
Efficient new-view synthesis using pairwise dictionary priors

O. J. Woodford I. D. Reid
Department of Engineering Science,

University of Oxford

A. W. Fitzgibbon
Microsoft Research,

Cambridge, U.K.

Abstract

New-view synthesis (NVS) using texture priors (as op-
posed to surface-smoothness priors) can yield high quality
results, but the standard formulation is in terms of large-
clique Markov Random Fields (MRFs). Only local opti-
mization methods such as iterated conditional modes, which
are prone to fall into local minima close to the initial esti-
mate, are practical for solving these problems.

In this paper we replace the large-clique energies with
pairwise potentials, by restricting the patch dictionary for
each clique to image regions suitable for that clique. This
enables for the first time the use of a global optimization
method, such as tree-reweighted message passing, to solve
the NVS problem with image-based priors.

We employ a robust, truncated quadratic kernel to re-
ject outliers caused by occlusions, specularities and moving
objects, within our global optimization. Because the MRF
optimization is thus fast, computing the unary potentials be-
comes the new performance bottleneck. An additional con-
tribution of this paper is a novel, fast method for enumer-
ating color modes of the per-pixel unary potentials, despite
the non-convex nature of our robust kernel. We compare the
results of our technique with other rendering methods, and
discuss the relative merits and flaws of regularizing color,
and of local versus global dictionaries.

1. Introduction
The new-view synthesis (NVS) problem is this: given

a set of images I1 to In of a 3D scene, compute the im-
age V which would be obtained by placing the camera at
a given new viewpoint that is not in the original set. It is
a poorly constrained inverse problem and therefore effec-
tive priors are important if a good solution is to be obtained.
The priors considered in this paper will all be defined in
terms of energy functions applied to overlapping windows,
or patches, in V . The parameter which most strongly con-
trols the tractability of these problems is the size of these
patches (the order of the prior). Historically, there has
been a tradeoff in the selection of priors: high order pri-
ors can model the complex structures of the natural world

(a) (b) (c) (d)
Figure 1. New view synthesis. (a) A synthesized, maximum-
likelihood view, showing a large region of error. (b) Best re-
sult with high-order cliques [6], which uses discriminative, 5 × 5
patches, but with obligatory local optimization. While the opti-
mum solution to this problem may well fix the errors, the opti-
mizer cannot reach it, given (a) as start position. (c) Using 2 × 1
cliques with a sequence-specific, global dictionary. While a strong
optimum to this problem can be found, the regularizer is not dis-
criminative enough to correct the error. (d) Using 2 × 1 cliques
with a local dictionary. The regularizer provides powerful discrim-
ination, while enabling the optimizer to find a strong minimum.

(hair, trees, etc.) but tend to result in very difficult infer-
ence problems [6, 14]; while tractable (low order) priors can
model only simple scene classes such as piecewise smooth
shapes [11, 10]. The contribution of this paper is to exploit
the structure of the NVS problem to represent natural scenes
using tractable priors.

This is not to say that good results cannot currently be
obtained for NVS, under appropriate conditions. In stereo
reconstruction for example, the assumption of piecewise
smooth scene geometry can be expressed in an energy min-
imization framework which encodes the constraint that the
depths of neighboring pixels in the solution should be sim-
ilar, so the prior is of order 2. Depending on the precise
form of the prior, a global optimum (or strong local opti-
mum) of the energy can be computed efficiently using pow-
erful inference algorithms1 such as tree-reweighted mes-
sage passing [10] and graph cuts [1, 11]. When the piece-
wise smoothness assumption is approximately valid for the
scene, these solutions yield high-quality synthesized views.
However, as can be seen in figure 5, these methods produce
unrealistic, blocky artifacts when applied to natural scenes.

