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Abstract

We present an integrated framework for learning asym-

metric boosted classifiers and online learning to address the

problem of online learning asymmetric boosted classifiers,

which is applicable to object detection problems. In par-

ticular, our method seeks to balance the skewness of the

labels presented to the weak classifiers, allowing them to

be trained more equally. In online learning, we introduce

an extra constraint when propagating the weights of the

data points from one weak classifier to another, allowing

the algorithm to converge faster. In compared with the On-

line Boosting algorithm recently applied to object detection

problems, we observed about 0-10% increase in accuracy,

and about 5-30% gain in learning speed.

1. Introduction

AdaBoost [3, 14] has been successfully used in many

machine learning and pattern recognition tasks in com-

puter vision. Its underlying idea is to combine an ensem-

ble of M weak learners to produce the final classifier with

very high accuracy. In the tasks of object detection and

recognition, especially for face detection, impressive results

[8, 10, 15, 16] have been reported when cascading or hier-

archically organizing such boosted classifiers from coarse

to fine, achieving a final classifier with high detection rates

and fast detection speed.

Recently, there has been considerable interest in apply-

ing boosting techniques on computer vision problems that

require online learning. Examples are: online selection of

discriminative features of Grabner and Bischof [5], online

conservative learning of Roth et al. [13], and online co-

training of Javed et al. [9]. These methods use the same un-

derlying Online Boosting algorithm proposed by Oza [12]

to learn online. The algorithm minimizes the classification

error while updating the weak classifiers online.

However, in the tasks of object detection and recogni-

tion (e.g., face detection or database retrieval), one often

faces with a binary classification problem where the proba-

bility of observing the positive examples (i.e. the target ob-

ject) is much lower than the probability of observing the

negative examples (e.g. background, non-target object). In

such domains, an asymmetric classifier that can avoid the

danger of missing positive patterns is often more desirable

than the one minimizing the classification error. And then,

high detection rates can be achieved by cascading the clas-

sifiers (e.g. [15, 16]) or hierarchically organizing them (e.g.

[8, 10]) from coarse to fine.

There have been works addressing the problem of learn-

ing asymmetric classifiers [1, 7, 11, 16]. Though being dif-

fered in details, the common approach of these methods is

to setup an asymmetric expected loss where false negatives

are penalized more than false positives. Viola and Jones

[16] introduced an asymmetric loss: false negatives costs

k times more than false positives. They applied an asym-

metric re-weighting technique before training each weak

classifier so that the result is equivalent to minimizing their

asymmetric loss. Ma and Ding [11] applied cost-sensitive

learning technique [1] to face detection with re-weighting

scheme similar to that of Viola and Jones [16]. However,

the weight-updating rule [1] involves a parameter c which

is application-dependent and needs extensive trials for best

performance. Hou et al. [7] proposed an interesting adap-

tive technique avoiding the need for application-dependent

parameters, but their method requires re-training the weak

classifiers multiple times to fine-tune their asymmetric pa-

rameter at. To our best knowledge, their method could not

be done online.

In this paper, we introduce a novel boosting algorithm

which addresses the problem of learning online an asym-

metric boosted classifier. The idea of learning online is sim-

ilar to the Online Boosting algorithm [12] having been been

recently used [5, 9, 13], but with a faster convergence speed.

On the aspect of learning asymmetrically, our method is
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similar to that of Viola and Jones [16]. Besides, our method

also seeks to balance the skewness of labels presented to

each weak classifiers (to be discussed in the paper), so that

they are trained more equally.

The remaining parts of the paper are organized as fol-

lows. In Section 2, we introduce our algorithm for online

learning a boosted asymmetric classifier, providing analysis

and drawing relations to the offline case. Section 3 gives

the experimental results when comparing our method with

other methods. We present conclusions in Section 4.

