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Abstract

This paper presents minimal solutions for the geometric
parameters of a camera rotating about its optical centre. In
particular we present new 2 and 3 point solutions for the
homography induced by a rotation with 1 and 2 unknown
focal length parameters. Using tests on real data, we show
that these algorithms outperform the standard 4 point linear
homography solution in terms of accuracy of focal length
estimation and image based projection errors.

1. Introduction

Image stitching is the process of combining data from
multiple images to form a larger composite image or mo-
saic. This is possible when the amount of parallax between
the images is small or zero. This occurs, for example, when
viewing a planar scene, or when rotating about a point.

Recent successful approaches to image stitching have
used feature based techniques [2, 3]. These methods
typically employ random sampling algorithms such as
RANSAC for robust estimation of the image geometry, to
cope with noisy and outlier contaminated feature matches
[4]. The RANSAC step has an inner loop consisting of a fast
solution for the parameters of interest given a small number
of correspondences. Since the probability of choosing a set
of correct correspondences decreases rapidly as the sample
size increases, solutions that use as few points as possible
in the RANSAC loop are favourable.

Recently, solutions have been developed that enable sev-
eral problems in image geometry to be solved efficiently
using the theoretical minimum number of points [12, 15].
These algorithms use algebraic geometry techniques [14] to
solve directly for the parameters of interest using polyno-
mial equations, and have been demonstrated to be superior
to previous approaches in structure and motion problems
[12]. Previous (non-minimal) approaches involved linear
solutions for over-parameterised matching relations e.g. the
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Figure 1: A pair of correspondences in a rotating camera
gives a single constraint on the calibration matrices K, Ko.
This paper describes solutions for the rotation and focal
length of a pair of cameras given the minimal number of
correspondences between them.

8 point DLT algorithm for the fundamental matrix [8], or
the linear solution for the trifocal tensor [6]. In addition
to being more noise prone, non-minimal solutions typically
require a subsequent auto-calibration stage to estimate the
minimal set of transformation parameters from the linear
solution [18, 13]. This would be required for example, if
one wanted to find optimal estimates for the underlying pa-
rameters using an iterative algorithm such as bundle adjust-
ment [19].

The same arguments transfer to the analogous problems
in image stitching. Though state of the art approaches cur-
rently use a 4 point linear solution for a homography in the
RANSAC loop [8], we show that in the most common prac-
tical cases 2 or 3 points are in fact sufficient, and that the
resulting solutions are more noise tolerant and give better
initialisations for the underlying parameters.

We focus on cases where all the parameters other than
the focal length are known. We believe that these are the
most important practical cases as sensible priors often ex-
ist for the other parameters (e.g. central principal point,
zero skew). Also, the resulting algorithms will use fewer
points than the standard 4 point homography. We do not in-
vestigate the case of calibrated rotation where closed form
solutions already exist [9].



A linear method for autocalibration of a rotating cam-
era was first proposed by Hartley [5, 7]. We compare our
minimal solutions to this technique in Section 10.

2. Problem Statement

Consider two cameras with coincident optical centres
viewing a world point X

o ~ K X (D
uz ~ KoRX 2

where R is the rotation between the cameras, K, K5 are
upper triangular calibration matrices and 113, U are the pro-
jections of the 3D point X to images 1 and 2. By eliminat-
ing X we find two constraints on the unknown parameters
of R (3 parameters) and K1, K5 (up to 5 parameters each).
The goal is to solve for the rotation and intrinsic parameters
of the cameras using the minimum number of correspon-
dences possible.

3. Linear Algorithms

From equations (1) and (2) we can write

l~l2 ~ H121~11 (3)
where
H; ~ KoRK? “)
Eliminating R gives
Hi,wiHL, ~ w3 5)
where
wi ~ KK] (6)

wy is known as the dual image of the absolute conic (DIAC)
[8]. Linear algorithms for autocalibration proceed by com-
puting a general 3 x 3 matrix H;5 from 4 point correspon-
dences [7]. The symmetric system of equations (5) then
gives 5 linear constraints on the elements of wi and w3. K;
and K can be found by Cholesky decomposition of wj and
w3.