1Throughout the paper we shall use the term “global optimizer” to refer
to algorithms of this type, which, although not necessarily guaranteed to
find global optima, find strong optima in practise
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It is possible to encode natural-world priors using patch
dictionaries, which give excellent results for tasks such as
constrained texture synthesis [12], inpainting [5] and new-
view synthesis [6]. However, energy minimization under
these priors does not allow the use of global optimizers,
so techniques such as iterated conditional modes (ICM) or
simulated annealing must be used, with the associated poor
tolerance to local minima or high computational cost re-
spectively. The computational burden can be reduced by
improving patch lookup [13, 18], but this does not fix the
convergence problem. Criminisi et al. [3] use much smaller,
local patch dictionaries (by restricting patch search to be
near epipolar lines), which allows real-time computation of
the prior, but again rely on ICM to impose the prior. Roth
and Black’s “fields of experts” framework [14] replaces dic-
tionary lookup with a continuous, filter-based prior, so that
ICM may be replaced by gradient descent. In all cases,
however, the dependence on local optimization remains, as
does the concomitant requirement that the initial estimate
of the solution be close to a good optimum. Woodford et
al. [19] showed that simulated annealing does little to im-
prove matters—if ICM converges to a poor solution, this
typically means that large coherent search steps must be
made to reach another optimum, and simulated annealing
has a vanishingly small likelihood of making those steps.

As noted above, priors such as piecewise smoothness in
depth can be defined as the sum of energies defined on 2-
pixel patches, which enables very efficient inference. Priors
over intensity rather than depth images, however, do not ad-
mit such a compact definition. From studies of the statistics
of natural scenes [9, 15] the distribution of 2-pixel intensity
patches is known to be well modeled by a t-distribution.
When converted to a prior, this ultimately means that the
most correct possible second order prior for natural inten-
sity images is simply piecewise constant color—a poor reg-
ularizer for textured natural scenes. This means that to
model general natural scenes we must go to larger patch
sizes and hence to intractable inference.

In new-view synthesis, however, the prior need not
model all natural scenes; rather it should bias the output
view to look like the input sequence. Thus one might try to
learn a second order prior just over the input images. Fig-
ure 2 shows that this restriction is still equivalent to impos-
ing piecewise smoothness, and we shall see that it fails to
give a sufficiently powerful prior. However, narrowing the
training samples further, to small regions of the input se-
quence, does usefully regularize the problem. We compare
the new local prior to previous approaches on some image
sequences containing complex geometry, and show that it
achieves better solutions in considerably less time than pre-
vious methods.

The main contribution of this paper then is to show how
patch priors on NVS can be reduced to pairwise priors,

which allows for global inference. We argue that this is
the first such reduction: although patch-based methods have
previously been expressed using pairwise energies [4, 7],
this is only for special problems in which the patches over-
lap only in pairs. This is because the number of unary
terms is smaller than the number of output pixels: in super-
resolution [7], the number of unary terms is equal to the
number of low-resolution input pixels; in texture quilt-
ing [4] the unary terms exist only at the boundaries of the
region to be painted. In the NVS problem, there must be
one patch per output pixel, with dense overlap. Reducing
the overlap would require using a larger patch size when
computing photoconsistency, which would further require
the assumption of piecewise smooth scene geometry.

In overview, our algorithm has two main steps: 1. the
continuous problem of determining color at every output
pixel is converted to a discrete problem by computing a
small number of modes of the photoconsistency likelihood
at every pixel. 2. One of these modes is selected at every
pixel in order to maximize a combination of photoconsis-
tency with the prior term, which prefers that patches of the
output image look like patches from the input sequence.
These steps are discussed in §3 and §4, after which §5 de-
scribes experimental comparisons of the new method with
the state of the art.

2. Notation
The new view V is a set of pixel colors {V (i)}M

i=1, de-
fined in some appropriate color space, say R3. Pixels are
indexed by integers, in raster-scan order. A neighborhood,
or clique, is a set of indices. For example, for a W ×H im-
age, the 4-connected neighbors of a non-boundary pixel i
are the set N = {i −W, i − 1, i + 1, i + W}. The set of
neighboring colors may then be written V (N). A neighbor-
hood system is a set of neighborhoods, {Nj}N

j=1 where N is
the total number of neighborhoods in the image. We shall
use a variety of neighborhood systems:

• The patch neighborhood is denoted Pj , which for con-
creteness we shall say is a set containing the indices of
pixels in the 5 × 5 window centered at pixel j. Again
V (Pj) is the patch viewed as a 5 × 5 image. Ignoring
boundary effects, N = M , i.e. the number of cliques
is the number of pixels.

