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Abstract

Over the past decade, tremendous amount of research

activity has focused around the problem of localization in

GPS denied environments. Challenges with localization are

highlighted in human wearable systems where the opera-

tor can freely move through both indoors and outdoors. In

this paper, we present a robust method that addresses these

challenges using a human wearable system with two pairs

of backward and forward looking stereo cameras together

with an inertial measurement unit (IMU). This algorithm

can run in real-time with 15Hz update rate on a dual-core

2GHz laptop PC and it is designed to be a highly accu-

rate local (relative) pose estimation mechanism acting as

the front-end to a Simultaneous Localization and Mapping

(SLAM) type method capable of global corrections through

landmark matching. Extensive tests of our prototype system

so far, reveal that without any global landmark matching,

we achieve between 0.5% and 1% accuracy in localizing a

person over a 500 meter travel indoors and outdoors. To

our knowledge, such performance results with a real time

system have not been reported before.

1. Introduction

Localization in GPS denied environments is a challeng-

ing problem which is getting ever increasing amount of at-

tention from researchers in many different fields. The rea-

son which makes this a very appealing problem is because

such a technology has a wide variety of potential applica-

tions, from autonomous robot/vehicle navigation to tracking

soldiers and emergency personnel during training exercises

or in active missions. Most of the work in this area so far has

focused on active sensing devices such as sonar and laser

range finders. However, recently inertial based passive sen-

sors coupled with cameras has attracted increased attention

thanks to the ever increasing processor speeds and the ad-

vent of compact systems with multiple processors that meet

the intensive computational requirements of such configu-

Figure 1. Front and back views of the backpack system and sample

images captured as the person enters a room.

rations. Previous published methods for visual odometry,

without trying to be all inclusive as the list of publications in

this field is very large, have used video streams from 1 or 2

moving cameras in monocular [3],[4],[10],[13] or binocular

[9],[11],[12] configurations. Recent work on invariant fea-

ture matching has also lead to landmark based 3D motion

tracking systems [14],[15]. However, these systems while

impressive are still not robust enough for autonomous use

over large distances and time periods. The reported accura-

cies in localization are between 1% and 5% over distances

of few hundred meters, mostly outdoors, (much shorter dis-

tances for indoors only).

Our multi-camera system is built on the real-time visual

odometry algorithm for a single stereo camera developed

by [11] and it is implemented with a complete parallel ar-

chitecture, so that real-time processing can be achieved on

a multi-cpu system, where computationally most extensive

single camera related routines remain the same and can be

carried out by separate CPUs.

We have performed many experiments where we com-

pared visual odometry on a single stereo platform against

ground truth data obtained with survey quality differential

GPS equipment and it has proved to be extremely accu-

rate as long as the working environment is relatively be-

nign. However if there are abrupt movements that jolt the

cameras violently, the field of view contains large moving
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Figure 2. Rig with two stereo pairs moving in 3-D space between

time instants tk and tk+1. Left and right cameras are denoted by

letters ’L’ and ’R’ in each pair. In the multicamera visual odometry

algorithm, given P12, the fixed relative pose between the two left

cameras of the front and back pairs, and P1(tk, tk+1), the relative

pose of the left camera of the front pair between two time instants,

we can determine P2(tk, tk+1) and vice versa. On the other hand,

for the automatic calibration procedure, given many pairs of highly

accurate poses P1(tk, tk+1) and P2(tk, tk+1) for 0 ≦ k ≦ N ,

one can determine the P12 which makes these pose pairs agree

the most according to some criteria.

objects, the cameras come very close to walls or other ob-

stacles, or the images do not contain good features that can

be tracked accurately, the pose estimates rapidly deteriorate.

These challenging conditions are more common in indoors

environments where the user can come close to plain walls

with little features or walk down crowded corridors, and

while opening doors, in which case the moving door occu-

pies the entire view in the front camera. In order to increase

the robustness of the system under such circumstances, we

have integrated an additional pair of stereo-cameras facing

backward and an IMU unit. The idea being that, whenever

the scenery is challenging for one stereo pair, the other pair

is utilized and vice versa. Then the problem boils down to

deciding which one of the pairs is providing the best pose

solution at any given time. If both stereo pairs fail due to the

lack of features or bad illumination, then the measurements

of the IMU help stabilize the pose estimates.

