of
the most useful information to embed the behavior of mov-
ing objects. Much behavior understanding work has been
done based on trajectory analysis [3] [4] [5]. However, most
previous work focused on modeling the spatial distribution
of single trajectory by some clustering techniques. The ob-
tained clusters can be seen as the pathes commonly taken by
moving objects. Then based on these pathes, some simple
single agent event can be recognized. Nevertheless, the con-
textual information in the continuous trajectory series has
not been studied for event recognition so far, which maybe
imply more complex semantics in a longer duration.

In this paper, besides learning the spatial patterns of sin-
gle trajectory, we proposed a rule induction framework to
find the event rules embedded in a continuous trajectory se-

ries. The whole framework consists of three layers: trajec-
tory extraction and segmentation layer, primitive event de-
tection layer and event rule induction layer. The trajectory
extraction and segmentation layer includes moving object
tracking as well as trajectory segmentation that partitions a
whole trajectory into several segments with basic semantic
meanings. Then the primitive event detection layer maps
the trajectory segments into a set of primitive events and
forms a primitive event series. Finally in the temporal rule
induction layer, a grammar induction algorithm is adopted
to acquired a set of event rules. Compared with previous
work, the main contributions of this paper include the fol-
lowing:

(1) Different from previous work on trajectory analysis
for visual surveillance, our work not only models the spa-
tial distribution of single trajectory, but also the temporal
structure in a trajectory series.

(2) Our work is a grammar rule based approach to behav-
ior understanding. Compared with previous grammar rule
based work where the rules are all defined manually, we at-
tempt to learn the event rules automatically.

(3) Within the grammar induction framework, frequency
and attribute constraint are proposed to filter out the redun-
dant rule candidates. With the constraints, the time cost is
reduced vastly and more meaningful rules are also obtained.

The remainder of this paper is organized as follows: Sec-
tion 2 describes related work on trajectory analysis, event
recognition and grammar induction. Section 3 introduces
the methods used for the trajectory extraction and segmenta-
tion layer. The techniques used in primitive event detection
layer are outlined in Section 4. The proposed rule induction
algorithm is presented in Section 5. In Section 6, we show
the experimental results. Finally, we conclude this work.

2. Related work

Most work on trajectory analysis for visual surveillance
focused on learning several statistical motion routes in a
scene. Hu et al. [3] proposed a hierarchical self-organizing
neural network model to learn the motion patterns of single
moving object. Stauffer et al.[4]acquired a set of prototypes
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using a online vector quantization from trajectories and
used hierarchically clustering with the co-occurrence statis-
tics of the prototypes within single trajectory. Porikli [5]
proposed a hidden markov model (HMM) based distance to
measure the similarity between two trajectories, and a kind
of spectral clustering algorithm is adopted to acquire several
clusters of single object. In the above work only simple sin-
gle agent event (“one agent goes from... to...”, etc.) could
be modeled by these motion routes.

For complex event recognition, a great deal of work has
also been done at various levels. Some research focused on
modeling the visual event at signal level, in which the ob-
served feature sequence was directly feed into some trained
probabilistic model, such as hidden markov model (HMM)
and dynamic bayesian network (DBN) and the likelihood
probability decided whether the corresponding event oc-
curred or not [6][7]. Probabilistic model has the advantage
of handling the uncertainty in the input observation and rea-
soning using uncertainty. However along with the increas-
ing complexity of events such as the increasing number of
agents involved in the event or a larger temporal scale, it
will be very difficult to obtain a right model with little train-
ing data in a huge dimensional feature space.

On the other hand, there has been some work on mod-
eling the complex activity at event level, where some prim-
itive (atomic) events were first modeled directly from low
level features, then based on these primitive events a com-
posite event was represented as a set of sub-events and a
set of temporal or logical relations between them. Among
different methods, stochastic grammar is very convenient to
represent the event structure in a natural way. In [9], Ivanov
and Bobick used stochastic context-free grammar (SCFG)
to recognize complex large scale events. A two-levels ap-
proach is proposed, at the lower level HMMs were used
to recognize primitive events, then the primitive events se-
quence was feed into a grammar parser to identify the com-
plex events. In [8], the Towers of Hanoi game was analyzed
by a parameterized stochastic grammar. The experiments
showed the high-level parser could recover from local er-
rors and find a consistent overall interpretation of an activ-
ity. Recently, Joo and Chellappa [11] recognized normal
events and detected abnormal events with attribute gram-
mar which can describe constraints on attributes in addi-
tion to the syntactic structure. In [12], Ryoo and Aggarwal
also used a context-free grammar (CFG) based representa-
tion scheme to represent two persons’ interactions such as
approach, depart, shake-hands, etc. However in the above
work, the event rules were all defined manually. Domain
experts were needed to provide all possible rules for all pos-
sible events, which seemed impossible in a practical appli-
cation. Therefore it is necessary to develop a method for
learning event rule automatically.