• The 4-connected neighbor system is the set {C4j}2M
j=1,

with two cliques per pixel, again ignoring bound-
ary bookkeeping, which might comprise the “north”
cliques {i, i−W} and the “east” cliques {i, i+ 1}.

• The 8-connected neighbor system is the set {C8j}4M
j=1,

with four cliques per pixel which add to those of the 4-
connected system the “north-east” clique {i, i−W+1}
and the “south-east” clique {i, i+W + 1}.



(a) (b) (c)
Figure 2. Pairwise color priors. (a) Part of an image from the
“Edmontosaurus” sequence. (b) Pairwise, negative log histograms
of all 2x1 patches [I(i), I(i+1)] in the input sequence, where I is
(top to bottom respectively) the red, green and blue channel of the
input patches. The dominant diagonals show that the global prior
derived from the image sequence is still non-specific, effectively
imposing the piecewise smoothness constraint that I(i) ≈ I(i +
1). (c) Binary histograms for the red, green and blue channel of
horizontal 2x1 patches in the local dictionary generated for the
pixel highlighted in (a). We show that local pairwise priors are
more specific, producing better results.

We shall also consider the depth map Z , where z(i) is
the depth of the scene at pixel i. We cast the problem in the
framework of energy minimization, so the goal is to find
the X (either V or Z or both) which minimizes an energy
function

E(X|φ1..M , ψ1..N ) =
∑

i

φi[X(i)]︸ ︷︷ ︸
unary energy

+
∑

j

ψj [X(Nj)]︸ ︷︷ ︸
prior (or clique) energy

(1)
where the functions φi and ψj can be computed as a func-
tion of the input data. In [6] for example, φi : R3 → R+ is
a measure of photoconsistency, and ψj : R5×5×3 → R+

gives the squared distance of the patch X = V (Pj) to
the closest patch in a dictionary T of exemplar patches,
ψ(X) = minT∈T ‖T − X‖2. Note that in this case φ
varies with i, while ψ is independent of j. As another ex-
ample, piecewise smooth regularization of depth has a simi-
lar unary term, but the neighborhood system is 4-connected
(Nj = C4j), and the prior term takes the form ψ({z, z′}) =
%(|z − z′|) where %(·) is a robust kernel, for example the
truncated quadratic %(t) = min(t2, 1).

As discussed above, clique size is the parameter which
has most effect on tractability of the minimization, but a
second important factor is the discretization of V . Although
the above energies are written in terms of continuous vari-
ables, V and z, efficient optimization under arbitrary priors
is possible only for discrete variables. To directly discretize
V space—about 107 values for 8-bit RGB images—would
be impractical. Our approach is to maintain a small set of

potential colors at each pixel (see §3.1). This set is com-
puted offline, so the minimization, rather than being over V ,
is over a label image L, with the energies φ and ψ being
redefined with appropriate bookkeeping.

3. Unary energy: photoconsistency
We begin by defining the unary energy φ which mea-

sures photoconsistency at every pixel. We use the following
photoconsistency term, from [6]:

Ephoto(V (i), z(i)) =
n∑

k=1

ρ(‖Ci(k, z(i))− V (i)‖) (2)

where Ci(k, z) is the color (bilinearly interpolated) of the
pixel in image Ik corresponding to pixel i in V at depth z,
where depth is measured in the coordinate system of im-
age V . We assume that all camera projection matrices are
known and that the reader is familiar with the projection of
points between views [8]. The robust kernel ρ(·) will gen-
erally be the truncated quadratic model

ρ(x) = min(x2, τ2) (3)

where τ is a tuning parameter of the algorithm. This model
assumes that pixels are generated either using an inlier pro-
cess, whereby the input image samples are normally dis-
tributed, noisy measurements of some true color, or an out-
lier process, which models all other samples. It is similar to
the generative model based approach of Strecha et al. [16].