2. Online Asymmetric Discrete AdaBoost

Suppose data come in online, and at iteration N , we ob-

serve a new training data point xN ∈ R
d and its correspond-

ing label yN ∈ {−1, 1}. Because the distribution of labels

is highly skewed, we assume P (y = 1) ≪ P (y = −1). We

wish to learn online a model C(x) to predict the label of an

unknown point x. The model of interest is an ensemble of

M weak classifiers fm(x) ∈ {−1, 1} related by:

C(x) = sign(FM (x)) (1)

FM (x) =

M
∑

m=1

cmfm(x), (2)

where cm is the voting weight associated with the m-th

weak classifier fm(x) [3].

Our goal is to learn online (cm, fm(x)) for all m =
1, 2, ...,M so as to minimize an expected loss ǫ(C) of

wrongly predicting the labels. In this paper, we consider

the loss proposed by Viola and Jones in [16] for asymmet-

ric classifiers:

ǫ(C)
def
= E[ALoss(C(x), y)], (3)

where

ALoss(C(x), y)
def
=







√
k if y = 1 and C(x) = −1

1/
√

k if y = −1 and C(x) = 1
0 otherwise

(4)

and k is a parameter which tells how many times we penal-

ize false negatives more than false positives.

Like other boosting methods, instead of minimizing the

expected asymmetric loss ǫ(C) directly, we seek to mini-

mize an upper bound (see [16] for more details):

J(FM )
def
= E[

√
kye−yFM (x)] ≥ ǫ(C). (5)

However, unlike other methods, while minimizing this

bound, we also seek to balance the skewness of the label

distribution presented to each of the weak classifier, allow-

ing them to be trained more equally and thereby resulting

in a better performance. This can be achieved by carefully

controlling the asymmetric weight for each weak classifier.

Algorithm 1 Online Asymmetric Discrete AdaBoost

Require: k
// Initial conditions:

Set vtp
m = vtn

m = vfp
m = vfn

m = 0,m = 1, 2, ..., M .

Set γm = 0,m = 1, 2, ...,M .

for each new example (xN , yN ) do

Set km according to equation (18) (see section 2.2).

Set v ← 1.

for m = 1 to M do

// Fit fm(x):
Set w ← v

√
kyn

m .

Learn fm(x) incrementally using new example

(xN , yN ) with weight w.

// Propagate the weights (see section 2.3):

Re-run fm(xN ) and compare it with yN .

if true positive then

Set vtp
m ← vtp

m + v.

Set am ← vtp
m +vfp

m

vtp
m +vtn

m +vfp
m +vfn

m

.

Set v ← v amN/2

vtp
m

else if false negative then

Set vfn
m ← vfn

m + v.

Set am ← vtp
m +vfp

m

vtp
m +vtn

m +vfp
m +vfn

m

.

Set v ← v (1−am)N/2

vfn
m

else if false positive then

Set vfp
m ← vfp

m + v.

Set am ← vtp
m +vfp

m

vtp
m +vtn

m +vfp
m +vfn

m

.

Set v ← v amN/2

vfp
m

else

Set vtn
m ← vtn

m + v.

Set am ← vtp
m +vfp

m

vtp
m +vtn

m +vfp
m +vfn

m

.

Set v ← v (1−am)N/2
vtn

m

end if

Set γm ← log 1−am

am
.

Set em according to equation (25).

Set cm ← 1
2 log 1−em

em
.

end for

end for

Output the classifier: sign(
∑M

m=1 cmfm(x)).

2.1. Why equal skewness?

To see why this is the case, let us first define the term

“skewness” as follows.

Definition The skewness of a binary distribution P (y), y ∈
{−1, 1} is given by

γ
def
= log

P (y = −1)

P (y = 1)
. (6)



Figure 1. A case where examples are highly skewed γ1 ≫ 1: Pos-

itives are squares, negatives are triangles. Suppose we train with

four weak classifiers, which are linear separators. The first classi-

fier is labeled as ’1’. On the left is the result trained by Viola and

Jones’ method: while the subsequent weak classifiers are well-

modeled the first classifier is highly affected by γ1, resulting in

rejecting a significant proportion of positives. On the right is the

result trained by our method. Most of the positives are preserved.

