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Abstract

Recent work in matting, hole filling, and compositing al-
lows image elements to be mixed in a new composite image.
Previous algorithms for matting foreground elements have
assumed that the new background for compositing is un-
known. We show that, if the new background is known, the
matting algorithm has more freedom to create a successful
matte by simultaneously optimizing the matting and com-
positing operations.

We propose a new algorithm, that integrates matting and
compositing into a single optimization process. The system
is able to compose foreground elements onto a new back-
ground more efficiently and with less artifacts compared
with previous approaches. In our examples, we show how
one can enlarge the foreground while maintaining the wide
angle view of the background. We also demonstrate com-
posing a foreground element on top of similar backgrounds
to help remove unwanted portions of the background or to
re-scale or re-arrange the composite. We compare and con-
trast our method with a number of previous matting and
compositing systems.

1. Introduction
Image matting refers to the problem of estimating an

opacity (alpha value) and a foreground color for the fore-
ground element at each pixel in the image. Although the
main purpose of matting is to re-compose the foreground
onto a new background, previous matting approaches treat
matting and compositing as separate tasks by assuming the
new background is unknown. We show that, by combining
matting and compositing into a single optimization process,
the matting algorithm can be more robust and efficient to
create a successful composite. We dub this new matting al-
gorithm compositional matting.

Besides composing the foreground onto a new back-
ground as shown in Figure 5, we also explore the advan-
tages of the proposed algorithm for re-organizing and re-
composing elements within a single image. A common

photograph we have all seen contains a person standing in
front a beautiful outdoor scene. Although the background
is nicely framed, the foreground person often looks quite
small since the focal length of the camera was set to capture
the wide angle scene. This problem becomes more obvi-
ous as the image is resized to standard snapshot size or is
displayed on a small mobile device, as the foreground char-
acter may shrink to the point of being unrecognizable. One
could crop the foreground from the original image, however
the composite becomes less interesting by losing the back-
ground scene.

Based on the compositional matting algorithm we allow
the user to set different display ratios for foreground and
background objects. As shown in Figure 4, the user roughly
indicates the foreground by a few paint strokes, and our sys-
tem is able to generate a novel version of the photograph
where the foreground is enlarged while the background re-
mains as is.

2. Related Work
2.1. Foreground Segmentation

Many systems have been developed to accurately iden-
tify the foreground regions with minimal user guidance. In-
telligent paint [10] and the object-based image editing sys-
tem [2] first oversegment the image and then let the user
select the regions that form the foreground object. LazyS-
napping [7] and GrabCut [11] systems provide interactive
graph-cut-based segmentation solutions. The GrowCut sys-
tem [14] employs cellular automation for interactive fore-
ground extraction. In these systems users coarsely indicate
foreground and background regions with a few paint strokes
of the mouse and the system tries to determine the ideal
boundary for segmenting the foreground.

2.2. Foreground Matting

Pixels on the edge of a foreground object usually contain
some percentage of the background. These “mixed pixels”
can create visual seams when composed onto a new back-
ground. Seamlessly composing a foreground object onto
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a new background requires estimating an opacity (alpha)
value for each pixel as well as the foreground color. Ru-
zon and Tomasi [12] show how to estimate the alpha matte
and foreground color using statistical methods. Chuang et
al. [3] extend this approach by employing Bayesian frame-
work for alpha estimation in both images and video. The
Poisson matting approach [13] solves Poisson equations for
matte estimation, under the assumption that the foreground
and background colors are distinct and smooth.

Recently, the problem of foreground segmentation and
matting is combined together in the Belief Propagation mat-
ting system[15], where an iterative optimization process is
employed for estimating foreground matte from sparse user
input such as a few scribbles. This quickly becomes a new
trend in matting research and some new systems, such as
the easy matting [4] and the closed-form matting system[6],
have been proposed to achieve more robust and accurate
matting results with sparse user inputs.