For pure new-view synthesis, we are interested only in
the color at each pixel, in which case Ephoto is a function
only of V (i). Conversely, when doing multi-view recon-
struction of depth, it is a function only of z. Therefore we
define two “overloads” of Ephoto for these cases:

Ephoto(V (i)) = min
zmin<z<zmax

Ephoto(V (i), z) (4)

Ephoto(z(i)) = min
V ∈R3

Ephoto(V, z(i)) (5)

where zmin and zmax represents a bounding volume in the
scene, determined during the camera calibration stage.

3.1. Discretization

As noted above, both color V and depth z are naturally
continuous variables, which must be discretized for efficient
optimization. We discretize z into a range of 50 to 100 steps
between zmin and zmax, spaced so that steps of one quantum
in z correspond to steps of at most one pixel in the input im-
ages. Thus, z in the following may be considered an integer
index.

Following [6] we enumerate the local minima of
Ephoto(V ) at each pixel, typically around five to twenty col-
ors. We refer to these minima as modes, i.e. maxima of the
pseudo-likelihood p(V ) = exp(−Ephoto(V )).



Fitzgibbon et al. [6] propose a gradient descent method
for finding the modes. However, this method is not only
slow (they quote a time of 0.1 seconds per pixel) but we
have found it to fail occasionally in finding all modes. In-
stead, we propose a simple, deterministic method for find-
ing color modes over all depths, given color modes at a par-
ticular depth (addressed in §3.2). Let us, writing V for V (i),
define V ′ as a mode of Ephoto(V ). The requirement of our
modes is

Ephoto(V ′) < Ephoto(V ′ + δV ) (6)

for all sufficiently small δV ∈ R3. From equation 2 it is
possible to define the depth at which the mode V ′ can be
found thus

z′ = argmin
zmin<z<zmax

Ephoto(V ′, z) (7)

Consider that if

Ephoto(V ′, z′) ≥ Ephoto(V ′ + δV, z′), (8)

then equation 6 cannot be true. As a result, it can be seen
that a color mode over all depths has the following proper-
ties: a) it must necessarily be a color mode of the depth
z′, and b) the depth z′ must also be the depth at which
Ephoto(V ′, z) is lowest. A deterministic method of finding
color modes is therefore:

1. For each z(i), enumerate all minima ofEphoto(V, z(i)).

2. For each such minimum, denoted (Vmin, z(i)), reject it
as a mode if Ephoto(Vmin, z(i)) > minz Ephoto(Vmin, z).

3.2. Enumerating color modes

The problem of enumerating all minima of Ephoto(V, z)
at a given pixel i and depth z depends on the form of the
robust kernel ρ. For example, a quadratic kernel is trivially
shown to have a single mode: the mean. This closed form
computation means that modes over color for this kernel can
be computed quickly and reliably using the algorithm of the
previous section. Indeed, the reliability of our method in
finding modes over color depends only on the ability to find
them at each depth. It is therefore generally optimal for
all convex kernels (e.g. quadratic, absolute, Huber), which
produce a single mode at each depth, as those modes can
always be computed using a standard non-linear optimizer.

Our robust kernel is a truncated quadratic (which is not
convex), a mode of which can be shown to be the mean of
inlier samples. We therefore use a mean shift algorithm [2]
to find these modes. Starting with an initial estimate V0, we
iterate the following update function:

Vt+1 =
∑n

k=1 Ci(k, z)g(‖Ci(k, z)− Vt‖2)∑n
k=1 g(‖Ci(k, z)− Vt‖2)

(9)

g(x) =

{
1 if x < τ2,

0 otherwise
(10)

is min
T∈Tj

T−X2 where Tj =

Prior on patchX =

V (i) V (i + 1)

V (i) V (i + 1)

V (i +
W )

V (i +
W + 1)

Figure 3. Local patch dictionary. The prior on the 2-pixel clique
N = {i, i + 1} is defined using the local patch dictionary TN.
The set of patches making up the dictionary described in §4.1, for
D = 3, is the set of all 1 × 2 patches in the unshaded regions of
the images. The set of patches in the dictionary described in §4.2
is given by the reprojected patches, represented by the red outlines
and sampled at each of the green pairs of points, which lie on the
epipolar lines corresponding to pixels i and i + 1.

