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Abstract

This paper presents minimal solutions for the geometric

parameters of a camera rotating about its optical centre. In

particular we present new 2 and 3 point solutions for the

homography induced by a rotation with 1 and 2 unknown

focal length parameters. Using tests on real data, we show

that these algorithms outperform the standard 4 point linear

homography solution in terms of accuracy of focal length

estimation and image based projection errors.

1. Introduction

Image stitching is the process of combining data from

multiple images to form a larger composite image or mo-

saic. This is possible when the amount of parallax between

the images is small or zero. This occurs, for example, when

viewing a planar scene, or when rotating about a point.

Recent successful approaches to image stitching have

used feature based techniques [2, 3]. These methods

typically employ random sampling algorithms such as

RANSAC for robust estimation of the image geometry, to

cope with noisy and outlier contaminated feature matches

[4]. The RANSAC step has an inner loop consisting of a fast

solution for the parameters of interest given a small number

of correspondences. Since the probability of choosing a set

of correct correspondences decreases rapidly as the sample

size increases, solutions that use as few points as possible

in the RANSAC loop are favourable.

Recently, solutions have been developed that enable sev-

eral problems in image geometry to be solved efficiently

using the theoretical minimum number of points [12, 15].

These algorithms use algebraic geometry techniques [14] to

solve directly for the parameters of interest using polyno-

mial equations, and have been demonstrated to be superior

to previous approaches in structure and motion problems

[12]. Previous (non-minimal) approaches involved linear

solutions for over-parameterised matching relations e.g. the
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Figure 1: A pair of correspondences in a rotating camera

gives a single constraint on the calibration matrices K1,K2.

This paper describes solutions for the rotation and focal

length of a pair of cameras given the minimal number of

correspondences between them.

8 point DLT algorithm for the fundamental matrix [8], or

the linear solution for the trifocal tensor [6]. In addition

to being more noise prone, non-minimal solutions typically

require a subsequent auto-calibration stage to estimate the

minimal set of transformation parameters from the linear

solution [18, 13]. This would be required for example, if

one wanted to find optimal estimates for the underlying pa-

rameters using an iterative algorithm such as bundle adjust-

ment [19].

The same arguments transfer to the analogous problems

in image stitching. Though state of the art approaches cur-

rently use a 4 point linear solution for a homography in the

RANSAC loop [8], we show that in the most common prac-

tical cases 2 or 3 points are in fact sufficient, and that the

resulting solutions are more noise tolerant and give better

initialisations for the underlying parameters.

We focus on cases where all the parameters other than

the focal length are known. We believe that these are the

most important practical cases as sensible priors often ex-

ist for the other parameters (e.g. central principal point,

zero skew). Also, the resulting algorithms will use fewer

points than the standard 4 point homography. We do not in-

vestigate the case of calibrated rotation where closed form

solutions already exist [9].
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A linear method for autocalibration of a rotating cam-

era was first proposed by Hartley [5, 7]. We compare our

minimal solutions to this technique in Section 10.

2. Problem Statement

Consider two cameras with coincident optical centres

viewing a world point X

ũ1 ∼ K1X (1)

ũ2 ∼ K2RX (2)

where R is the rotation between the cameras, K1,K2 are

upper triangular calibration matrices and ũ1, ũ2 are the pro-

jections of the 3D point X to images 1 and 2. By eliminat-

ing X we find two constraints on the unknown parameters

of R (3 parameters) and K1,K2 (up to 5 parameters each).

The goal is to solve for the rotation and intrinsic parameters

of the cameras using the minimum number of correspon-

dences possible.

3. Linear Algorithms

From equations (1) and (2) we can write

ũ2 ∼ H12ũ1 (3)

where

H12 ∼ K2RK
−1
1 (4)

Eliminating R gives

H12ω
∗
1H

T
12 ∼ ω∗

2 (5)

where

ω∗
i ∼ KiK

T
i (6)

ω∗
i is known as the dual image of the absolute conic (DIAC)

[8]. Linear algorithms for autocalibration proceed by com-

puting a general 3 × 3 matrix H12 from 4 point correspon-

dences [7]. The symmetric system of equations (5) then

gives 5 linear constraints on the elements of ω∗
1 and ω∗

2 . K1

and K2 can be found by Cholesky decomposition of ω∗
1 and

ω∗
2 .

4. Polynomial Algorithms

Instead of linearising we can work directly with the

sought after parameters of R and K. Consider a pair of

correspondences u11↔u21,u12 ↔ u22 where

ũij ∼ KiRiXj (7)

We can eliminate Ri by considering the angle between X1

and X2

cos2θ =
(XT

1 X2)
2

|X1|2|X2|2
(8)

Noting that this angle is preserved in both images

cos2θ1 = cos2θ2 (9)

and writing in terms of the camera parameters gives

(ũT
11ω1ũ12)

2

ũT
11ω1ũ11ũ

T
12ω1ũ12

=
(ũT

21ω2ũ22)
2

ũT
21ω2ũ21ũ

T
22ω2ũ22

(10)

where ω−1
i ∼ ω∗

i ∼ KiK
T
i . This gives a single non-linear

constraint on the unknown parameters of K1,K2, and is

used as a building block for our polynomial solvers.

