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Abstract

Several approaches to shadow removal in color images
have been introduced in recent years. Yet these methods fail
in removing shadows that are cast on curved surfaces, as
well as retaining the original texture of the image in shadow
boundaries, known as penumbra regions. In this paper, we
propose a novel approach which effectively removes shad-
ows from curved surfaces while retaining the textural in-
formation in the penumbra, yielding high quality shadow-
free images. Our approach aims at finding scale factors to
cancel the effect of shadows, including penumbra regions
where illumination changes gradually. Due to the fact that
surface geometry is also taken into account when comput-
ing the scale factors, our method can handle a wider range
of shadow images than current state-of-the-art methods, as
demonstrated by several examples.

1. Introduction
Shadows are an integral part of many natural images.

While shadows, and in particular cast shadows, can pro-
vide valuable information on an acquired scene, e.g. cues
for spatial layout and surface geometry [12], they can also
pose difficult problems and limitations for various computer
vision algorithms. For example, darker regions in the image
caused by cast shadows can introduce spurious segments in
segmentation algorithms. In digital photography, shadows
may be considered as artifacts in the image that need to be
removed, whether for enhancing certain parts of the image
or simply for esthetic reasons.

Following common notation, an image I(x, y) is con-
sidered to be related to the reflectance field R(x, y) and the
illumination field L(x, y) [1] as follows:

Ik(x, y) = Rk(x, y) · Lk(x, y) (1)

where k ∈ {R,G,B} and · denotes pixel-wise multiplica-
tion.

Shadow regions are assumed to be formed by reduction
in the illumination field, resulting in changes of image in-
tensities by multiplicative scalars Ck(x, y):

Ik(x, y) = Rk(x, y) · Lk(x, y) · Ck(x, y) (2)

Taking the logarithm of both sides of equation (2) we
obtain:

Ik(x, y) = Rk(x, y) + Lk(x, y) + Ck(x, y) (3)

such that I , R, L and C are the logarithms of I, R, L and
C, respectively. Thus in the log domain, a shadow implies
an additive change in intensities.

Shadow regions are assumed to be uniform, in the sense
that a single scaling factor is sufficient to capture the inten-
sity changes in a shadow region. In practice, this is not the
case, since shadow boundaries are usually diffused regions
that are partially lit and partially shadowed, hence implying
different scaling constants across the boundary.

A classical approach to shadow removal in a single im-
age is to identify the shadow edges, zero the derivatives
of those pixels and then integrate to obtain a shadow-free
image. Alternatively, shadow regions can be removed by
adding a constant factor in the log domain to the intensi-
ties enclosed within the shadow edge. These approaches
produce good results when the shadow edges are sharp and
the shadow occurs on a flat non-textured surface. However,
poor results are obtained when shadows are on curved and
textured surfaces (see Figure 1c). This is due to the fact that
both textural information and surface gradient information
existing at the shadow boundary are removed.

To intuitively illustrate these problems with the clas-
sic approach as mentioned above, consider the one-
dimensional signals depicted in Figure 1b. The test sig-
nal (dark line) is a cross section of the textured and curved
surface shown in Figure 1a. Removing the shadow in the
test signal using the classic approach of nullifying shadow
edges, a shadow-free signal is obtained as depicted in Fig-
ure 1d (dark line). It can be seen that the shadowed region

1-4244-1180-7/07/$25.00 ©2007 IEEE



(a) (b)

(c) (d)

Figure 1. Shadow removal using classical methods. (a) An image
of a curved surface with artificial shadow. (b) A horizontal cross
section of the shadow image (dark line), compared with a cross
section of the original shadow-free image (gray line). (c) Shadow-
free image as obtained using classical methods. (d) Cross section
of the image in c (dark line), compared with the desired result
(gray line).

of the test signal is incorrectly reconstructed: pixel intensi-
ties are lower than they should be compared to the original
non-shadowed signal (gray line). This is a direct result of
the assumption that the surfaces in the image are flat; by
setting the shadow edge derivatives to zero, the derivatives
of intensity that are due to the curved surface are also nul-
lified. Additionally, it can be seen that due to zeroing of
derivatives, the shadow boundary regions (intervals A and
B in Figure 1d) appear almost flat in the reconstructed sig-
nal. This indicates the loss of textural information in these
regions. In [6], In-Painting is used to reconstruct these pix-
els, however, this does not solve for the incorrectly recon-
structed intensity profile due to the curved surface, and can
not deal with local intensity variations that are not repeti-
tive.