The algorithm, which stops when Vt+1 = Vt, is guaran-
teed to converge on a mode. As our aim is to reduce the
number of labels we must choose from at each pixel, we
reject any color modes which have only one inlier (i.e.∑n

k=1 g(‖Ci(k, z) − V ‖2) = 1), as these may be many,
and exhibit no consistency between input images. While
this may result in the rejection of the correct color, this only
occurs when it is visible in only one view, which is rarely
the case.

Given that we are trying to find modes for which∑n
k=1 g(‖Ci(k, z)−V ‖2) ≥ 2, we initialize our mean shift

algorithm at the following points:

V0 =
Ci(k, z) + Ci(j, z)

2
(11)

for all k, j ∈ {1, .., n} for which k 6= j and

‖Ci(k, z)−Ci(j, z)‖2 < (2τ)2 (12)

Using these starting positions does not guarantee that all
minima will be located but in practice performs well and is
efficient to compute.

After the above procedure, we have a list of modes at
each pixel, denoted

Modes(i) = {V (i,m)}Nmodesi
m=1 (13)

so that the optimization problem is to choose a label l(i) at
every pixel to minimize equation 1. The unary energy then
takes the form

φi[label] = Ephoto(V (i, label)). (14)



We now proceed to define the clique energy which imposes
the prior.

4. Clique energy: texture prior
Our proposed algorithm uses the same non-parametric,

nearest-neighbor patch-lookup regularizer as [6], but with
a local patch dictionary for each clique, as introduced in
[3], and with a change of clique size, from 5 × 5 to 2 × 1.
For clique j containing the two pixels, s and t, our clique
potential can therefore be expressed as:

Etexture(V (s), V (t)) = min
T∈Tj

‖T− [V (s), V (t)]‖2 (15)

The patch dictionary for this specific clique, Tj , is obtained
in two ways, which we call “local patch dictionary” and
“local projected patch dictionary”, obtained as follows.

4.1. Local patch dictionary

The formation of the local patch dictionary is illustrated
in figure 3. With every pixel in the output view is associ-
ated an epipolar line segment in each input view. If clique j
contains pixels s and t, then we create the dictionary from
all 2-pixel patches in the input sequence which are within
a threshold distance D of any of the epipolar lines associ-
ated with pixels s and t. Typical settings for D range from
zero—meaning that only patches which intersect an epipo-
lar line are included—to 3 pixels.

4.2. Local projected patch dictionary

The above strategy implicitly assumes that the new view
and the input images are of the same scale and orientation.
Another way to generate the patch prior is to use corre-
sponding samples on the epipolar lines—the patch {s, t}
is assumed to be fronto-parallel, and projected into all the
input images at all depths. The input images are sampled
at each of these sets of points (in fact, the samples are the
same as those in Cs and Ct), to make the patch dictionary,
thus

Tj = {[Cs(k, z) Ct(k, z)] ∀k, z} (16)

At first sight, this texture dictionary might simply appear
to encode the prior that 2-pixel cliques are fronto-parallel in
the new view. However, at occlusion boundaries, the single-
pixel modes (the minima of the unary energy) are not cor-
rupted by sampling from either side of the boundary, and the
dictionary will include M examples of the transition across
that boundary, permitting the correct reconstruction. In tex-
tured areas, the dictionary includes several samples from
the texture at a variety of offsets, so that the dictionary per-
forms just as hoped, encouraging the reconstructed view to
have the same texture as the input. In textureless areas the
dictionary will encourage piecewise smoothness, which is

consistent in the absence of any image information to the
contrary.

Note also that projection of the patch [Cs(k, z) Ct(k, z)]
into input view k is an explicit imposition of the assumption
that the patch is fronto-parallel in V . Traditionally, stereo
methods have simply taken a window around the reprojec-
tion of the patch’s center pixel. When the images in ques-
tion are rectified, this amounts to the same thing; however,
when they are not, the full reprojection is required to en-
force the assumption that the patch is fronto-parallel.