2. Multicamera Pose Transfer Mechanism

In our system with front and backward facing two stereo

pairs, visual odometry can be applied to each one individu-

ally to estimate left camera pose in that pair. In each stereo

head the extrinsic relation between the left and right cam-

eras is known through calibration. In addition, the pose

relation between the front left and back left cameras is

also computed through an automatic calibration mechanism

which will be described in Section 4. This fixed relation

across the two stereo pairs constrains the results and taking

advantage of this constraint requires the ability to compute

the pose of the left camera in one of the pairs given the pose

of the left camera in the other. Below we will briefly de-

scribe how this pose transfer method works.

The stereo visual odometry algorithm applied in both

front and back cameras separately, provides us with lo-

cal pose information of the left cameras in each pair be-

tween time instants tk and tk+1. These are denoted by

P1(tk, tk+1) and P2(tk, tk+1) for the front and back pairs

respectively. That is to say, the pose of the left camera of

the front stereo pair (denoted with subscript 1) at time tk+1

in the local coordinate frame of the left camera at time tk
is specified by a rotation matrix R1(tk, tk+1) and a transla-

tion vector T1(tk, tk+1) that transforms the coordinates of

a camera point X1(tk) expressed in the camera coordinate

frame at time tk to the camera point X1(tk+1) expressed in

the coordinate frame at time tk+1:

X1(tk+1) = R1(tk, tk+1)X1(tk) + T1(tk, tk+1) .

This transformation can also be expressed as

[

X1(tk+1)
1

]

= P1(tk, tk+1)

[

X1(tk)
1

]

where

P1(tk, tk+1) =

[

R1(tk, tk+1) T1(tk, tk+1)
0 1

]

.

Also, using the extrinsics between the two stereo pairs, the

pose of camera 2 (left camera in the back stereo pair) rel-

ative to camera 1 (left camera in front stereo pair) is de-

scribed by P12 such that

X2(t) = P12X1(t) , ∀t with P12 =

[

R12 T12

0 1

]

.

Then, the following expressions can be shown to hold:

P2(tk, tk+1) = P12 P1(tk, tk+1)P
−1
12

P1(tk, tk+1) = P−1
12 P2(tk, tk+1)P12

(1)

which enables the computation of P2(tk, tk+1) given P12

and P1(tk, tk+1), and vice versa. Hence, using the fixed

extrinsic P12, camera poses in the front stereo pair’s local

left camera coordinate frame can be transferred to the back

camera’s local left camera coordinate frame and vice versa.

This relation between camera poses on a fixed configuration

allows us to determine the poses of all the cameras con-

strained by any given single camera pose. This way, we can

evaluate the quality of poses generated by one stereo pair

on the other stereo pair’s dataset, the goal being to decide



on the pose that performs well on both datasets. As a re-

sult, all the pose candidates get evaluated on the same data

including points from all cameras enabling the selection of

the best pose to be very robust.

3. Multicamera Visual Odometry Algorithm

Visual odometry addresses the problem of estimating

camera poses based on image sequences. After acquiring

the left and right camera image frames at time tk, the first

step consists of detecting and matching Harris corner [5]