4. Polynomial Algorithms

Instead of linearising we can work directly with the
sought after parameters of R and K. Consider a pair of
correspondences ujj <> Ugj, U2 <> Ugg Where

i, ~ KRX; )

We can eliminate R; by considering the angle between X
and X

TY.)2
cos20 = M (8)
X[ Xo[?
Noting that this angle is preserved in both images
cos20; = cos26, 9)
and writing in terms of the camera parameters gives
(af wityn)? (03, wattpy)?
ST e ST = T ST S S (10)
U wildiiujwilgg Uy Wwall21 UgoWwaU22

where w; ! ~ w? ~ K;K7. This gives a single non-linear

constraint on the unknown parameters of Ky, K, and is
used as a building block for our polynomial solvers.

5. The 2 Point Algorithm

A simple case arises when only the focal length is un-
known, but common to the 2 views. This occurs frequently
in practice, for example, when capturing a panorama with-
out zooming. Substituting

f 0 0
K,=|0 f O (11
0 0 1
in equation (10) gives
(a12 + f%)? _ (biz + f?)? (12)
(a1 + f2)(az + f2) (b1 + f2)(b2 + f?)
where
a1z = u{1u12, ayp = |u11|2, ag = |1112\2 (13)

bio =uljusn, by =|uxnl? b = |uxnl?

Equation (12) can be simplified to give a 3rd degree poly-
nomial in f? (the fourth degree term cancels). This can be
solved in closed form.

6. The 3 Point Algorithm

Another important practical case occurs when the focal
length is unknown and potentially different between the two
views. This might occur when capturing a panorama with
variable zoom. Substituting

K; = (14)

o o
oSk O
—_— o O

in equation (10) gives



(a2 +fD)? (bt f3)? as)

(a1 + fR)(az + f7) (b1 + f5)(ba + f3)

This can be simplified to give a biquadratic equation in f?
and f2. Writing this as a quadratic in f} gives

pfi+aff +r=0 (16)
where

p =f3(b1 + by — 2b13) + biby — b3,
4 =f3(2a12 — a1 — az) + £3(2a12(by + by)

— 2b1a(a1 + a2)) + 2a12b1by — (a1 + az)bi,
r=f3(afy — a1as) + f3(afy (b1 + ba) — 2a1a2b12)

+ a?yb1by — ajasghi, (17)

Note that p is Ist degree and ¢ and r are second degree
polynomials in f2. Taking 2 pairs of points gives the simul-
taneous equations

pift+afi+ri=0 (18)
pafi +aqeff +1r2=0 (19)

The common solutions of the polynomials are the roots of
the resultant R

pr g ™ O

0 pr @1 ™
= 20
p2 g rm2 0 (20)
0 p2 q@

This is a 7th degree polynomial in f3, which can be solved
by taking the eigenvalues of the companion matrix. f7 is
then obtained by solving the quadratic equation (16).

Note that this is not strictly a minimal solution. The
equations (18) and (19) are formed by choosing two pairs of
correspondences from 3 point correspondences in 2 views.
There are 3 ways to do this, which overconstrains the solu-
tion. Indeed 3 point correspondences gives 6 equations in
only 5 unknowns, so the problem is overdetermined.

A neater solution with a lower degree polynomial can be
obtained by using all 3 pairwise constraints from the 3 point
correspondences

Pr @1 T ffl 0
p2 @ ro| |fE] =10 21
P3 Q3 T3 1 0

Since the determinant of this 3 x 3 matrix must vanish, we

can write down a 5th degree polynomial in f2. Note that

this solution enforces the fact that the 3 x 3 matrix has a

nullvector, but discards the constraint that the nullvector is
2 T

of the form [z? =z 1] .

7. Other Algorithms

The technique described in the previous two sections can
be extended for arbitrary K, Ks. Given correspondences
in 2 views, up to 5 intrinsic parameters can be solved for
by writing down equation (10) for as many point pairs as
needed. The resulting simultaneous polynomials can be
solved using techniques from algebraic geometry [14].

8. Solving for Rotation

Given the calibration matrices K, K it is straightfor-
ward to solve for the rotation from corresponding image
rays. We use the method in [1] which involves taking the
SVD of the correlation matrix C of the corresponding rays

C=) i, (22)
%
where

r;; = K,L_lﬁ” (23)

and rj; = r;;/|r;;|. Given that the SVD of the correla-
tion matrix C = UXVT the (least squares) estimate of the
rotation is given by

1 0 0
R=U|0 1 0o|VT (24)
0 0 s
where

s = sgn(det(UVT)) (25)

Note that this is not a minimal solution as 2 point corre-
spondences are used to solve for 3 rotation angles, but the
solution minimises the squared distance between rays

— 3 P ! . 2
R = arg nrgnz [r2i — Ry (26)

9. Evaluation of Solvers

In this section we describe our methodology for evalua-
tion and comparison of the linear and polynomial solvers.
For each solver, we use MLESAC [17] with n trials to esti-
mate the pairwise motion parameters. For the linear solvers
we use equation (5). Note that it is important to use a ro-
bust solution to these equations (see Appendix A). For the
minimal solvers we use the algorithms of sections 5 and 6.