4.3. Summary

In terms of the label map, where conversion from label
to color is given by equation 13, the prior term in the MRF
is then as follows: for clique j, with the neighborhood Nj =
{s, t}, we have

ψj [L(Nj)] = ψj [{ls, lt}] = Etexture(V (s, ls), V (t, lt)).
(17)

Combining the two terms, we have the following energy
which must be minimized over the unknown labels l(i):

E(L) =
∑

i

φi(l(i)) + λ
∑

j

ψj [L(Nj)] (18)

where λ is a tuning parameter of the algorithm which con-
trols the influence of the prior on the final solution. We
reiterate that j indexes cliques, and that Etexture for clique j
uses a local patch dictionary Tj .

5. Experiments

We tested the new algorithm on three freely available
test sequences: “Monkey”, “Plant & Toy” and “Edmon-
tosaurus”. We do a leave-one-out test, where one view is
selected to be synthesized using the 8 input images whose
camera centers are closest to that of the novel view. By
comparing the rendered view to the original we can obtain
ground-truth comparisons.

Color modes are precomputed, requiring about 7 min-
utes for a 640×480 output image, and a further 7 minutes
to compute all possible cliques. In all our experiments we
set the threshold τ on the robust kernel ρ to 50, and the
prior influence parameter λ to 1, unless otherwise stated.
The energy is minimized using a publicly available imple-
mentation2 of the TRW algorithm [10]. Note that the pair-
wise energies ψj are different for every clique meaning that
memory requirements are relatively high (approximately
800 bytes per pixel), but fit within 1GB of main memory.
Though TRW does not guarantee to find the global min-
imum, it provides a lower bound on the energy, allowing

2TRW-S: http://www.adastral.ucl.ac.uk/∼vladkolm/papers/TRW-S.html



us to estimate how close our solution is to the global min-
imum. In our experiments we found our solutions ranged
from being within 0.01% to 2% of the lower bounds.
In our experiments we compared several algorithms:

“ML”, No prior: equivalent to setting λ = 0.
“Depth”, Piecewise smooth depth prior, 4-connected:

Patch neighborhood system C4j . Optimization
over discrete depths z with unary cost (5), and
prior ψj [{zs, zt}] = max(α|1/zs − 1/zt|, 1),
where α is scene dependent, λ = 700. This is
optimized using alpha-expansion graph cut [1].

“5x5”, Large-clique prior, global dictionary [6]: Patch
neighborhood system Pj . Texture dictionary Tj

equal to the global dictionary T, i.e. the set of all
5× 5 patches in the input sequence. This is opti-
mized using an approximation of ICM.

“5x5Local”, Large-clique prior, local dictionary [3]:
as 5x5, but the dictionary is obtained as described
in §4.1.

“2Global”, Small-clique prior, global dictionary, 4-
connected: Patch neighborhood system C4j . Tex-
ture dictionary Tj equal to a global dictionary T,
which in this case comprises all 2-pixel patches in
the input sequence. This is optimized using TRW.

“2GMM”, Small-clique prior, global GMM, 4-conn-
ected: Patch neighborhood system C4j . Tex-
ture energy is computed using a Gaussian mix-
ture model (GMM) with full covariance matrices
in 6D trained, using freely available software3, on
all 2-pixel patches in the input sequence. The
number of Gaussians used was typically 8–10.
This is optimized using TRW with λ = 10 and,
having learnt the GMM, is orders of magnitude
faster than the global dictionary version above.

“2Local4”, Small-clique prior, local dictionary, 4-
connected: Patch neighborhood system C4j . Tex-
ture dictionary Tj restricted to epipolar lines as
defined above (§4.2). This is optimized using
TRW.

“2Local8”, Small-clique prior, local dictionary, 8-
connected: as 2Local4, but with neighborhood
system C8j .

For the small cliques there are two patch orientations in
C4j and four in C8j . Separate libraries are constructed for
each patch orientation and used as appropriate.

The two success metrics in which we are interested are
speed and accuracy. Figure 4 provides a summary of the
speed results on the “Edmontosaurus” and “Plant & Toy”
sequences. The fastest techniques are “ML” and “Depth”,
followed by “2GMM” and “2Local8”, which are about five
times slower. An order of magnitude slower again is “5x5”,

3Netlab: http://www.ncrg.aston.ac.uk/netlab/

with the global patch dictionary, “2Global”, a further two
orders of magnitude slower.