based feature points in each stereo pair. Feature point image

coordinates are normalized using the known intrinsic cali-

bration parameters in each camera (through multiplication

with the inverse of the calibration matrix) and compensated

for radial distortion. In stereo matching process, calibration

information allows us to eliminate most of the false matches

by applying epipolar and disparity constraints. This is fol-

lowed by computation of the 3D locations corresponding

to these feature points through stereo triangulation in the

coordinate frame of the current left camera. Next, using

the new image frames at time step tk+1, 2D-2D correspon-

dences are established by matching feature points between

the previous frames at timestep tk and the current ones at

tk+1. This allows 3D-2D point correspondences to be estab-

lished based on the 3D point cloud computed in the previous

step. Finally, the pose of the left camera in each stereo pair

can be computed using a robust resection method based on

RANSAC followed by iterative refinement of the winning

hypothesis where Cauchy based robust cost function of the

reprojection errors in both the left and right images is mini-

mized. For the front stereo pair (j = 1) and back stereo pair

(j = 2), this cost function is given by

cj(P
j
k) =

Kj
∑

i=1

ρ(x
ℓj

i −h(Pj
kX

j
i ))+ρ(x

rj

i −h(PsjP
j
kX

j
i )) ,

(2)

where, for the jth stereo pair, Kj is the number of feature

points, x
ℓj

i and x
rj

i denote coordinates of the feature point

i in the left and right images, X
j
i denotes its 3D position

in homogeneous coordinates, Psj denotes the pose of the

right camera in the left camera coordinate frame (known

through stereo calibration), function h is used in denoting

the conversion from homogeneous to inhomogeneous co-

ordinates, ρ(y) = log(1 + ‖y‖2/a2) is the Cauchy based

robust cost function with a given scale parameter a, and fi-

nally P
j
k , Pj(tk, tk+1) is the relative pose across two

time instants.

In our baseline approach all the above steps are per-

formed independently for both the front and back stereo

pairs in a parallel fashion. At the end of this process, two

pose estimates are obtained from both pairs. The winning

pose out of these two candidates is determined by comput-

ing their reprojection errors in the entire system using the

pose transfer mechanism (1). Hence, by defining the fol-

lowing global cost functions,

c̄1(P
1
k) = c1(P

1
k) + c2(P12P

1
kP21)

c̄2(P
2
k) = c2(P

2
k) + c1(P21P

2
kP12) ,

(3)

for the front and back pairs respectively, the final decision

function used in selecting the best camera index can be writ-

ten as

d(P1
k,P2

k) =

{

1 if c̄1(P
1
k) < c̄2(P

2
k)

2 otherwise
(4)

where we compare cumulative (global) scores, c̄1(P
1
k) and

c̄2(P
2
k), of the camera poses determined by each stereo pair,

by which we mean combined scores after that pose is trans-

formed and scored on every camera’s data in the multi-

camera system. For instance, in case where the front camera

feature tracking is successful but the back camera is not, the

pose generated based on the front camera’s data points will

have a small residual error in its own data set and a large

residual error in the back camera’s dataset. On the other

hand the pose generated by the back stereo pair will have

high residual error not only on its own dataset, but it will

also have high residual error on the front camera’s dataset

as well, since it was computed from poor data to begin with.

So this method provides a very robust way of choosing the

best pose out of the multiple candidates.

Although in this paper, we present results from this base-

line system, some more advanced techniques can be imple-

mented where the two pairs are more intricately integrated

resulting in a tightly coupled system. These efforts are to in-

crease not only the robustness of the algorithm but also the

overall accuracy over that of either one of the single stereo

pairs can achieve. In the following, we describe these in

more detail.

3.1. Multi-camera Preemptive RANSAC and Itera-
tive Refinement

In the preemptive RANSAC algorithm for single stereo

visual odometry, randomly selected 3 point correspon-

dences between the 3D point cloud and the 2D image points,

N number of pose hypotheses (by default N=500) are gen-

erated using the 3-point resection algorithm. Then, all the

hypotheses are evaluated on chunks of M data points (by

default M=100) based on the robust cost function (2) ,

each time dropping out half of the least scoring hypotheses.

Thus, initially we start with 500 hypotheses, all of which are

evaluated on a subset of 100-point correspondences. Then

they are sorted according to their scores on this data set and

the bottom half is removed. In the next step, another set of

100 data points is selected on which the remaining 250 hy-

potheses are evaluated and the least scoring half are pruned

and so forth until a single best-scoring hypothesis remains.



Figure 3. Flow diagram for multicamera visual odometry and IMU

integration in our system.