Grammar rule learning called grammar induction has

Figure 1. Illustration on semantic regions in a crossroad scene.
The two horizontal red lines denote the top and bottom zebra lines
respectively. The blue line denotes a trajectory, the arrow indicates
the moving direction. The yellow dashed lines show the trajectory
segments partitioned by the semantic regions.

been studied for several decades in artificial intelligence
and natural language processing, which aimed to identify
a set of grammar rules from a set of training sentences.
In [16], Stolcke and Omohundro proposed a probabilistic
context free grammar induction method by Bayesian Model
Merging. Two operators(merging and chunking) were used
to generate the candidates models and evaluate these can-
didates by maximum posterior probability (MAP) princi-
ple. Grunwald [13] has also developed a framework that
used minimum description length (MDL) principle to guide
search for ’partial’ grammar with the similar operators (con-
struct and merge) to generate candidates. In this paper, we
adopt a similar grammar induction strategy to learn visual
event rule. However the input of our work is not sentences,
but trajectory series. Therefore the transformation from tra-
jectory that is in signal level to symbol that is in event level
is needed.

3. Trajectory extraction and segmentation

We use a tracking system developed by Yang et al.[1] to
obtain a large number of continuous trajectories in a long
time. However the semantics of each trajectory is not ex-
plicit, which may lead to a blind investigation in the follow-
ing process. So some preprocessing step is needed.

As presented in[10], the vehicles and pedestrians in a
far field surveillance scene are all inherently intentional ob-
jects, therefore the visible component of their behavior can
often be explained with reference to their goals. In this
work,we define several semantic regions manually (as it is
not the focus of this paper) in a surveillance scene whose
borders are equivalent to the goals in [10]. Therefore a
whole trajectory is divided into several segments by the se-
mantic regions it passed. Figure 1 illustrates an example



of trajectory segmentation in a crossroad scene. Then each
segment is deemed to coincide with a primitive event with
the basic semantic meaning, such as ”vehicle A approaches
a certain region border along X way”. ”X way” denotes
the motion pattern of ”vehicle A”. And how to decide the
motion pattern will be solved in the next section.

4. Primitive event detection

In this section, we simply outline how to transform a tra-
jectory segment series into a primitive event series.

4.1. Similarity based clustering

In each semantic region, a similarity based clustering al-
gorithm is performed to obtain a set of motion patterns of
single trajectory segment. Here, only a small subset of the
large dataset is needed to do the work, considering the com-
puting cost.

Due to the advantage for clustering task in outdoor
surveillance scene [2], the PCA (Principle Components
Analysis) +Euclidean distance is adopted to compute the
similarity between two trajectory segments. After the sim-
ilarity matrix is obtained, the spectral clustering algorithm
proposed in [18] is used to partition the segments into sev-
eral motion patterns. The clustering results in a traffic cross-
road are shown in Figure 2. Each sub-figure shows one of
the motion patterns. One can see that the trajectory classes
in different driving lanes are separated correctly.

4.2. Primitive event detector

The motion patterns obtained by clustering are deemed
as a set of primitive events. Then a hidden markov model
(HMM) that takes account into the uncertainty of the low
level processing is trained in each cluster. These HMMs are
used as the detectors of primitive events. For a given trajec-
tory segment, the HMM that yields the maximum likelihood
is the recognition result.

4.3. Representation of event series

By far we have transformed a trajectory segment at sig-
nal level into a symbol at event level. However just a
symbol is not enough to represent the event for the fol-
lowing rule induction. In our work, utilizing some tra-
jectory descriptors, such as the bounding box that de-
scribes the spread spatial range of the trajectory and the
motion orientation, we represent each event as a 5-tuple
{e type, id, t range, s range, likelihood}, where e type
denotes which event occurred. id indicates the agent iden-
tity of the current event. t range means the the time
interval of the event in the whole event series, which
is represented as (start point, end point). s range de-
notes the event’s spread range in image coordinates in ad-
dition to the motion orientation, which is represented as

(a) c 1 (b) c 2 (c) c 3 (d) c 4

(e) c 5 (f) c 6 (g) c 7 (h) c 8

(i) c 9 (j) c 10 (k) c 11 (l) c 12

(m) c 13 (n) c 14 (o) c 15 (p) c 16

(q) c 17 (r) c 18 (s) c 19 (t) c 20

Figure 2. The trajectory segments clusters corresponding to 20
primitive events. The clusters in different semantic regions are
represented by different colors.