More important, however, is the quality of the results,
also summarized in figure 4. Three evaluation metrics are
useful: RMS pixel difference from ground truth, number
of pixels with gross errors, and a visual assessment. The
quantitative measures tend to favor the “Depth”, “2Global”,
“2Local4” and “2Local8” techniques, though percentage
pixel errors alone ranks “2Local8” less highly, due to the
larger area of blue feather replaced with background tex-
ture. A qualitative inspection of the images reveals that the
“2Global” method fails to recover from the gross region er-
ror in the “Edmontosaurus” new view, leaving only “Depth”
as a suitable competitor to the “2Local*” methods.

Figure 5 demonstrates the relative benefits of “2Local8”
over “Depth”. The surface-smoothness regularizer does not
perform well around fine features such as fur, or at depth
discontinuities where the background is faintly textured,
while the texture regularizer behaves correctly in these cir-
cumstances.

6. Discussion
We have investigated the use of small cliques in an

image-based prior for the new view synthesis problem.
Finding an effective small-clique formulation is of inter-
est, because it allows the use of global optimizers. The
advantages are twofold. First, there is a speed advantage
to solving this class of problem—once all possible clique
potentials have been precomputed, the optimizer can find a
strong minimum relatively quickly. More importantly, how-
ever, global optimizers are able to correct large regions of
error in a maximum-likelihood image.

We have shown that regularization is improved by re-
stricting the training data for the prior to local regions
within the sequence. This improves the results and confers
a further, considerable speed advantage. Bringing image-
based priors for the first time into competition with pair-
wise depth priors, it is instructive to compare the two on
this problem. We show that the piecewise-smooth-world
assumption inherent in pairwise depth priors generates arti-
facts when presented with complex natural structures. Be-
cause the depth priors must be image-independent (there’s
no way to learn them from the input sequence), they must
of necessity be generic smoothing priors, even if trained
on databases of natural scenes, just as generic image pri-
ors must. Therefore the second advantage of image-based
priors is reinforced: they can be conditioned on the input
data, so that regularization is tuned to the task at hand.

It would be interesting to see if depth priors can be made
conditional on the sequence characteristics (rather than, say,
conditional on the image gradient), but this is beyond the
scope of this work.

The local dictionary may also be seen as locally learning
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MRF clique potentials. To do so at every pixel using con-
ventional methods would not be computationally feasible,
nor would there be enough training data. Effectively we
replace this learning with a nearest-neighbor lookup, and
it appears that this implicitly avoids the over-counting that
pairwise learning normally entails [17].

Of course, it would be useful to incorporate both depth
and texture priors, but a difficulty with our current approach
is memory use. We must have a separate Ls ×Lt edge cost
matrix for each clique {s, t}, where Li is the number of la-
bels at node i, but in order for these matrices to fit in mem-
ory each edge can have of the order of only 100 label combi-
nations. This provides the potential for a few color modes at
each pixel, but not enough for modes spaced densely over
depth (required for regularization of depth). This means,
due to the computational expense required by a global opti-
mizer, we can only regularize over either depth or color, but
currently not both.

It is important to recognize that restricting the possible
colors in this way can lead to the correct color for some
pixels being omitted, through either the color being visi-
ble in only one input view, the color not being a mode,
or the method of §3.2 failing to find the mode. However,
these situations are generally rare. A further shortcoming
of our approach is that it can lead to temporal flickering in
synthesized video sequences, as pixels can switch between
similarly plausible, but very different, color modes between
frames with impunity. This suggests the need for a prior on
the temporal, as well as spatial, texture domain.

6.1. Conclusion

In this work we have demonstrated that powerful infer-
ence techniques are necessary to fix large areas of error in
the maximum-likelihood solution to the NVS problem. The
fact that these techniques can, in practise, only be applied to
2-pixel patches poses a problem, as such small cliques tend
to lack the discriminative power required for regularizing
texture. We have shown how to construct a clique-specific
patch dictionary that can be used to overcome this problem,
providing cutting-edge image quality at a practical render-
ing speed. In addition, we have introduced a fast algorithm
for enumerating color modes of Ephoto, even using the non-
convex, truncated quadratic kernel.
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