In this paper we focus on solving the shadow removal
problem in images containing shadows with wide bound-
aries, known as penumbrae, which are cast on non-flat sur-
faces. Our aim is to produce a shadow-free image while
maintaining original local and textural information within
shadow regions and penumbrae.

We propose a novel approach for both estimating shadow
scale factor for geometrically curved surfaces, and for re-
moving shadows from penumbra regions while retaining the
original information in the image, even for wide-penumbra

(a) (b)

Figure 2. (a) Shadow-free sphere image produced by our method.
(b) A horizontal cross section of the shadow-free sphere image.

shadows. Our approach finds scale factors which are used
to cancel the effect of shadows, including penumbra regions
where illumination changes gradually. Using this scale fac-
tor estimation approach, rather than 2D integration, we also
ensure that non shadow regions of the image remain un-
touched (a discussion on the effects of 2D integration can
be found in [6]). Figure 2 shows the shadow-free version of
the sphere image of Figure 1a, as produced by our method.

2. Previous work
Various approaches have been proposed to address the

problem of shadow removal in real images. In [18] a se-
quence of images is used, in which the illumination changes
over time but the reflectance remains constant. Derivation
filters are applied on each of the images followed by the
application of a median filter across the derivated images.
Finally, 2D integration of the resulting median image is per-
formed producing the intrinsic reflectance image in which
all illumination effects are removed, including shadows.
While this method provides good results, it requires a fully
stationary camera for capturing the image sequence. Addi-
tionally, in order to correctly recover the reflectance image,
it is imperative that the images in the sequence exhibit large
variations in the illumination conditions. Otherwise, shad-
ows with soft edges may not be completely removed by the
median filters, and static shadow regions in the sequence
may not be removed at all.

In [5] Finlayson et al. proposed a method that, given
a single RGB image, removes cast shadows based on the
derivation of an illumination invariant image. Edges in this
image reflect changes in material reflectance. Thus, it can
be used to detect edges in the image that are due to shadows.
For each channel’s gradient image, shadow edges are thick-
ened by morphological operations and then set to zero. An
integration step as in [18] of each channel’s gradient image
recovers three shadow-free images given up to multiplica-
tive constants which are then estimated in order to obtain
the final shadow-free color image.

To solve the problem of flat shadow boundaries in



shadow-free images, caused due to the fact that shadow-
boundary gradients are nullified, pixel and edge In-Painting
techniques are used in [4, 6] to fill in the missing informa-
tion in these regions. While this approach can yield a more
visibly-pleasant images, the original texture and curvature
information in these regions is still lost (see Figure 3 for il-
lustration and comparison to our method 1). Additionally,
instead of performing 2D integration as proposed in [18],
a 1D integration process using Hamiltonian paths is used
in [6]. Although this integration technique can reduce er-
rors produced by 2D integration, as shown by the authors
of [6], the problem of calculating the correct scale factor of
the shadow region still remains. The work in [7] suggests

Figure 3. Comparison of various approaches for handling penum-
bra regions. Top row: shadow images, Middle row: shadow-free
images - Nullifying shadow-boundary gradients (left); Shadow
edge In-Painting (right), Bottom row: results of our method.

a method for finding the scale factor of a shadow region
by sampling pixels along the shadow edge, and estimating
the value that minimizes the difference between pixels out-
side the shadow region and those inside it. This approach
is much faster than traditional integration since it only re-
quires the application of a scale factor (or additive constant
in the log domain) on the shadow region pixels. However,
it still does not account for scenes containing curved sur-
faces with shadows, since the minimization of differences
between the pixels on either side of the shadow boundary
assumes that the shadowed surface is geometrically flat in
the penumbra region. As in [6], the authors used In-Painting

1Images in Figure3 are from [2](left column) and [4] (right column)

to complete missing information at shadow boundaries.
We argue that in most high resolution images the shadow

boundary, i.e. the penumbra, is noticeably wide thus may
significantly affect the estimation of the scale factors as well
as producing visible artifacts and incorrectly reproduced
texture at the shadow boundaries.