Let us consider Viola and Jones’ reweighting technique.

Suppose the distribution of labels initially have skewness

γ1. It is easy to verify that, by multiplying the weights with
2M
√

kyn , the new skewness is given by (see Proposition A.5

for the proof):

γ′
1 = γ1 −

1

M
log k. (7)

However, for subsequent weak classifiers, because of

the balanced re-weighting scheme of AdaBoost, the total

weights of positive examples and negative examples after

being updated are equal; which means γm = 0 for all

m > 1. Therefore, when the updated weights are multi-

plied with
2M
√

kyn , the skewness of the labels becomes

γ′
m = − 1

M
log k. (8)

So while subsequent weak classifiers may be trained

equally, training the first classifier is largely affected by γ1.

The result is that the first classifier could be trained very

wrongly, due to the high skewness of the labels of the exam-

ples, as illustrated in (figure 1). By ensuring all weak clas-

sifiers to be trained with equal skewness, we expect their

decision boundaries after training will have equal effects.

Therefore, we seek to balance the skewness of the label dis-

tribution presented to the weak classifiers.

2.2. Minimizing the upper bound while balancing
label skewness presented to weak classifiers

For easy explanations, let us assume for the moment that

we are learning offline. The offline version of our algo-

rithm is sketched in (algorithm 2). The algorithm itself is

similar to Viola and Jones’s Asymmetric AdaBoost [16].

However, real-valued weak classifiers [14] are replaced by

discrete-valued weak classifiers [3]. And, rather than mul-

tiplying the weights presented to the m-th weak classifier

Algorithm 2 Offline Asymmetric Discrete AdaBoost

Start with weights vn ← 1/N, n = 1, 2, ..., N .

for m = 1 to M do

Choose km.

Set wn ← vn

√
kyn

m , n = 1, 2, ..., N , and normalize wn

so that
∑N

n=1 wn = 1.

Fit weak classifier fm(x) ∈ {−1, 1} using data

(xn, yn) with weights wn.

Set cm ← 1
2 log 1−em

em
, where em is the weighted error

given by em ←
∑N

n=1 wn1[yn 6=fm(xn)].

Set vn ← wne−yncmfm(xn), n = 1, 2, ..., N .

end for

Output the classifier: sign(
∑M

m=1 cmfm(x)).

with
2M
√

kyn , they are multiplied with a more general
√

kyn
m

(e.g. km can be set to
M
√

k). Our goal is to design parame-

ters k1, k2, ..., kM so that the algorithm:

1. Minimizes J(FM ) in (5).

2. Ensures equal label skewness presented to weak clas-

sifiers.

Let us denote, by vm,n = vm(xn, yn) and by wm,n =
wm(xn, yn), the weight of the n-th example before and af-

ter being multiplied with
√

kyn
m respectively. According to

the algorithm, they are propagated by the following rules:

vm+1(x, y) = wm(x, y)e−ycmfm(x) (9)

wm(x, y) = vm(x, y)
√

ky
m/Zm (10)

where Zm is a normalization factor to make wm(x, y) a dis-

tribution.

In Proposition A.1, we prove that at the m-th weak

classifier, the algorithm fits (cm, fm(x)) by minimizing

Jm(c, f) = E[(
∏m

i=1

√

ky
i )e−y(Fm−1(x)+cf(x)))]. There-

fore, to minimize J(FM ) in (5), the following condition

must be true:
M
∏

m=1

km = k (11)

Note that AdaBoost itself is an M -stage greedy process

where at each stage, a weak classifier is fit based on previ-

ous weak classifiers. Hence, to minimize the expected loss

of the ensemble classifier, the last weak classifier must be

chosen to minimize this loss. Clearly, our method does not

principally minimize J(FM ) from the beginning (and nei-

ther do other methods [7, 11, 16]). But, as pointed out by

Viola and Jones, by doing so the first weak classifier will

absorb all the asymmetric weights, leaving only symmet-

ric weights to subsequent weak classifiers, which is not a

good idea. It is better to distribute the asymmetric weights

among the weak classifiers equally, so that each of them



only absorb the same amount of asymmetric weights, and

give similar results.