2.3. Image Compositing

Since our system composes the foreground object in a
source image onto a new background image, it belongs to
the general framework of “photomontage”. Agarwala et al.
have proposed an interactive framework [1] for this task by
using graph-cut optimization. However, their system only
generates hard segmentation of source images thus is not
capable of handling partial foreground coverage. The Pois-
son image editing system [9] uses generic interpolation ma-
chinery based on solving Poisson equations for composing
a foreground region onto a destination region. It works well
when the destination region has a relatively simple gradient
field, but is insufficient to handle highly textured regions
which are common in many images and in our examples.
Recently proposed “Drag-and-Drop Pasting” system[5] im-
proves Poisson image editing by finding optimal bound-
ary conditions, however the system will always change the
color of the entire foreground to blend it into the new back-
ground, which is often undesirable when the foreground and
background have a significant gap in depth.

In contrast, our system seamlessly composes foreground
and background images by estimating a matte for the fore-
ground region. The matte is optimized in a sense that it will
minimize the visual artifacts on the result image, although
it may not be the true matte for the foreground.

2.4. Image Retargeting

Image retargeting means to adapt images for display on
devices different than originally intended. Liu and Gleicher
have proposed a retargeting algorithm [8] by using non-
linear fisheye-view warping to emphasize parts of an im-
age while shrinking others. Although this method can fit
a large image into a small screen, both the foreground and

Figure 1. Our algorithm solves the composite in a front-
propagation fashion. (a). Dilating background region Bt

I (blue) to
create an unknown region U t

I (yellow). (b). Finding the composite
for U t

I by optimization with boundary conditions. (c). Regions are
evolved for the next iteration.

background are very distorted. Instead, we set different dis-
play ratios for the foreground and background to achieve
the retargeting goal, and only alter a small region around
the foreground to eliminate the compositing seams without
significant distortion.

3. The Compositional Matting Algorithm
In the matting Equation ??, the observed image Iz (z =

(x, y)) is modeled as a convex combination of foreground
image F (z) and background image B(z). In this work we
assume the new background image B′, onto which the ex-
tracted foreground will be composed onto, is known. The
final composite thus can be calculated as

I∗z = Iz + (1− αz)(B′
z −Bz) (1)

We can see that the final composite I∗z is determined by
two unknowns: αz and the original background color Bz .
As we will show later, our algorithm starts estimating the
matte from the outside of the foreground where Bz = Iz ,
thus mostly the composite will only affected by the single
unknown αz , and the goal of our system is to estimate αzs
to minimize the visual artifacts of I∗z s.

The most obvious advantage B′ provides is that if the
new background has very similar regions to the original one,
instead of extracting the true foreground matte in these re-
gions which can be erroneous, we can find a good transi-
tion between the old background and new background for a
good composite. In other words, our matte can be conser-
vative and thus some of the original background is carried
into the composed image with the foreground.

3.1. Front Propagation for Matte Estimation

In our system the user first roughly indicates the fore-
ground object on image I by specifying a bounding box RI

around it, and a few paint strokes on it, as shown in Figure
4a. We treat the region outside RI as the initial background
region BI , the region under paint strokes as the initial fore-
ground region FI , and all other pixels uncovered as the ini-
tial unknown region UI .



The matte MI is estimated iteratively. In each iteration
BI is dilated to create a narrow band region U t

I and up-
date the matte in this region. In early iterations many pixels
in U t

I will have estimated alpha value of 0 since they are
very likely to be background pixels. We then expand BI

based on the updated matte and dilate it again to create a
new unknown region U t+1

I for the next iteration. The al-
gorithm stops when U t+1

I ≈ U t
I . One can imagine that the

unknown region is shrinking until becoming stable, as illus-
trated in Figure 1. The front propagation can stop imme-
diately whenever it finds a good composite, thus can avoid
visual artifacts resulting from inaccurate alpha values and
foreground colors for real foreground pixels.