3. Our method for shadow removal
Shadow removal is performed in two stages: 1) the de-

tection stage in which shadow regions are detected, typi-
cally by determining the shadow boundaries and 2) the re-
construction stage in which the shadow is actually removed
and a shadow-free image is produced.

Various techniques for detecting shadow regions in im-
ages have been suggested. They can be classified into two
groups: 1) algorithms that are based on invariant color mod-
els [5, 14] and 2) algorithms that assume some prior knowl-
edge of the scene, such as geometry, color ratios [9] or ob-
ject properties within the scene.

This paper suggests a novel reconstruction stage for
shadow removal, i.e. removing the shadows in an image
once they have been detected. Any shadow detection algo-
rithm can be used, but since our method is not confined to
images with certain illumination conditions such as outdoor
scene images, one could choose to use a specific shadow de-
tection algorithm that best suits the illumination conditions
in the given image.

In accordance to Equation (3), it is assumed through-
out this section, that shadow removal is performed on each
channel of the image represented in the log domain, which
is then exponentiated back once the shadows are removed.

3.1. Calculating shadow region scale factor

The essence of the proposed algorithm is to evaluate the
correct scale factor, C(x, y) (Equation (2)) with which to
reconstruct the shadowed region. It is assumed that C(x, y)
is constant within the shadow region. However, this is not
the case across the penumbra region at the shadow bound-
ary. Previous studies attempt to overcome this problem by
zeroing gradients within a thickened region of the detected
shadow boundaries, thus ignoring the penumbra region al-
together. However, as shown in the shadow-free signal in
figure 1d, the assumption of a zero average difference be-
tween the pixels on either side of the penumbra does not
hold in the case of shadows on curved surfaces. On unshad-
owed curved surfaces, pixel intensities change with surface
normal producing what we call an intensity surface. Thus,
zeroing gradients of the shadow penumbra on a curved sur-
face nullifies the shadow edge but also incorrectly nullifies
the gradients of the intensity surface that are due to change
in surface normal of the object within the scene. The recon-
structed image is then incorrect as can be seen in Figure 1c.



In the general case, when the geometry of the objects
in the scene, and accordingly the intensity surface, is not
constrained, the problem of finding the correct scale factor
along with the intensity surface in the penumbra region, is
massively ill-posed. To this end, we introduce an a priori as-
sumption that the intensity surface in the penumbra region
should locally act as a thin plate in the shadow-free im-
age. In practice, we require that the first and second order
directional derivatives of penumbra pixels in the shadow-
free surface are continuous. Although this seems a strong
requirement, we found it suitable for virtually all natural
images we examined.

Thin plate models are widely studied in various fields
and applications, which include reconstruction of 3D ob-
jects [17], deformable surfaces in computer graphics [16]
and image morphing [8].

To solve for the scale factor under the continuity con-
straint of first and second order derivatives, we formulate
the shadow removal problem as a surface reconstruction
problem, where the missing data is the intensity-surface val-
ues of the penumbra pixels. We found the thin plate model
a convenient tool for this purpose, since it allows us to con-
trol the stiffness of the reconstructed surface in the penum-
bra region, which compromises between fitting the data and
smoothness.

Mathematically, we consider the image as a surface g
defined in 3D Euclidean space over the rectangular domain
Ω = [0, 1]× [0, 1], that is g : Ω 7→ R.

The scale factor is a value c that minimizes the following
energy functional of the reconstructed thin plate F :

E(F ) = Ef (F ) + Es(F ) (4)

such that Ef (F ) and Es(F ) are the data fitting error and
the smoothness measure, respectively, given below:

Ef (F ) =
∫∫

Ω

ω(x, y)|F (x, y)− [g(x, y)+C(x, y)]|2dxdy
(5)

Es(F ) =
∫∫

Ω

[(
∂2F

∂x2
)2 + 2(

∂2F

∂x∂y
)2 + (

∂2F

∂y2
)2]dxdy (6)

and:

ω(x, y) =
{

0 (x, y) is a penumbra point
1 otherwise (7)

and sinceC(x, y) is assumed constant in the shadow region,
C(x, y) = c iff (x, y) is a point inside the shadow region but
not the penumbra and equals 0 elsewhere.