Next, denote by γm the skewness of the labels weighted

by vm(x, y):

γm
def
= log

Pvm
(y = −1)

Pvm
(y = 1)

, (12)

and by γ′
m the skewness of the labels weighted by

wm(x, y):

γ′
m

def
= log

Pwm
(y = −1)

Pwm
(y = 1)

. (13)

The relationship of γm and γ′
m is given by (Proposition

A.5):

γ′
m = γm − log km. (14)

For the first weak classifier, γ1 is the original unweighted

label distribution of examples. For subsequent weak clas-

sifiers, if fm−1(x) is at the optimal (i.e. fm−1(x) =
arg minf Jm−1(c, f)), then based on Corollary A.4, the to-

tal weights of positive and negative examples weighted by

vm(x, y) are equal, implying that γm = 0.

Therefore, by assuming that all classifiers fm(x) min-

imize their goal fm(x) → arg minf Jm(c, f), the second

condition can be established:

γ1 − log k1 = − log km ∀m ∈ {2..M}. (15)

Solving the system of (11) and (15) analytically, we get:

k1 = e
1

M
log k+ M−1

M
γ1 (16)

km = e
1

M
(log k−γ1) ∀m ∈ {2..M}. (17)

However, in practice fm−1(x) are not always at the opti-

mal, because we use crude approximations to conditional

expectation, such as decision trees or other constrained

models, and the training size may not be large enough.

Therefore, γm may not be 0 for m > 1.

We estimate km based on γm and the remaining amount

of k to be distributed among the remaining weak classifiers.

Suppose up to m − 1 weak classifiers have been trained

(and hence the values of k1, k2, ..., km−1 are obtained). The

value of km is chosen by constraining it with condition (11),

assuming that all remaining weak classifiers minimize their

goal (fm(x) → arg minf Jm(c, f)), and by seeking to bal-

ance the skewness of label distributions among the remain-

ing weak classifiers. Similarly to (16), once we solve the

system of equations, we get:

km = e
1

M−m+1
(log k−

∑ m−1

i=1
log ki)+

M−m
M−m+1

γm . (18)

2.3. Online learning

We wish to convert algorithm 2 to online learning mode.

Recently, some variants of boosting methods adapted to on-

line learning were proposed in the literature [2, 12]. But

they are mainly designed for symmetric cases. In this paper,

we are interested in ideas proposed by Oza and Russell [12]

which have been recently applied to computer vision prob-

lems [5, 9, 13]. Although their work was not designed for

asymmetric classifiers, some of their ideas are propagated

to our method.

2.3.1 Propagating the weights

In [12], Oza and Russel propagated the weights rather than

by using the normal updating rule, which is sensitive to

wrong predictions at early iterations, but by seeking to

achieve two conditions which eventually the normal up-

dating rule will guarantee. The first condition is, the total

weights of examples presented to a weak classifier is N . It

is reasonable considering that the weight of each new ex-

ample can be set to 1 initially, and that the weight-updating

rule is just a way of re-distributing the weights among the

examples.