3.2. Cost Functions

In this section we describe how we set up the optimiza-
tion objective in each iteration. A pixel z in the unknown
region U t

I has two possible modes. The first is that the
new background color B′

z is very different from the orig-
inal color Iz , thus an accurate alpha value should be esti-
mated for z in order to fully substitute Bz with B′

z . We call
this mode matting mode, and design a matting cost for it.
The second mode, which we call compositing mode, is that
B′

z is very close to Iz , thus it is a good place for transiting
from the original image to the new background image. A
compositing cost is defined for this case.

3.2.1 Matting Cost

The matting cost is designed to accurately estimate alpha
values. In this case, the new background is simply ignored
thus the problem degrades to the traditional matting prob-
lem. Inspired by recent optimization approaches for image
segmentation and matting [15, 11, 7], our matting cost con-
tains two terms: a data term which measures the alpha value
based on the pixel’s own observations, and a neighborhood
term which enforces the alpha estimations to be consistent
in a local neighborhood area.

Specifically, we sample a group of known background
colors from the neighborhood of z, and use them to esti-
mate a Gaussian distribution G(Bz,ΣB

z ). Since the user
marked foreground pixels are usually far away, we use the
global sampling method proposed in [15] to gather a group
of foreground colors for z, and estimate a Gaussian distri-
bution on them as G(Fz,ΣF

z ). An estimated alpha value
αm

z is calculated as

αm
z =

d(Iz, Bz,ΣB
z )

d(Iz, Fz,ΣF
z ) + d(Iz, Bz,ΣB

z )
(2)

where d(I, C, Σ) is the Manhattan distance from color I to
a Gaussian G(C, Σ). The data term is then defined to be

Dmat
z = (αz − αm

z )2 (3)

It has been approved in previous approaches that enforc-
ing proper neighborhood constraints can help estimate ac-
curate alpha mattes. The Poisson matting [13] approach
enforces the matte gradient to be proportional to the im-
age gradient. The closed-form matting system [6] set the
weights between neighboring pixels based on their color
differences computed from local color distributions. In this
work we choose to use this method for setting the neighbor-
hood term due to its simplicity and efficiency.

Formally, the neighborhood term is defined as

Jmat
z =

∑
v∈wz

(αv − azIv − bz)
2 + εa2

z (4)

where wz is a 3 × 3 window around z, and az and bz are
two coefficients which can be eliminated later in the opti-
mization process. ε is a regularization coefficient which is
set to be 10−5 in our system. More details and justifications
of this neighborhood term can be found in [6].

The total matting cost is defined by combining the data
term and neighborhood term together as

Cmat
z = wmat ·Dmat

z + Jmat
z . (5)

where wmat is a free parameter in the system which balance
the data term and the neighborhood term.

3.2.2 Compositing Cost

The compositing cost is defined for image regions where
the new background matches well with the original image.
Similar to the matting cost, the compositing cost also con-
tains a data term and a neighborhood term. Roughly speak-
ing, the data term determines where to make a transition
between the original image and the new background im-
age, and the neighborhood term enforces the transition to
be smooth.

Since Iz(which equals to Bz most likely) and B′
z are

very close, we can ignore the true alpha of z and make a
direct transition from the new background to the foreground
image. To do this we examine the color difference between
Iz and B′

z , and calculate a transition probability as

pz = exp
(
− (B′

z − Iz)
T ΣI−1

z (B′
z − Iz)

)
, (6)

where ΣI
z is the local color variance computed from a 3× 3

window centered at z in the original image.
The data term in the compositing cost is then defined as

Dcmp
z = (αz − pz)2. (7)

If the color difference between B′
z and Iz (normalized

by local color variance) is small, the transition probability
pz will be large, which encourages a high alpha value for z
to force the front propagation to stop here.