For the multi-camera system, preemptive RANSAC can

be implemented as follows. As before, each camera inde-

pendently generates 500 pose hypotheses that are based on

randomly selected 3 point correspondences using its own

data. However, these hypotheses from each camera are eval-

uated not only on the camera that generated them but their

transformations are also evaluated on the other stereo pair’s

data using the global cost functions (3). Hence, preemp-

tive scoring in each camera is accomplished by obtaining

a cumulative score for each hypothesis after combining its

corresponding scores determined in all the cameras on the

initial set of 100 data points from each camera. Then the

least scoring half (now based on cumulative score) from

each camera is discarded and the remaining half is evalu-

ated on another set of 100 points in every camera and the

cumulative scores are updated and so forth. So at the end

of the preemptive RANSAC the best cumulative scoring hy-

pothesis is obtained in each camera.

At the end of the preemptive RANSAC routine, the win-

ning hypothesis in each stereo pair is passed to a pose refine-

ment (polishing) step where iterative minimization of the

robust cost function of the reprojection errors is performed

through Levenberg-Marquardt method. For this polishing

step in the single stereo camera case, the cost function in

(2) is used, however for the multicamera case the cumula-

tive cost functions given by (3) can be used in each stereo

pair resulting in a better pose estimate than either of them

could produce on its own.

4. Automatic Extrinsic Calibration

We perform stereo calibration (intrinsic and extrinsic) for

each pair using the Matlab calibration toolkit [1]. Also, as

described in Section 2, for the multi-camera visual odom-

etry algorithm we assume that P12 is known beforehand

which is used in the algorithm to constrain the pose of one

camera pair given the other.

In order to determine P12, one option would be to col-

lect several images from all cameras by placing the rig in

a calibration room with known 3-D reference points. Then

the parameters of the extrinsic pose relation between the

front left and back left cameras would be found using an

optimization tool that would minimize a suitable function

of the reprojection errors in the images. Instead of such an

approach, we chose to develop a convenient automatic cal-

ibration method which served well. The idea behind this

method is based on the fact that given the left camera poses

in the two stereo pairs, one can determine P12. Namely,

if we ran visual odometry on both pairs independently in

a feature rich environment which would make sure both

systems perform equally well and provide highly accurate

poses, then the outputs from both pairs could be used in

order to search for the extrinsic relation that would bring

these two sources into agreement according to some crite-

rion described below. We collected such calibration quality

data outdoors using a feature rich environment in brightly lit

conditions where the person wearing the backpack system

walked slowly on a long circular path while at the same time

revolving around his body, making many 360 degree turns

along the way. This kind of data proved to be very useful

as it exercised all degrees of freedom simultaneously. This

problem is related to the sequence alignment work in [2]

where the goal is to solve for the homography between two

cameras based on the non-overlapping image sequences ob-

tained from both.

Hence, given a sequence of pose estimates for 0 ≦ k ≦
N , where N is in the order of several thousand, in order to

determine P12, we start by writing

P12 =

[

R(q) T

0 1

]

in terms of the unknown quantities T , T12 (a 3-vector)

and q, the unit quaternion (4-vector) used for parametriza-

tion of the rotation matrix R12 such that

R(q) = (|qw|
2 − ‖−→q ‖2)I3×3 + 2−→q−→q T + 2qw

[−→q
]

×

where q =
[−→q T qw

]T
and −→q = [qx qy qz]

T
and

[−→q
]

×
denotes the skew-symmetric matrix formed by the compo-

nents of the vector −→q , [7],[8].

Then using (1)

P12P1(tk, tk+1) = P2(tk, tk+1)P12

we obtain the following expressions

R(q)R1(k) = R2(k)R(q) (5)

R(q)T1(k) + T = R2(k)T + T2(k) (6)

where we used R1(k) , R1(tk, tk+1) and T1(k) ,
T1(tk, tk+1) for ease of notation (similarly for camera 2).