The second condition comes from the fact that, after cm

is optimally chosen (given fm(x) is fixed), the total weights

presented to the next weak classifier, of correctly classified

examples and wrongly classified examples, are equal (see

Corollary 2 in [4]). By asymptotically tuning the weights

presented to the next classifiers to have balance between

total correctly classified weights and total wrongly classi-

fied weights, the weights will be more similar to what they

are in offline AdaBoost, thereby convergence could occur

more rapidly. To achieve both conditions asymptotically,

they scale the weights as follows:

λm+1,n =

{

λm,n
N/2
λsc

m
if yn = fm(xn)

λm,n
N/2
λsw

m
if yn 6= fm(xn)

(19)

where λsc
m and λsw

m are the total weights of examples, cor-

rectly classified and wrongly classified by fm(x) respec-

tively, after observing N examples; and λm,n is the weight

of example (xn, yn) presented to the m-th weak classifier.

The idea is, when N is large, the total weights presented

to the next weak classifier of those correctly classified and

wrongly classified should both converge to N/2.

The property of balance between total correctly classi-

fied weights and total wrongly classified weights also holds

for weights vm,n (equations (9) and (10)) in our method

(see Corollary A.3 for the proof). Besides, we expect that

each weak classifier fm(x) will eventually be at the opti-

mal when N → ∞. Based on Corollary A.4, it means the

total weights of positive examples and the total weights of

negative examples will eventually be equal.

Therefore, in our method, the weights vm,n are propa-

gated to asymptotically achieve three conditions rather than

two, expecting a faster convergence rate. The first two con-

ditions are the same as those of Oza and Russel, but applied

to weights vm,n. The last condition is to ensure the total



weights vm,n of positive examples and negative examples

to be equal.

Our weight-updating rule is as follows:

vm+1,n =























vm,n
amN/2

vtp
m

if y = 1 and fm(xn) = 1

vm,n
(1−am)N/2

vfn
m

if y = 1 and fm(xn) = −1

vm,n
amN/2

vfp
m

if y = −1 and fm(xn) = 1

vm,n
(1−am)N/2

vtn
m

if y = −1 and fm(xn) = −1

(20)

where vtp
m , vfn

m , vfp
m , and vtn

m are the total weights of, true

positive examples, false negative examples, false positive

examples, and true negative examples respectively, after ob-

serving N examples; and am is an estimate of the weighted

probability that fm(x) predicts a positive label, given by:

am
def
=

vtp
m + vfp

m

vtp
m + vfp

m + vtn
m + vfn

m

. (21)

Proposition A.6 verifies that our weight-updating rule

asymptotically achieves the three conditions above. Note

that γm can be estimated from am by:

γm = log
Pvm

(y = −1)

Pvm
(y = 1)

≈ log
1 − am

am
. (22)

2.3.2 Estimating cm

Once fm(x) is updated using the using the weight-updating

rule in (20), we need to estimate cm. Let wtp
m , wfn

m , wfp
m ,

and wtn
m be the total weights wm,n of, true positive exam-

ples, false negative examples, false positive examples, and

true negative examples respectively, after observing N ex-

amples. Based on Proposition A.1, we get:

cm =
1

2
log

1 − em

em
, (23)

where em = ǫwm
(fm) is the weighted expected error of

fm(x). From (10), we can estimate em by:

em ≈ wfn
m + wfp

m

wtp
m + wfn

m + wfp
m + wtn

m

(24)

=
vfn

m

√
km + vfp

m /
√

km

(vtp
m + vfn

m )
√

km + (vfp
m + vtn

m )/
√

km

. (25)

The final online algorithm is presented in (algorithm 1).

Note that, since we seek to scale the sum of vm,n to N , we

expect Zm to be a constant factor. Therefore, we do not

normalize wm,n.

3. Experimental Results

We performed three experiments to test the performance

of our method, and to see how other online boosting meth-

ods for object detection problems [5, 9, 13] benefited from

Dataset AdaBoost Online Our

Boosting method

Promoters 0.8455 0.7136 0.7429+

Breast Cancer 0.9445 0.9573 0.9552

German Credit 0.735 0.6879 0.7013+

Chess 0.9517 0.9476 0.9501

Mushroom 0.9966 0.9987 0.9988

Cencus Income 0.9365 0.9398 0.9372

Synthetic 5-dim 0.9382 0.9049 0.9251

Synthetic 50-dim 0.8923 0.7972 0.8404+

Table 1. Online Boosting vs. Our method
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Figure 2. Learning curves for Mushroom dataset

our method. All our experiments shown below classified

objects in real time on a standard PC (Intel Pentium IV 2.00

GHz with 512 MB RAM).