The neighborhood term is defined as

Jcmp
z =

∑
v∈wz

[1− exp (−dt(z, v))] (αv − αz)2, (8)

where dt(z, v) is the transition distance between z and v
which is calculated as [d(Iz, B

′
z,Σ

I
z) + d(Iv, B′

v,ΣI
v)]/2.

Minimizing Jcmp
z will force the transition happens only at

places where the transition distance is small, or in other
words, only at places where the new background pixels are
very close to the original ones. This neighborhood term is
similar to the one defined in the photomontage system[1] for
seamless compositing, however in the photomontage sys-
tem the alpha values can only be either 1 or 0.

By combining the data term and the neighborhood term
together, the compositing cost is defined as

Ccmp
z = wcmp ·Dcmp

z + Jcmp
z , (9)

where wcmp is another balancing parameter of the system.

3.2.3 Combined Cost

For an unknown pixel z, we classify it to be in either mat-
ting mode or compositing mode based on its local image
characteristics. The classification is achieved by defining a
function δz as

δz =
{

1 : αm
z > αc

z

0 : αm
z < αc

z
(10)

The total cost for tth iteration is defined as as

Ct =
∑
z∈Ut

I

{
δzC

mat
z + (1− δz)Ccmp

z

}
=

∑
z∈Ut

I

{
δz[wmat

z ·Dmat
z + Jmat

z ]

+(1− δz)[wcmp
z ·Dcmp

z + Jcmp
z ]} (11)

For better justification of the total cost we defined, we can
examine some extreme situations. If the new background
B′ is totally different from the original image I , then δzs
will be all ones since αc

zs defined in equation 6 will be
very small. Then only the matting cost will be minimized
and the compositional matting degrades to a general mat-
ting algorithm, which can generate competing (and often
times better) mattes compared with previous matting ap-
proaches. Similarly, if B′ is very close to I ′ over the whole
image, thus only the compositing cost will be minimized
and our system works in a similar way as the photomontage
system[1], however since our system allows smooth alpha
transition, it can generate more smooth composites than the
photomontage system. For most of the cases, our system
performs mixed matting and compositing.

3.3. Optimization

As we can see that each term in equation 11 is defined
as a quadratic function over alpha values, thus minimizing
the total cost could be achieved by solving a sparse linear
system.

Specifically, the matte is calculated as

α = argmin ᾱT Lᾱ, s.t. αbi = sbi (12)

where ᾱ = [1, 0, αz1, ..., αzn, αb1, ..., αbm]T , and
z1, ..., zn are all pixels in U t

I , and b1, ..., bm are bound-
ary pixels. sbi represents the boundary condition. In our
system if the boundary pixel bi is on the outer boundary of
the unknown region then sbi = 0, otherwise it is set to be
max(αm

bi , α
s
bi).

L is a sparse, symmetric, positive definite Laplacian ma-
trix with dimensions (2 + n + m) × (2 + n + m), given
by

L(1, αz) = −δzw
mat
z αm

z − (1− δz)wcmp
z αc

z (13)
L(0, αz) = −1− L(1, αz) (14)

L(αz, αv) = −
{

(1− δzδv)
[
1− exp(−dt(z, v))

]
+

(z,v)∈wk∑
k

[δzδv

9
(1 + (Iz − uk)T (Σk +

ε · I3

9
)−1(Iv − uk)

]}
(15)

L(αz, αz) = −
[
L(1, αz) + L(0, αz) +

∑
v 6=z

L(αz, αv)
]

(16)

Specifically, L(1, αz) and L(0, αz) are derived from the
data terms in Equation 11, and L(αz, αv) is derived from
the neighborhood terms in Equation 11. Note that the first
term in L(αz, αv) is derived from Jcmp

z , and the second
term is derived from Jmat

z , which is provided in [6]. In this
term uk(3× 1) and Σk(3× 3) are color mean and variance
in the local window, and I3 is the 3 × 3 identity matrix.
Note that the parameters a and b in Equation 4 have been
eliminated in the final optimization, as demonstrated in [6].