5. The 2 Point Algorithm

A simple case arises when only the focal length is un-

known, but common to the 2 views. This occurs frequently

in practice, for example, when capturing a panorama with-

out zooming. Substituting

Ki =





f 0 0
0 f 0
0 0 1



 (11)

in equation (10) gives

(a12 + f2)2

(a1 + f2)(a2 + f2)
=

(b12 + f2)2

(b1 + f2)(b2 + f2)
(12)

where

a12 = u
T
11u12, a1 = |u11|

2, a2 = |u12|
2

b12 = u
T
21u22, b1 = |u21|

2, b2 = |u22|
2 (13)

Equation (12) can be simplified to give a 3rd degree poly-

nomial in f2 (the fourth degree term cancels). This can be

solved in closed form.

6. The 3 Point Algorithm

Another important practical case occurs when the focal

length is unknown and potentially different between the two

views. This might occur when capturing a panorama with

variable zoom. Substituting

Ki =





fi 0 0
0 fi 0
0 0 1



 (14)

in equation (10) gives



(a12 + f2
1 )2

(a1 + f2
1 )(a2 + f2

1 )
=

(b12 + f2
2 )2

(b1 + f2
2 )(b2 + f2

2 )
(15)

This can be simplified to give a biquadratic equation in f2
1

and f2
2 . Writing this as a quadratic in f2

1 gives

pf4
1 + qf2

1 + r = 0 (16)

where

p =f2
2 (b1 + b2 − 2b12) + b1b2 − b2

12

q =f4
2 (2a12 − a1 − a2) + f2

2 (2a12(b1 + b2)

− 2b12(a1 + a2)) + 2a12b1b2 − (a1 + a2)b
2
12

r =f4
2 (a2

12 − a1a2) + f2
2 (a2

12(b1 + b2) − 2a1a2b12)

+ a2
12b1b2 − a1a2b

2
12 (17)

Note that p is 1st degree and q and r are second degree

polynomials in f2
2 . Taking 2 pairs of points gives the simul-

taneous equations

p1f
4
1 + q1f

2
1 + r1 = 0 (18)

p2f
4
1 + q2f

2
1 + r2 = 0 (19)

The common solutions of the polynomials are the roots of

the resultant R

R =

∣

∣

∣

∣

∣

∣

∣

∣

p1 q1 r1 0
0 p1 q1 r1

p2 q2 r2 0
0 p2 q2 r2

∣

∣

∣

∣

∣

∣

∣

∣

(20)

This is a 7th degree polynomial in f2
2 , which can be solved

by taking the eigenvalues of the companion matrix. f2
1 is

then obtained by solving the quadratic equation (16).

Note that this is not strictly a minimal solution. The

equations (18) and (19) are formed by choosing two pairs of

correspondences from 3 point correspondences in 2 views.

There are 3 ways to do this, which overconstrains the solu-

tion. Indeed 3 point correspondences gives 6 equations in

only 5 unknowns, so the problem is overdetermined.

A neater solution with a lower degree polynomial can be

obtained by using all 3 pairwise constraints from the 3 point

correspondences





p1 q1 r1

p2 q2 r2

p3 q3 r3









f4
1

f2
1

1



 =





0
0
0



 (21)

Since the determinant of this 3 × 3 matrix must vanish, we

can write down a 5th degree polynomial in f2
2 . Note that

this solution enforces the fact that the 3 × 3 matrix has a

nullvector, but discards the constraint that the nullvector is

of the form
[

x2 x 1
]T

.

7. Other Algorithms

The technique described in the previous two sections can

be extended for arbitrary K1,K2. Given correspondences

in 2 views, up to 5 intrinsic parameters can be solved for

by writing down equation (10) for as many point pairs as

needed. The resulting simultaneous polynomials can be

solved using techniques from algebraic geometry [14].

8. Solving for Rotation

Given the calibration matrices K1,K2 it is straightfor-

ward to solve for the rotation from corresponding image

rays. We use the method in [1] which involves taking the

SVD of the correlation matrix C of the corresponding rays

C =
∑

i

r̂2ir̂
T
1i (22)

where

rij = K
−1
i ũij (23)

and r̂ij = rij/|rij |. Given that the SVD of the correla-

tion matrix C = UΣV
T the (least squares) estimate of the

rotation is given by

R = U





1 0 0
0 1 0
0 0 s



V
T (24)

where

s = sgn(det(UV
T )) (25)

Note that this is not a minimal solution as 2 point corre-

spondences are used to solve for 3 rotation angles, but the

solution minimises the squared distance between rays

R = arg min
R′

∑

i

|r2i − R
′
r1i|

2 (26)

9. Evaluation of Solvers

In this section we describe our methodology for evalua-

tion and comparison of the linear and polynomial solvers.