We use two evaluation functions, the rms focal length
error and rms projection error. Both are evaluated over all
image pairs, and against a gold standard solution obtained
by bundle adjustment over the whole sequence as in [2].
Note that it is difficult to solve for the focal length even
using bundle adjustment unless the panorama wraps around



360° [10], so we ensure that this is the case for both of our
datasets.

The rms pixel error e, is based on the projection errors
of random image points, relative to the gold standard. Con-
ceptually, we randomly distribute /N points on each image ¢
and use the gold standard and test homographies H7;, H,;;
to project the points to image j. The residual is the differ-
ence between the projections, and the error function a robust
rms value of the residuals. See figure 2.

Note that we deliberately choose uniformly distributed
points for this test, and not those found using some feature
detector. This eliminates the choice of feature detector from
the evaluation scores, and forces the solutions to be accurate
even in areas where the feature detectors would not fire e.g.
blank areas of sky.

More formally

=Y Sl @7)

where rg@) is the difference between the projections of the

kth random point from image 4 to image j under the gold
standard and test homographies

MR ORIR G (28)
o = myal (29)
a® = mhal (30)

u®

, s arandom point uniformly distributed in image ¢, and
H;; = K;R};K; ' and H;; = K;R;;K; " are the gold
standard and test homographies from image ¢ to image j.
The third summation in equation (27) is over all randomly
generated points ugk) that successfully project inside image
7 under either the gold standard or test homographies, the

number of such points is /N. We use a robust error function

x|, if x| <€
= 31
p(X) {62, if |X‘ > e 3D

with a value e = 10 pixels used in all of our experiments.
The rms focal length error e is given by

> Zj p(fij — f)
2241

where f;; is the estimate of the focal length of image 7 from
the pairwise match between images ¢ and j, and f;* is the
gold standard focal length for image ¢ obtained from bundle
adjustment. Again we use a robust error function to sup-
press gross errors in f, with a value e = f* = 800 pixels.

€} = (32)
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Figure 2: Evaluation function based on rms pixel error.

(k)

Uniformly distributed points u;"’ are projected from image

?

1 to each matching image j. The residual rz(-l-c) between the
projections of the point under the gold standard and test ho-
mographies is computed (a). The error function is the root
mean square of all such residuals. Random points are gen-
erated for all images 4, and residuals are summed for all

images that overlap image ¢ (b).

10. Results

For evaluation we use 2 real image datasets — the first
contains 42 images with common focal length. The second
has 29 images where the focal length f varies by up to a fac-
tor of 2 and log(f) has a uniform distribution. See figures
7 and 8. We establish point matches between the images
by finding matching SIFT features [11]. Each feature was
matched to 6 nearest neighbours. This resulted in 108000
matches for the fixed focal length dataset, of which 69%
were outliers. The variable focal length dataset had 309306
matches of which 93% were outliers. There were more out-
liers in the second dataset due to the differing scales of the
images.

We ran our solvers on the datasets with variable number
of MLESAC iterations and plot the results in figures 3 and
4. The error bars correspond to 2 standard deviations of the
results over 10 runs. We found that the minimal solvers sig-
nificantly outperformed their linear counterparts in terms of
focal length estimation and the corresponding pixel errors.
Note that the errors in these plots are caused by a combina-
tion of gross errors (bad MLESAC samples, failure of auto-
calibration) as well as noise in the interest point positions.

When attempting to estimate f it is important to max-
imise a realistic likelihood function in the sampling process



(i.e. to use MLESAC instead of RANSAC). This is be-
cause the number of inliers can remain approximately con-
stant across a large range of focal lengths. See figure 9.
Our MLESAC likelihood function assumes that correspon-
dences are i.i.d. with position errors distributed according
to a heavy tailed Gaussian distribution p(r) o e P/ "2,
where p(r) is a truncated quadratic as in equation (31). Note
that summing log likelihoods gives a clear minimum at the
correct focal length, whereas simply counting the number
of inliers does not (see figure 9).