{(xmin, xmax), (ymin, ymax), (θmin, θmax)}. likelihood is
the likelihood probability of the observed data, given the
event model. Finally an event series is formed by arranging
all the events in terms of the end point ascendingly.

5. MDL principle based event rule induction

In this section, we present the proposed event rule induc-
tion algorithm in details.

5.1. Definition of event rule

In this study, event rule comprises two parts: structure
and attribute, in order to represent composite event.

The representation of structure is based on stochastic
context-free grammar (SCFG) [9]. However the traditional
grammar only can represent the sequential relation between
two sub-events, whereas the event in our work is interval
based representation which allows more complex temporal
structure to exist in the sub-events. We refer to the represen-
tation of state interval patterns in [15], and also use Allen’s
temporal interval logic[14] to describe the relation between
two interval events. Thus in our work, a production rule
with size of n is defined as follows:

E → s {R} [P ] (1)



where E is the leftmost nonterminal, s is a symbol string
of size n, each symbol denotes an event. R is the relation
matrix, where the element rij denotes the temporal relation
between the ith event and the jth event in s. P is the con-
ditional probability of the production being chosen given
the event E. An example of production rule and the corre-
sponding instance in the event series is shown in Figure 3.
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Figure 3. An example of production rule in our work. (abbrevi-
ations: a=after, b=before, d=during, id=inverse during). In the
underside of the figure, the part enclosed by the red dashed line
illustrates an instance of this production.

Besides the structure representation, two real-valued at-
tributes associated with each symbol occurring in the pro-
duction rule are used to characterize the event rule, which
can weaken the possible ambiguity in the event rule set. one
is temporal duration ̂t length that denotes the average tem-
poral duration of the rule’s instances and the other is spatial
range ̂s range that is the average s range of the rule’s in-
stances, where s range has been presented in section 4.3

5.2. Rule induction framework

Referring to the work on grammar induction [13] [16]
and structure discovery [17], we adopt a MDL principle
based grammar induction algorithm to generate a set of
event rules. The basic algorithm is shown in Alg.1.

As shown in Alg.1, a beam search strategy is selected to
avoid local optimization. The second while loop is the core
of our algorithm. In each run, for each item 〈CurG,CurS〉
that includes the current grammar and the compressed event
series, the rule candidates are acquired by two operators
merge and construct. Then they are evaluated by the MDL
principle. The best candidate that can compress the event
series farthest results in a new item which is inserted in
ChildStack. In the replacement, the attributes ̂t length
and ̂s range of the rule are obtained by computing the
average temporal duration and s range of the rule’s in-
stances respectively. After all items in ParentStack have
been handled, the algorithm will switch ParentStack and
ChildStack, so that the next induction is to be performed.

Algorithm 1 Grammar induction framework
1: ParentStack = ∅; ChildStack = ∅;
2: Result = 〈initialG, S〉; Depth = 0;
3: Push 〈initialG, S〉 in ParentStack;
4: while Depth < MaxDepth do
5: while ParentStack �= ∅ do
6: 〈CurG,CurS〉 = ParentStack.at(0);
7: Delete ParentStack.at(0)
8: Candi = GenerateCandi(〈CurG,CurS〉);
9: for each rule r in candidates set Candi do

10: [NewDL,〈NewG,NewS〉]
=MDLEncoding(〈CurG,CurS〉, r);

11: Insert 〈NewG,NewS〉 in ChildStack in
terms of NewDL ascendingly;

12: if length(ChildStack)>BeamWidth then
13: Delete the item at the end of ChildStack;
14: end if
15: end for
16: end while
17: Depth = Depth + 1;
18: if ChildStack �= ∅ then
19: Result = ChildStack.at(0);
20: Switch ChildStack and ParentStack;
21: else
22: break;
23: end if
24: end while
25: return Result;

5.3. Rule candidates generation with constraints

Two operators called construct and merge presented in
[13] are adopted to generate rule candidates.