3.1. Online Boosting

We compared our method with the Online Boosting algo-

rithm of Oza and Rusell [12] on several two-class datasets

(table 1) from the UCI KDD [6] presented in the work. The

last two datasets are our synthetic datasets. We used Naı̈ve

Bayes classifiers as weak classifiers. Because the datasets

are symmetric (i.e. positive examples and negative exam-

ples are equal), we set k = 1. The testing environments

were set up similar to that of Oza’s, with 10 runs of 5-fold

cross validation.

We noticed that our method performs better than Online

Boosting on under-complete datasets (those with a ’+’ in

table 1), and performs similarly on over-complete datasets.

This is expected as our method converges faster than Online

Boosting in early iterations, but eventually both methods

converge to that of offline AdaBoost (e.g. see figure 2) as

more examples are observed.

3.2. Online co­training for moving objects detection

In [9], Javed et al. proposed an online co-training frame-

work for object detection. In their work, a classifier is first

trained offline on a generic scenario; and then updated using

Online Boosting, allowing the boosted classifier to adapt to

the current scenario.

We implemented their method on the problem of pedes-

trian detection. Similar to their work, we used a background

model to subtract moving regions, followed by scaling the



Figure 3. Some classification results from PETS2001 dataset1.

White box: region predicted as pedestrian. Black box: region pre-

dicted as non-pedestrian.
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Figure 4. Performance on the PETS2001 datasets. Each example

corresponds to a detected moving region. Left: PETS2001 dataset

1. Right: PETS2001 dataset 2.

Figure 5. Some detection results of our Online Asymmetric Dis-

crete AdaBoost on the MIT+CMU test set.

regions down to 30x30 pixels, and then applying PCA on

the gradient magnitudes to obtain the global features. The

classifier (pedestrian detector) was first trained offline us-

ing 150 manually labeled images, and then updated online.

We compared the performance of their method when us-

ing Online Boosting, and when using our method. We used

the PETS2001 datasets 1 for training and testing the results.

The performance (in figure 3 and figure 4) shows that co-

training benefited from our method.

3.3. Online learning for face detection

We analyzed the performance of five algorithms on

the problem of face detection: Viola and Jones’ Of-

fline Asymmetric (Discrete) AdaBoost (DAB.VJ) [16],

our Offline Asymmetric Discrete AdaBoost (DAB.A), our

Online Asymmetric Discrete AdaBoost (DAB.OA), On-

line AdaBoost for feature selection using Online Boost-

ing (DAB.OFS) [5], and Online AdaBoost for feature se-

lection using our Online Asymmetric Discrete AdaBoost

(DAB.OAFS). Here, the feature selection technique in the

1http://ftp.pets.rdg.ac.uk/PETS2001/
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Figure 6. ROC curves of the algorithms on the MIT+CMU set.

last two algorithms is the technique presented in [5, 13] that

use Oza’s Online Boosting.

The face detectors followed the same flowchart as in

[15]. A total of 1500 frontal face images and 5000 non-face

images were collected. Face and non-face images are scaled

to a size 24x24 pixels. Haar-like features are extracted from

the sub-windows, forming a feature pool of 5000 features.

For all algorithms, a cascade of 25 boosted classifiers, from

coarse to fine, was set up. The first classifier had one weak

classifier, while the final classifiers had 200 weak classifiers.

We tested the algorithms on the MIT+CMU frontal face

test set 2 (see figure 6 and figure 7). Note that for the pur-

pose of testing, we used fewer boosted classifiers and had a

smaller feature pool than existing offline-trained face detec-

tors. As the result, the obtained detection rates were lower

than theirs.