Formulating the problem in the discrete domain is
straightforward. The surface g is defined as a lattice con-
sisting of pixel values in the input channel and Equation (6)
is calculated using finite differences. Note that the surface g
represents the intensity surface and not the actual geometry
of the objects in the scene, although the two are correlated.

Even when the value c is given, finding such F in the
discrete domain that minimizes E(F ) is a computationally
intensive task even for moderate-sized images, as it requires
the solution of a linear system consisting of a linear equa-
tion for each image pixel. There are several studies that ad-
dress the computational problem of surface reconstruction,
e.g. by using Finite Element methods [3] or multi resolution
approaches [11]. Nevertheless, we developed a light-weight
approximation to the thin plate model using cubic smooth-
ing splines, which are known in their robustness in fitting
noisy data while maintaining the continuity constraint of
first and second order derivatives.

The splines are constructed based on the shadow edge
and penumbra region as illustrated in Figure 4. Given an
image with shadow as in Figure 4a, we create a spline for
each pixel of the shadow edge. Each spline is extended bidi-
rectionally from its associated pixel in directions perpendic-
ular to the shadow edge as seen in Figure 4a. The extent of
the spline was found to be dependent on the thickness of
the penumbra region. In our experiments we set the extent
to be three times the width of the penumbra. Finally, all
data sites within the penumbra region are ignored as they
represent missing data that is to be calculated by the thin
plate reconstruction. To achieve this we use the penumbra
mask image (see Section 4) as in Figure 4b. The final result
is shown in Figure 4c.

Each cubic smoothing spline s is the minimizing curve
of the energy functional (Equations (4)-(6)) calculated in
1D, with respect to the 1D sampled image data g(t):

E(s) =
∫
ω(t)|s(t)−[g(t)+C(t)]|2dt+

∫
(
∂2s

∂t2
)2dt (8)

where:

ω(t) =
{

0 s(t) is in the penumbra region
1 otherwise (9)

and C(t) = c iff s(t) is a point inside the shadow region but
not the penumbra and equals 0 elsewhere. The term c is the
scale factor within the shadow region and is constant for all
splines.

The total energy for the set S of splines is denoted as Ê
and calculated as:

Ê =
∑
s∈S

E(s) (10)

Evaluating the unique scale factor c for the shadow
region is performed by minimizing the energy in Equa-
tion (10) using a gradient descent algorithm over c. Note
that Ê as a function of scale factors is always convex, thus
the gradient descent algorithm produces a global minimum.

In this manner we obtain the correct scale factor
c = C(x, y) for the shadow region, taking into account the



(a) (b) (c)

Figure 4. Finding shadow scale factor using splines. (a) Spline lay-
out along the shadow edge when projected on the image plane. (b)
Penumbra mask in which penumbra pixels are labeled in white. (c)
Final sampling sites of the splines. Penumbra regions are ignored.

curved intensity-surface which may cause non-zero differ-
ences between pixels on either side of the shadow boundary.
Given the scale factor, the shadow-free image can be recon-
structed inside the shadow region (excluding the penumbra)
using Equation (3). Note that the thin plate in itself can
not be used as the intensity-surface since it is smooth (due
to the smoothness constraint) and does not capture the tex-
tural information of the surface which appears in the form
of local variations in intensity. Reconstructing the internal
shadow region using the evaluated scale factor and Equa-
tion(3) preserves the textural information. An example is
given in Figure 5b.

3.2. Calculating penumbra scale factors

Having determined the scale factor within the shadow
region, we now reconstruct the scale factors across the
penumbra. While the scale factors of each pixel inside a
shadow region are uniform, this is not the case in penumbra
regions. Across the penumbra region shadow scale factors
vary gradually from zero to the constant scale factor value
inside the shadow region. Width and rate of transition from
light to shadow are penumbra properties which are deter-
mined by many factors such as the shape and distance of
the light source, shape and distance of the occluding object
and diffraction of light rays [13]. Since these parameters
can not be easily extracted from a single image, it is im-
possible to calculate scale factors of penumbra pixels based
solely on an analytical model of the penumbra.