In [13], candidates were generated for all pairs of non-
terminals in the current ”partial grammar”. However too
many candidates will be generated with such exhausted
strategy, which increase the next evaluation load vastly. Fur-
thermore some rule candidates that can compress the data
but without any semantic meaning may disturb the subse-
quent induction process. Therefore two kinds of constraints
are proposed to filter out the redundant candidates.

Frequency Constraint. The more frequent of the in-
stances of a construct rule exist in the event series, the
more decrease of description length (DL) will be achieved
by rule replacement. Therefore in construct operation, a
rule candidate can be generated only if its support exceeds
a threshold suppmin, where the support denotes how often
a candidate occurs in event series. And a frequent pattern
mining algorithm [15] is applied to decide the support. The
details of the mining algorithm can be found in [15]. In this
work the maximal length of rule is set to 2 for saving com-
puting time.



Here, the support of each rule candidates is also used
for computing the conditional probability of a production
lately. In each iteration, suppose there are n productions
that share the identical leftmost non-terminal, the condi-
tional probability of ith production is obtained as follows:

P (E → s(i)) =
suppi∑n

j=1 suppj
(2)

For other production that has the unique leftmost non-
terminal, its probability is set to 1.

Attribute Constraints. By using three event attributes
id, t range, s range, three constraints are proposed:

a. Spatial constraint. Two given events A and B
in the event series can be constructed or merged, only if
spatial dis(A,B) < thresholds, where thresholds is
a given threshold. The spatial distance between event A
and event B is denoted by spatial dis(A,B). As we
have presented in section 4, the s range of an event can
be represented as a three-dimensional cube cubeA with x,
y axis in image coordinate and the orientation axis. So
spatial dis(A,B) is defined as:

spatial dis(A,B) = 1− vol(cubeA) + vol(cubeB)
vol(union(cubeA, cubeB))

(3)

where vol(cubeA) indicates the volume of cubeA.
union(cubeA, cubeB) returns the smallest cube that con-
tains the cubeA and cubeB . The distance ranges from -1
to 1. The smaller the distance, the nearer the two events.
And the distance is scale independent, which is very impor-
tant because the average spatial-temporal scale of event will
become larger and larger in the induction process. Note,
union(cubeA, cubeB) is also the spatial range of new
event.

b. Temporal constraint. Two given events A and B can
be constructed, only if temporal dis(A,B) < thresholdt.
The constraint is only valid in construct operation. Simi-
lar to the definition of spatial dis, the temporal distance is
defined:

temporal dis(A,B) = 1 − len(tA) + len(tB)
len(union(tA, tB))

(4)

where tA is the temporal interval of event A
(start pointA, end pointA). len(tA) = (end pointA −
start pointA). union(tA, tB) return the smallest temporal
interval that contains the tA and tB . It is also the temporal
interval of the new event.

c. Agent constraint. If the constraint is valid, only the
events whose id are identical can be constructed. In our
work, the agent constraint is valid in the beginning of the in-
duction process to generate single agent event rules. When
no one candidates satisfies the agent constraint, it will be
terminated. Whereas the spatial and temporal constraints
are valid throughout the rule induction process.

5.4. MDL encoding of event series

The MDL principle was proposed in its modern form by
J.Rissanen [19]. According to the MDL principle, the best
grammar is the one that minimizes L(G,S) = L(S | G) +
L(G), where G is the learned grammar, S is the input event
series. L(S | G) is the number of bits needed to encode the
event series with the help of the grammar, L(G) is that to
encode the grammar.

Similar to the definition of event rule, the event series
also can be described as a symbol string and the correspond-
ing relation matrix. Therefore L(S | G) is computed as two
steps:

a. Encoding the symbol string: Suppose the symbol
string of current event series is e1e2...en and the set of
unique symbols is {E1, E2, ..., Ec}, where ei = Ek results
from replacing the sub-series sub s in the original event se-
ries by the current rule set. To encode the symbol string, the
number of bits Sbits is computed according to [20]:

Sbits = −
n∑

i=1

logP (sub s, ei)

= −
n∑

i=1

log(P (sub s|ei) ∗ P (ei))

= −
n∑

i=1

log(lik ei ∗ P (ei))

(5)

where P (ei) = P (Ek) is the normalized support of Ek in
the event series, which ensures

∑c
k=1 P (Ek) = 1; lik ei is

the likelihood probability of ei. Here the likelihood of event
e is computed as soon as it is generated by replacing the sub-
series e′1e

′
2...e

′
m with the event rule E → E′

1E
′
2...E

′
m.

lik e =


 m∏

j=1

lik e′j


 ∗ P (E → E′

1E
′
2...E

′
m) (6)

where P (E → E′
1E

′
2...E

′
m) is the probability of the pro-

duction, e′j is the instance of E′
j .