For each solver, we use MLESAC [17] with n trials to esti-

mate the pairwise motion parameters. For the linear solvers

we use equation (5). Note that it is important to use a ro-

bust solution to these equations (see Appendix A). For the

minimal solvers we use the algorithms of sections 5 and 6.

We use two evaluation functions, the rms focal length

error and rms projection error. Both are evaluated over all

image pairs, and against a gold standard solution obtained

by bundle adjustment over the whole sequence as in [2].

Note that it is difficult to solve for the focal length even

using bundle adjustment unless the panorama wraps around



360° [10], so we ensure that this is the case for both of our

datasets.

The rms pixel error ep is based on the projection errors

of random image points, relative to the gold standard. Con-

ceptually, we randomly distribute N points on each image i
and use the gold standard and test homographies H

∗
ij ,Hij

to project the points to image j. The residual is the differ-

ence between the projections, and the error function a robust

rms value of the residuals. See figure 2.

Note that we deliberately choose uniformly distributed

points for this test, and not those found using some feature

detector. This eliminates the choice of feature detector from

the evaluation scores, and forces the solutions to be accurate

even in areas where the feature detectors would not fire e.g.

blank areas of sky.

More formally

e2
p =

1

N

n
∑

i=1

n
∑

j=1
j 6=i

∑

k=1

ρ(r
(k)
ij ) (27)

where r
(k)
ij is the difference between the projections of the

kth random point from image i to image j under the gold

standard and test homographies

r
(k)
ij = u

(k)
j − u

∗(k)
j (28)

ũ
(k)
j = Hijũ

(k)
i (29)

ũ
∗(k)
j = H

∗
ijũ

(k)
i (30)

u
(k)
i is a random point uniformly distributed in image i, and

H
∗
ij = K

∗
jR

∗
ijK

∗
i
−1 and Hij = KjRijKi

−1 are the gold

standard and test homographies from image i to image j.

The third summation in equation (27) is over all randomly

generated points u
(k)
i that successfully project inside image

j under either the gold standard or test homographies, the

number of such points is N . We use a robust error function

ρ(x) =

{

|x|2, if |x| < ǫ

ǫ2, if |x| ≥ ǫ
(31)

with a value ǫ = 10 pixels used in all of our experiments.

The rms focal length error ef is given by

e2
f =

∑

i

∑

j ρ(fij − f∗
i )

∑

i

∑

j 1
(32)

where fij is the estimate of the focal length of image i from

the pairwise match between images i and j, and f∗
i is the

gold standard focal length for image i obtained from bundle

adjustment. Again we use a robust error function to sup-

press gross errors in f , with a value ǫ = f̄∗ = 800 pixels.

(a)

(b)

Figure 2: Evaluation function based on rms pixel error.

Uniformly distributed points u
(k)
i are projected from image

i to each matching image j. The residual r
(k)
ij between the

projections of the point under the gold standard and test ho-

mographies is computed (a). The error function is the root

mean square of all such residuals. Random points are gen-

erated for all images i, and residuals are summed for all

images that overlap image i (b).

10. Results

For evaluation we use 2 real image datasets – the first

contains 42 images with common focal length. The second

has 29 images where the focal length f varies by up to a fac-

tor of 2 and log(f) has a uniform distribution. See figures

7 and 8. We establish point matches between the images

by finding matching SIFT features [11]. Each feature was

matched to 6 nearest neighbours. This resulted in 108000

matches for the fixed focal length dataset, of which 69%

were outliers. The variable focal length dataset had 309306

matches of which 93% were outliers. There were more out-

liers in the second dataset due to the differing scales of the

images.

We ran our solvers on the datasets with variable number

of MLESAC iterations and plot the results in figures 3 and

4. The error bars correspond to 2 standard deviations of the

results over 10 runs. We found that the minimal solvers sig-

nificantly outperformed their linear counterparts in terms of

focal length estimation and the corresponding pixel errors.

Note that the errors in these plots are caused by a combina-

tion of gross errors (bad MLESAC samples, failure of auto-

calibration) as well as noise in the interest point positions.

When attempting to estimate f it is important to max-

imise a realistic likelihood function in the sampling process







(a) Initialised with pairwise minimal solutions

(b) Initialised with pairwise bundle adjustment

(c) After full bundle adjustment and blending

Figure 7: Comparison of minimal solutions with pairwise bundle adjustment. Both initialisations converged to an rms error

of less than 2 pixels after 6 iterations of global bundle adjustment. Note that the focal lengths for this sequence varied by up

to a factor of 2.

(a) Fixed focal length, without bundle adjustment, no blending

(b) Fixed focal length, with bundle adjustment, multi-band blending

Figure 8: Results for stitching without bundle adjustment. The focal length was initialised without RANSAC by using voting

over all views (see figure 6).