Estimating the penumbra scale factors by interpolating
values (linear or higher order) between the internal shadow
scale factor and zero produces incorrect results and artifacts
as observed also by [7].

Although scale factors across the penumbra do not
change linearly (nor second order) the shadow-free inten-
sity surface is assumed to behave as a thin plate, including
the penumbra region. Thus we again use the thin plate F
estimated above to reconstruct the penumbra region. We
estimate the scale factors C(x, y) in the penumbra region
by evaluating the difference between the smooth thin plate

and the penumbra pixels in the original image:

Ĉ(x, y) = F (x, y)− I(x, y) (11)

If the intensity surface was perfectly smooth, the estimated
scale factors could be used to correctly reconstruct the
penumbra regions, again, using Equation(3). However for
textured surfaces such a correction would eliminate the tex-
ture. In these cases, the estimated scale factors Ĉ(x, y) are
not smooth and vary according to the surface texture. Hence
a smoothing process is applied to the estimated scale fac-
tors Ĉ(x, y) to produce a smoothly varying profile of scale
factors across the penumbra. These smoothed scale fac-
tors can then be applied to image pixels in the penumbra
region using Equation(3). In practice, however, the smooth-
ing process produces artifacts in the reconstructed penum-
bra region in the form of Mach Bands as can be seen in
Figure 5c. This is due to the sigmoidal-like profile of the
shadow edge. To overcome this problem we perform direc-
tional smoothing rather than homogeneous smoothing. In
our implementation we used shadow edge information to
compute the exact direction of the smoothing mask for each
penumbra pixel. The final shadow-free image of the image
in figure 5a derived by applying directional smoothing is
depicted in figure 5d.

(a) (b)

(c) (d)

Figure 5. Calculating penumbra scale factors. (a) A shadow image.
(b) Applying shadow scale factor to the shadow region. Penumbra
pixels are left untouched. (c) Mach Bands effect due to homoge-
neous smoothing of the scale factors. (d) Result obtained when
performing directional smoothing of the scale factors.

4. Labeling penumbra pixels
In order to obtain an accurate estimation of the shadow

scale factor using the method suggested in this paper, it is



Figure 6. The effect of incorrect labeling of penumbra pixels. Solid
line: the original shadowed signal. Dashed line: reconstructed
spline using incorrectly labeled penumbra pixels(marked by small
circles), resulting in a smaller scale factor than expected. Dotted
line: correct spline reconstruction when penumbra width is cor-
rectly determined.

imperative to correctly determine the penumbra regions. In-
correct labeling of penumbra pixels as non-shadow pixels or
as internal shadow pixels produces an incorrect scale fac-
tor that is smaller than the true value. This is shown in
Figure 6; When computing the thin plate splines, the fit-
ting term (Equation (5)) of the energy functional forces the
spline (dashed line in Figure 6) to fit the incorrectly labeled
penumbra pixels (depicted as circles on the solid line in Fig-
ure 6), thus resulting in an attenuated scale factor.

In an attempt to correctly label penumbra pixels, we con-
sider image gradients. It has been shown [15, 18], that nat-
ural images are characterized by the sparsity of their gradi-
ent magnitudes field. This implies that for any image pixel,
the probability of it being an edge pixel, and in particular a
shadow edge pixel, is relatively low. Based on this insight,
we introduce a method to accurately label penumbra pixels.

Consider an image I of size N × M and its gradient
magnitude field ‖∇I‖. The gradient magnitude distribution
image P I is calculated as follows:

P I
xy = Pr (‖∇I(x, y)‖) (12)

where Pr (‖∇I(x, y)‖) is the probability of the gradient
magnitude at pixel (x, y) in the image.