As described in the above part, the likelihood of sub-
event is embedded into the new event by replacement, there-
fore the uncertainty of primitive event detection is also con-
sidered in the encoding process.

b. Encoding the relation matrix: We compute the num-
ber of bits Rbits needed to encode the relation matrix with
an enumerative encoding strategy.

Because the relation matrix is an antisymmetry-like
matrix, only encoding the upper triangular matrix is
enough. And there are only 8 possible temporal relations
{before,meet, overlap, start, during, finish, equal, i−
finish} in the upper triangular matrix. Moreover, it is ex-
plicit that most of the values in the ith row of the upper
triangular matrix are ”before”, when i << N .



Therefore given the numbers of 7 relations(except for
”before”) occurred in the ith row vj , j ∈ {1, 2, ..., 7},

there are
∏7

j=1

(
vj

N − i − ∑j−1
k=0 vk

)
possible place-

ments, where v0 = 0. A feasible encoding scheme is as-
suming each placement has equal probability of occurrence.
So we need

ri = log
7∏

j=1

(
vj

N − i − ∑j−1
k=0 vk

)
(7)

bits to encode the positions of 8 relations in the ith row.
Then encoding the value of vj and the value of i requires

(7 log ui + log N) bits, where ui = maxj{vj}, N is the
size of the event series. Thus the total number of bits for
encoding the relation matrix is

Rbits =
N∑

i=1

[ri + 7 log ui + log N ] (8)

Finally we need L(S|G) = Sbits + Rbits bits to encode
the event series, given the current grammar G.

A similar scheme is adopted to encode each event rule.
Finally, L(G) is the sum of the number of bits required to
encode each event rule.

6. Experimental results

A crossroad scene shown in Figure 1 was chosen to val-
idate our methods. A continuous vehicle trajectory series
with the size of 2499 was obtained in a rush hour. The total
time length was 90 minutes which included 45 traffic sig-
nal cycles. After trajectory segmentation, 4455 trajectory
segments were obtained to form Dataset 1. 20 primitive
events were acquired by the techniques presented in sec-
tion 4, which have been shown in Figure 2. The following
experiments verified the effectiveness of the proposed rule
induction algorithm. We realized tests on a PC with WinXP,
VC++6.0, P4 3.0GHz, 512M RAM.

6.1. Rule induction with original data

We performed the rule induction algorithm with differ-
ent size of the events series in Dataset 1. In the experiments
the beam width was set to 3, and the thresholds of attribute
constraints were tuned by trial and error. For each event
rule obtained in the final rule set, we examined whether the
structure and attributes were reasonable or not manually,
thereby its semantic meaning could be assessed. To draw
a comparison, the experiments were also carried out with
the original algorithm without any constraints. The number
of meaningful rules and meaningless rules in these exper-
iments are recorded in Table 1. Shown in this table, the
proposed algorithm produces more meaningful rules effec-
tively due to the attribute constraints, in contrast the result

Table 1. The number of rules with semantic meaning (Num1)
and meaningless rules (Num2) in the final rule set. Avg. =

Num1
(Num1+Num2)

that indicates the effectiveness of an algorithm.

Series Original Alg. Proposed Alg.
Length Num 1 Num 2 Num 1 Num2
1000 1 20 33 10
2000 2 20 34 10
3000 2 23 35 11
4000 2 23 34 10
Avg. 7.53% 76.8%

of original algorithm is poor. That is because the algorithm
will prefer overgeneralization if no constraint is imposed on
merge operator, which leads to the confusion of different
semantic events.

Several main traffic events in the crossroad are obtained
successfully by the proposed algorithm, which includes “Go
straight over the crossroad in the main road”, “Turn left
from the main road to the side road” and “Turn left from
the side road to the main road”. Figure 4 shows these event
rules and the corresponding semantic meanings. As shown
in Figure 4, not only are the single agent events represented
correctly, but also the recursive rules are generated success-
fully which describe the continuous passing event in a green
light period.
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Figure 4. The time cost of (a) the algorithm without any constraints
and (b) the proposed algorithm with frequency and attribute con-
straints.