For algorithms DAB.VJ, DAB.A, and DAB.OA, a weak

classifier selects the best feature from the big feature pool.

As a result, the training processes took very long. For algo-

rithms that use online feature selection (FS), i.e. DAB.OFS

and DAB.OAFS, the size of the pool was much smaller (we

set the size to 250, the same as proposed in [5]), and hence

the training processes were much shorter (about 20 times

faster), but at the cost of reduced detection rates. We ob-

served that online classifiers were often not so stable at first,

and only converged after a fair number of iterations had

passed. When the best feature of the big pool was some-

how swapped into the small pool, there was a good chance

it would be rejected some time later, because of 1) being

poorly trained, and 2) being compared with those not as

good but well trained in the small pool. As a result, the best

features selected by the additional FS process were, though

pretty good, not so good as those selected from the big fea-

ture pool.

Careful examination of the ROC curves shows a few

points: 1) our skewness balancing scheme resulted in a

small performance gain over that of Viola and Jones, 2) our

Online Asymmetric Discrete AdaBoost converged asymp-

totically to the first two offline algorithms as more examples

were trained, and 3) the online feature selection technique

2http://vasc.ri.cmu.edu/idb/html/face/frontal images/
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Figure 7. An example of training a 10-feature boosted classifier

with different algorithms. k is set to 20 for all algorithms.

also benefited from our Online Asymmetric Discrete Ad-

aBoost algorithm.

4. Conclusions

In this paper, we presented an integrated framework for

learning asymmetric boosted classifiers and online learn-

ing to address the problem of online learning asymmetric

boosted classifiers, which is applicable to object detection

problems. In addition, our method seeks to balance the

skewness of the labels presented to the weak classifiers, al-

lowing them to be trained more equally, and hence resulting

in a small performance gain. In terms of online learning, we

enforced three conditions to the weights of the examples

presented to weak classifiers, resulting in a faster conver-

gence speed when compared to the Online Boosting algo-

rithm [12] used in online boosting methods for object detec-

tion problems. Our experiments showed that, by replacing

Online Boosting with our algorithm, about 0-10% increase

in accuracy and about 5-30% gain in learning speed were

observed, depending on the problem the algorithms were

applied to.

A. Appendix

Proposition A.1. Consider the Offline Asymmetric Discrete

AdaBoost algorithm presented in (algorithm 2), the algo-

rithm sequentially fits weak classifier (cm, fm(x)) by mini-

mizing E[(
∏m

i=1

√

ky
i )e−y(Fm−1(x)+cf(x))] w.r.t. (c, f(x)).

Proof. The proof is analogous to Result 1 in Friedman et

al. [4], except that here we have an extra term
∏m

i=1

√

ky
i .

In addition, the proof in [4] requires an approximation of

f(x) up to the second order. The approximation is avoided

in our proof. Let wm(x, y) be the weighting function of the

examples when presenting to the m-th weak classifier. By

induction, we have

wm(x, y) = (

m
∏

i=1

√

ky
i )e−yFm−1(x)/Zm, (26)

where Zm is the normalization factor.

The goal is rewritten as:

Jm(c, f) = E[(

m
∏

i=1

√

ky
i )e−y(Fm−1(x)+cf(x))] (27)

= E[Zmwm(x, y)e−ycf(x)] (28)

= ZmE[wm(x, y)]Ewm
[e−ycf(x)], (29)

where Ew[·] is the weighted expectation defined by

Ew[g(x, y)]
def
=

E[w(x, y)g(x, y)]

E[w(x, y)]
. (30)

Now consider the two choices of f(x):

Ewm
[e−ycf(x)]

= Ewm
[e−c1yf(x)=1 + ec1yf(x) 6=1] (31)

= e−cEwm
[1yf(x)=1] + ecEwm

[1yf(x) 6=1]. (32)

Denote by ǫwm
(f) = Ewm

[1yf(x) 6=1] the weighted expected

error of weak classifier f(x), then:

Ewm
[e−ycf(x)] = e−c(1 − ǫwm

(f)) + ecǫwm
(f)

= e−c + (ec − e−c)ǫwm
(f). (33)

Therefore, minimizing (27) w.r.t. f(x) is equivalent to min-

imizing ǫwm
(f) w.r.t. f(x).