At this stage, simply labeling penumbra pixels by direct
thresholding of P I produces many false alarms and misses.
Instead our suggested approach exploits pixels with strong
evidence of being edge pixels, and propagates this evidence
to their neighboring pixels. Thus low-evidence pixels are
supported by neighboring edge pixels. We implement this
scheme using a Markov Random Field (MRF) [10] over the
image P I such that a unique random variable is associated

with each pixel in P I . The random variables are defined
over the domain {1, 0}, denoting whether the underlying
pixel should be labeled as an edge pixel or not, respectively.
Thus, the probability of a pixel to be labeled as an edge
pixel depends not only on its probability in P I but on the
probabilities of its neighboring pixels as well.

Let fxy be the MRF random variable at location (x, y).
We define the posterior energy [10] of the field f as follows:∑
x,y

(1− fxy)[(1− P I
xy) +

∑
fx′y′∈Nxy

ψ(fx′y′ , fxy)] + αfxy

(13)
where Nxy represents the 4-neighborhood of pixel (x, y).
The term (1 − P I

xy) is the prior energy related to the prob-
ability of a pixel being an edge pixel. ψ(fx′y′ , fxy) is the
likelihood energy of a pixel which depends on its neighbor-
ing pixels:

ψ(fx′y′ , fxy) =


1 fx′y′ 6= fxy ∧ |P I

x′y′ − P I
xy| ≤ t1

fx′y′ = fxy ∧ |P I
x′y′ − P I

xy| ≥ t2
0 otherwise

(14)
The defined MRF is parameterized by α, t1 and t2. Pa-
rameter α bounds the local energy of a pixel when labeled
as an edge pixel. Parameters t1 and t2 are thresholds,
t1 < t2. The likelihood energy penalizes for neighboring
pixels differing in label but with similar edge probabilities,
and neighboring pixels of similar label but differing in edge
probabilities.

Although there exist numerous methods for automati-
cally estimating optimal parameter values [10], we set α,
t1 and t2 manually: t1 = 0.05, and t2 = (maxP I −
minP I) − t1. Setting α = 1.45 produced good results
on all our test images.

Minimization of the posterior energy in Equation (13)
over the field f is implemented using a gradient descent al-
gorithm. Given the minimizing f , we extract the penumbra
pixels by exploiting shadow edge information, namely by
finding binary connected components on f originating from
pixels that appear both in the shadow edge image and in f .

5. Experimental results
Several real shadow images and their resulting shadow-

free images produced by our algorithm are shown in Fig-
ure 7. Figure 7a contains an in-door image of a curved
sheet of text covered paper. The shadow-free image (center)
was obtained using the method of [5]. Since the penum-
bra falls on a line of text, and since shadow gradients are
set to zero in [5], the line of text is completely obliterated.
The shadow-free image (bottom) is the result of our algo-
rithm. The textural information is preserved. Additionally,
the shadow region in the center image appears darker than
in the bottom image due to the inability of the method in [5]
to derive the correct scale factor on curved surfaces.



(a) (b) (c)

(d) (e) (f)

Figure 7. Experimental results of our proposed method. (a-c) Shadow images of curved surfaces. (d-f) Shadow images of highly textured
surfaces.



The results in Figures 7 show additional examples
demonstrating the ability of our algorithm to remove shad-
ows while preserving textural information in penumbra re-
gions. This can be further appreciated by examining the
shadow-free text image in Figure 7d, where the text remains
visually intact despite the significant width of the penum-
bra.

6. Conclusions
In this paper we presented a shadow removal method that

can handle images containing shadows cast on curved sur-
faces, as well as retaining the original textural information
in the shadow-free image. In the proposed method, shadow
is removed by determining a shadow scale factor for each
shadow pixel, and then adding these scale factors in the
log domain. We demonstrated that simply calculating the
scale factor of shadow regions from the pixels adjacent to
shadow edges can result in inaccurate scale factor estima-
tion on curved surfaces. We proposed to use cubic smooth-
ing splines, as an approximation of a thin plate surface in
penumbra regions, to calculate the scale factor. Further-
more, we also showed how to exploit the thin plate approx-
imation in order to obtain a high-quality shadow-free im-
age, in which the textural information of the original image
is preserved. The approach performs well even for images
containing shadows with wide penumbrae, as shown by sev-
eral examples.
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