The definition of L(αz, αz) ensures that every row of L
sums to zero. In contrast to the “matting Laplacian” defined
in [6], we call the matrix L defined here as compositional
matting Laplacian.

Once the matte converges, we use locally sampled back-
ground colors to estimate a background color Bz for a pixel
z whose alpha value is between 0 and 1, and then use Equa-
tion 1 to generate the final composite.

4. Comparisons
We first compare the proposed algorithm with previous

matting and compositing approaches on a synthetic exam-
ple shown in Figure 2. More comparisons on real images



Figure 2. (a). The original image I(top) and the new background I ′(bottom). (b). User input: a trimap for Bayesian matting (top) and paint
strokes for scribble-based systems. (c)-(f): Matte and composite created by Bayesian matting(c), photomontage(d), iterative BP matting(e)
and closed-form matting(f). (g). The ground truth matte and composite.

Figure 4. (a). Zoomed original image and user inputs. (b). Novel composite created by our system. (c). Trimap for Bayesian matting. (d).
Matte computed by Bayesian matting. (e). Composite with matte in d. (f). Composite with matte in d after hole filling still contains visual
artifacts.

Figure 3. (a). Matte and composite created by our system. (b).
The results when the compositing cost is disabled. (c). The results
when the matting cost is disabled.

will be shown later. Figure 2a shows the original image
I where the foreground texture is composed onto a back-
ground texture using a pre-defined matte. Below this is the
new background image B′ where the bottom half is similar

but the top has changed.

Figure 2b-e shows that previous approaches such as
Bayesian matting [3], photomontage [1], iterative BP mat-
ting [15] and closed-form matting [6] all have difficulties
dealing with this data set. Given the complex foreground
and background patterns, these algorithms fail to extract an
accurate matte thus the final composites are erroneous.

Figure 3a shows the composite generated by our system,
which has higher visual quality than composites created by
others, and is quite similar to the ground truth shown in Fig-
ure 2g. This is achieved by implicitly treating different re-
gions in different ways. For the bottom half of the image
where old and new backgrounds are similar, the front prop-
agation stops earlier when it finds a good transition, thus
the hard problem of finding an accurate matte in this region
is avoided. For the upper half of the image where the old
and new backgrounds are different, our algorithm works in
a similar fashion as traditional matting algorithms to try to
extract a good matte for the foreground.

Figure 3b shows the results if we disable the compositing
cost in Equation 11 by letting all δzs to be 1. And Figure



Figure 5. (a). I , B′ and user input. (b)-(e). Input strokes, extracted matte and composite of Bayesian matting, photomontage, iterative
matting and our system, respectively. Yellow arrows highlight artifacts.

3c shows the results of disabling the matting cost. These
results demonstrate that minimizing a single cost is not suf-
ficient for creating a successful composite.

5. Foreground Zooming
We apply the compositional matting algorithm to the task

of recomposing a single image by varying the size ratio be-
tween the foreground and background within a single im-
age. In general, we set a higher display ratio for the fore-
ground relative to the background to emphasize the fore-
ground. In this case, both the image I and the new back-
ground B′ are differently scaled versions of the original
photograph. This result is similar to virtually pulling the
foreground towards the camera, as shown in Figure 4.

Using previous methods, one could achieve this by first
extracting a high-quality matte for the foreground. Then
hole filling methods would be needed to repair the back-
ground. One could then compose a scaled up version of the
foreground matte onto the background. However, extract-
ing a perfect matte for the foreground is difficult for general
images, as is hole filling, and the composed image may con-
tain visual artifacts.