The comparison result of time cost in the above experi-
ments is presented in Figure 5. We find the time costs of the
original algorithm and the proposed algorithm are all close
to a liner function of the size of event series. However the
time cost of the original algorithm is much huger than the
proposed algorithm due to the redundant rule candidates.



Semantics
S R P

 A[3.21] -> c13[3.21]

 A[2.34] -> c9[2.34]

 B[4.66] -> A[2.33] c5[2.29]

 B[5.27] -> A[3.20] c4[2.05]

 B[5.47] -> A[3.41] c6[2.01]

 C[10.49] -> B[5.13] B[5.21]

 C -> C  C[9.51]

 E[ ] -> D[ ] D ]

 E[ -> E[  E[ ]

 F[ ] -> c15[ ]

 F ] -> c11[ ]

 G[4.32] -> F[3.16] c18[1.12]

 G[4.41] -> F[3.18] c17[1.19]

 H[4.91] ->c14[3.81] c16[1.1]

 H[6.53] -> c3[2.22] G[4.28]

 H[6.44] -> I[5.18] c17[1.22]

 H[6.77] -> c2[1.85] H[4.88]

 J[12.99] -> H[6.43] H[6.75]

 J[20.3] -> J[12.82] J[15.41]

 I[5.20] -> c1[2.23] F[2.94]

 K[7.82] -> c8[4.92] c5[2.86]

 K[6.91] -> c8[4.12] c4[2.73]

 L[14.12] -> K[6.89] K[7.04]

-

-
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 D ->c19[ ] c10[ ]

 L[29.12] -> L[13.89] L[14.3] b 0.387

Figure 5. Main meaningful rules obtained by the proposed al-
gorithm in Dataset1. Abbreviations in R: b=before, m=meet,
o=overlap. The capital letter denotes the inducted composite
event. c i, i ∈ {1, 2, ...20} is the primitive event that has pre-
sented in Figure 2. The numeric value in the bracket of every
event symbol is the temporal duration attribute. The spatial range
attribute is not shown in this figure, due to the space limitation.

6.2. Rule induction with manual intervention

In the above experiments, we have demonstrated the per-
formance of the proposed methods. However we find the
traffic light rules in the whole scene still can not be repre-
sented correctly, which can be described as: “In one traffic
cycle, first is go straight in the main road, then turn left from
the main road to the side road, finally turn left from the side
road to the main road.” The main reason is there are too
many irrelevant trajectories existing in the dataset, which
are unrelated to the traffic light rules at all. These trajec-
tories mainly include “Turn right from the side road to the
main road (c7 in the Figure 2)” and “Turn left between the
left side and the right side of main road (c12, c20 in the Fig-
ure 2)”. Their combinations with other relevant events are
to form meaningless rules that may disturb the subsequent
induction process. And there are not clear spatial and tem-
poral constraints for their occurrences, therefore the simple
attribute constraints are invalid to remove their distortions.

To further illustrate the effectiveness of our algorithm,
we manually removed these unrelated trajectories (c7, c12
and c20) from Dataset 1, and tested the proposed algorithm
in the new dataset (Dataset 2). Dataset 2 consists of 3478
trajectory segments. The experimental results show the traf-
fic light rules are represented correctly in the final rule set by
the proposed algorithm. Figure 6 shows a recovered struc-
ture in a traffic signal cycle. “P ” means the traffic cycle
event. “M” denotes “Go straight in the main road with two
directions”. “N” is the alternate event between event“Turn
left from the main road to the side road”and event “Turn left
from the side road to the main road”. The “before”,“equal”,
etc. indicate the temporal relations between the two sub-
events. The meanings of other symbols can be found in
Figure 2 and Figure 4.

7. Conclusion

We have presented a generic framework to learn the
event rules based on trajectory series analysis. Compared
with previous grammar rule based work on event recogni-
tion, our work focuses on learning the event rules automat-
ically. First a set of primitive events are obtained by tra-
jectory segment clustering. Then a MDL based grammar
induction algorithm with frequency and attribute constraint
is adopted to obtain a set of event rules. Experiments in
surveillance scene have demonstrated that the proposed al-
gorithm is effective and efficient to generate the meaningful
event rules. Although the proposed algorithm may be dis-
turbed by some unrelated trajectories, the problem can be
solved with a little manual intervention. Compared with
previous work, our methods can result in huge manual cost
savings.

In this work, only some simple attribute constraints are
adopted to filter out the redundant rule candidates. In the
future, we plan to take some cognitive knowledge into ac-
count. Also, the insertion and deletion errors in event series
should be handled.
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