Figures 3 and 4 show that it is better to use minimal solu-
tions if our goal is to estimate the focal length. However, in
some applications computing an accurate f is not necessary,
and only a set of consistent correspondences is required.
This is often easier to achieve in practice. For example, au-
tocalibration from H may fail due to noise in some cases,
even though the inliers to H are correct. Also, a similar-
ity model can be quite effective at finding consistent cor-
respondences, without being able to estimate f. To clarify
this issue we tested the minimal solutions against the ho-
mography and similarity transform models, counting only
the number of inliers and without attempting to estimate the
focal length. Figure 5 shows the results. Interestingly, the
2 point similarity model works well for small numbers of
RANSAC iterations, but is overtaken by the 4 point homog-
raphy as the number of iterations increases. Again, the min-
imal solutions give the best results.

Another point to note is that the minimal solutions are no
more expensive to compute than their linear counterparts.
For example, the 3 point algorithm requires solution of a 5 x
5 eigenvalue problem, which is less expensive to compute
than the 8 X 9 SVD used in the 4 point DLT algorithm.

10.1. Initialisation for Bundle Adjustment

Our polynomial solvers are intended to be used in the
first stage of stitching applications where the subsequent
stages involve bundle adjustment. From RANSAC we have
estimates of R;;, K;, K, for every pair 7, j, but to initialise
the bundle adjuster we require a single set of parameters
R,;, K; for each camera. Note that some of the pairwise
estimates are noisy. For example, if the images have low
overlap the focal length estimate is based on few points at
the image edge. If the images have too high overlap the fo-
cal length may also be noisy — since zero rotation gives zero
information about focal length.

Hence it useful to have some method to combine ro-
tation and focal length estimates from multiple views. A
simple (RANSAC free) approach is to vote over all feature
matches, e.g. for each randomly sampled pair of points we
record a vote for the field of view of that image (see figure
8). Another approach we have used is to use the median of
all pairwise focal length estimates (see figure 7). In both
of these examples we have chained together pairwise rota-
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Figure 5: Comparison of minimal solutions, similarity
transform and homography for finding inliers. Note that the
minimal solutions are superior in both cases.
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Figure 6: Votes for field of view from every random sample
in the Eldorado sequence (fixed focal length). The correct
field of view is around 40°. This value was used for the
result of figure 8. This sequence contained 69% outliers.

tion estimates, each time adding the image with the most
matches to the current set.

Despite our best efforts (minimal solutions and realistic
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Figure 4: Comparison of linear and minimal solutions — variable focal length.

likelihood functions), there are limitations to what one can
achieve using pairwise estimates of focal length. This is
shown in figure 7(b), which shows the results of pairwise
bundle adjustment on the variable focal length sequence.
The overall scale of the focal lengths is still mis-estimated,
despite using an optimal pairwise registration algorithm (the
ends of the panorama should join up). Hence at some point,
some form of global optimisation or bundle adjustment will
be required (figure 7(c)).

11. Conclusions

We have presented a new family of minimal solutions for
semi-calibrated panoramic stitching. This gives rise to sim-
ple 2 and 3 point algorithms for computing the focal length
of a rotating camera. We have shown that these algorithms
are more robust in terms of focal length estimation and rms
pixel errors than previous state of the art solutions.
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A. Solving the Linear Equations

Given H;; = sK;RK; ' equation 5 becomes

H KK/ H], = K;K] (33)
fi 00

assuming K; = [0 f; 0| and expanding out the 6
0 0 1

equations of this symmetric system gives

fE(hiy+hiy) =82 f +hiy=0 (39
f2(ha1hor + hishas) + hizhaz = 0 (35)
f2(h11hs1 + hiahga) + hizhas = 0 (36)

FE(h3y + hiy) — 82 [ + hig = (37)
f7(ha1hsy + haohsa) + haghss = 0 (38)

FE(h3 +h3y) = 8* + hgg =0 (39)

In the case of common focal lengths f; = f; one can find s
by imposing the modulus constraint (that H;; has unit deter-
minant). However, in this case we have found the equations
involving s (34, 37 and 39) are noisy. Hence in both cases
(fi = f;and f; # fi) we have used a least squares solution
of equations 35, 36 and 38 to solve for the focal length.