For example, to attempt to use Bayesian matting to en-
large the foreground in Figure 4a, the user needs to specify
a good trimap as shown in Figure 4c, which generates the
matte in Figure 4d and results in a composite in Figure 4e.
We can see “ghost” artifacts since the enlarged foreground
does not fully cover the original foreground. We then use
the image inpainting technique proposed in [16] to fill the
holes on the background, resulting in a better composite in
Figure 4f. However the errors in the matte estimation still
cause noticeable visual artifacts.

In our system instead of using image inpainting tech-
niques to fill-in the holes, we simply modify one step of our
algorithm to avoid introducing holes as shown in Figure 4c.
Once we calculate αm

z in Equation 2 for pixel z, we find its
corresponding location z′ on the new background B′. If αm

z′

Figure 6. The matte and composite generated by our system when
the new background is provided as a solid blue.

is smaller than αm
z , we then let αm

z′ equals to αm
z . In other

words, we set high alpha values to pixels insides holes to
encourage them to be occluded in the final composite. In
this way our system achieves hole filling, foreground mat-
ting and compositing in a single optimization procedure.

6. More Results

Figure 5 compares different approaches on extracting the
foreground from I and composing it onto B′. It shows that
our system is able to create a more satisfying composite
than previous approaches. Additionally, Figure 6 shows that
if we use a totally different new background such as a solid
blue, our system will try to extract an accurate matte since
no useful new background information can be used in this
case. This demonstrates that our system will work just as
a normal matting algorithm when the new background is
different from the original one instead of generating unpre-
dictable results.

Figure 7 shows another example where we want to cre-
ate a more impressive waterfall from the original one. We
stretch the waterfall in the horizontal direction and recom-
pose it onto the original image. Using previous matting ap-
proaches to achieve this is particularly hard since the fore-
ground object is semi-transparent thus creating a trimap for



Figure 7. (a). Scaled original image with user inputs to expand the
waterfall. (b). Composite generated by our system. (c). Compos-
ite generated by the photomontage system. (d). Details of com-
posites.

matting is erroneous. Instead, we compare our system with
the photomontage system. Since photomontage cannot deal
with partial coverage, the composition generated from it
contains more visual artifacts than the one generated from
our system.

Figure 8 compares our system with the image retargeting
system [8]. In the zoomed out fish-eye image created by the
image retargeting system the mountain behind the person is
unacceptably distorted. As shown in Figure 8c, a true fish-
eye image is even worse since the foreground character is
also unacceptably distorted. In contrast, our system is able
to enlarge the foreground while keeping both the foreground
and the background in as original a state as possible.

Although our system works well on most of the exam-
ples we have tested, it does not always give satisfying com-
posites. When the new background differs significantly
from the original one, the compositional matting faces the
same difficulties as traditional matting algorithms do. Dif-
ficult and successful examples are shown in Figures 10 and
9. In the original image, Figure 9a, the foreground is so
similar to the background that extracting an accurate matte
is almost impossible. However, if the new background is
similar to the original one, our system is able to create a
good composite as shown in 9d. If unfortunately, the new
background is substantially different from the original one,
our system along with previous approaches all fail to give

Figure 8. (a). Scaled original Image. (b). Simulated fish-eye im-
age used by the image retargeting system. (c). A normal fish-eye
image. (d). Enlarging foreground by 1.9 times using our system.

good composites, as shown in Figure 10.

7. Conclusion

A key lesson to take from our work is that such image
processing methods should take advantage of all informa-
tion known in a real application. Matting in the absence of
the knowledge of the new background may not describe the
full task.

In this paper we have demonstrated a compositional mat-
ting algorithm by taking the advantage of knowing the new
background image which the foreground is to be composed
on to. Experimental results show that our algorithm out-
performs previous proposed matting and composition algo-
rithms when the new background has similar regions with
the old one. Based on the new matting algorithm we show
how to recompose images by displaying foreground and
background with different scales.

In the future we hope to consider how one might take
temporal coherence into account for recomposing video
objects. One could create a similar unified optimization
framework, but computational considerations would cer-
tainly need to be addressed.
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