Next, suppose f̂(x) is the weak classifier trained by min-

imizing ǫwm
(f). Setting the derivative of Jm(c, f̂) w.r.t. c

to 0, we get:

ĉ = arg min
c

Ewm
[e−ycf̂(x)] =

1

2
log

1 − ǫwm
(f̂)

ǫwm
(f̂)

. (34)

Corollary A.2. Consider the Asymmetric AdaBoost algo-

rithm of Viola and Jones [16] where Discrete AdaBoost

is used instead of Real AdaBoost. The algorithm se-

quentially fits weak classifier (cm, fm(x)) by minimizing

E[ 2M
√

kyme−y(Fm−1(x)+cf(x))] w.r.t. (c, f(x)).

Proof. The results follows from Proposition A.1 consider-

ing k1 = k2 = ... = kM = M
√

k.

Corollary A.3. Consider the Offline Asymmetric Discrete

AdaBoost algorithm presented in (algorithm 2), after the

m-th weak classifier is trained:

E[yfm(x)vm+1(x, y)] = 0. (35)

Proof. The result is similar to Corollary 2 in Friedman et

al. [4], and follows from considering the partial derivative

of Jm(c, f) w.r.t. c at point (cm, fm(x)) is 0.



Corollary A.4. Consider the Offline Asymmetric Discrete

AdaBoost algorithm presented in (algorithm 2), at the opti-

mal fm(x) = arg minf Jm(c, f):

E[yvm+1(x, y)] = 0. (36)

Proof. Setting the point-wise derivative of Jm(c, f) w.r.t.

f(x) to 0, and then marginalizing it over x, we get the re-

sult.

Proposition A.5. Suppose the weighted marginal distribu-

tion of y presented to the m-th weak classifier has skewness

γm, if we multiply the weight of each example (xn, yn) by√
kyn

m , the newly weighted marginal distribution has skew-

ness γ′
m = γm − log km.

Proof. Let vm(x, y) and wm(x, y) be the weighting func-

tion before and after being multiplied respectively. We have

wm(x, y) = vm(x, y)
√

ky
m. (37)

Let wp
m and wn

m be the total weights of positive and negative

examples respectively after being multiplied, and vp
m and

vn
m be the total weights of positive and negative examples

respectively before being multiplied. By definition:

γ′
m = log

Pwm
(y = −1)

Pwm
(y = 1)

= log
wn

m

wp
m

= log
vn

m/
√

km

vp
m

√
km

= log
vn

m

vp
mkm

= log
Pvm

(y = −1)

Pvm
(y = 1)

− log km (38)

= γm − log km. (39)

Proposition A.6. Consider the weight-updating rule pro-

posed in (20), when N → ∞:

vtp
m + vfn

m + vfp
m + vtn

m → N (40)

vtp
m + vfn

m − vfp
m − vtn

m → 0 (41)

vtp
m − vfn

m − vfp
m + vtn

m → 0 (42)

Proof. We prove by induction. These conditions are true

for m = 1. Suppose they are true up to m = i− 1 for some

i. We consider vtp
i , vfn

i , vfp
i , and vtn

i as the total weight

estimates of true positives, false negatives, false positives,

and true negatives respectively of the (i − 1)-th classifier

(multiplied by factor N ). By definition, as N → ∞:

vtp
i → ai−1N/2 (43)

vfn
i → (1 − ai−1)N/2 (44)

vfp
i → ai−1N/2 (45)

vtn
i → (1 − ai−1)N/2 (46)

The results follow.
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