However, since these pose estimates will be erroneous,

no matter how small the errors are, the equalities in (5)



and (6) will not be perfectly satisfied. Instead, based on

these quantities we choose a suitable objective function,
∑N

k=0‖ǫk‖
2 , that we seek to minimize:

ǫk =
(

R2(k)R(q)
)T (

R2(k)T + T2(k)
)

−
(

R(q)R1(k)
)T (

R(q)T1(k) + T
)

=R(q)T RT
2 (k)T2(k) +

(

RT
1 (k) − I3×3

)

t

− RT
1 (k)T1(k)

(7)

where t = −R(q)T T. This error function has the follow-

ing interpretation: We seek for the pose relation P12 that

minimizes the sum of the frame to frame differences in the

position of the left camera center of the back stereo pair at

time tk+1 in the coordinate frame of the left camera of the

front stereo pair at time tk, which are computed by using

visual odometry in the front and back pairs separately.

To solve for the unknown parameters, t and q, we

use RANSAC method followed by Levenberg-Marquardt

based iterative minimization on the inlier set. During the

RANSAC process, based on the relation in (5) we randomly

select 3 rotation matrix pairs R1(ki), R2(ki), 1 ≦ i ≦ 3,

and solve for the unit norm q that minimizes

3
∑

i=1

‖q1(ki) ⊗ q − q ⊗ q2(ki)‖
2 (8)

where ⊗ represents quaternion product and q1(ki) and

q2(ki) are the quaternion representations corresponding to

R1(ki) and R2(ki) respectively [7], [8]. The above expres-

sion can be written as

min
q

s.t.‖q‖=1

3
∑

i=1

∥

∥

(

Q1(ki) − Q2(ki)
)

q
∥

∥

2
(9)

where Q1(ki) and Q2(ki) are 4×4 matrices formed by the

elements of q1(ki) and q2(ki), used in the matrix represen-

tation of quaternion product [8]. Letting Ci , Q1(ki) −
Q2(ki) and C = [CT

1 CT
2 CT

3 ]T , (9) can be simplified as

‖Cq‖2 where the solution q is obtained as the unit eigen-

vector corresponding to the smallest eigenvalue of the ma-

trix CT C.

Next, letting q̂ be the solution obtained above and based

on relation (6), we solve for the T which minimizes

3
∑

i=1

‖
(

I3×3−R2(ki)
)

T+R(q̂)T1(ki)−T2(ki)‖
2 . (10)

Letting Ai = I3×3 −R2(ki), bi = R(q̂)T1(ki)−T2(ki),
A = [AT

1 AT
2 AT

3 ]T , and b = [bT
1 bT

2 bT
3 ]T , (10) simpli-

fies to, minT‖AT − b‖2 from which T can be obtained.

The best hypothesis determined by the RANSAC method

is then refined in an iterative process. At iteration step

j, using the small rotation quaternion δq ≈ [
−→
δq 1]T

such that R(δq) ≈ I3×3 + 2
[−→
δq

]

×
, for the correction

step in the rotation matrix and the translation vector,

R(q(j+1))=R(δq)R(q(j)) and t(j+1) = t(j) + δt, the

jacobian Jk of the error function ǫk in the parameter set

{δt,
−→
δq} can be shown to be

Jk =
[

RT
1 (k) − I3×3 ; 2R(q)T

[

RT
2 (k)T2(k)

]

×

]

which is used in the Levenberg-Marquardt algorithm.

5. Visual Odometry and IMU integration

Even with a second stereo pair, there are still situations

(although greatly minimized) where both pairs provide poor

pose outputs. For instance, during a turn in a staircase

where both cameras face the surrounding white walls for

a brief moment. So, in order to further increase the ro-

bustness, we integrated our visual odometry system with a

MEMS (Microelectromechanical Systems) based IMU us-

ing the extended Kalman filter (EKF) framework. Similar

to [3], we chose a “ constant velocity, constant angular ve-

locity” model for the filter dynamics. The state vector con-

sists of 16 elements: X, 3-vector representing position in

navigation coordinates, q, unit quaternion (4-vector) for at-

titude representation in navigation coordinates, v, 3-vector

for translational velocity in body coordinates, ω, 3-vector

for rotational velocity in body coordinates, and b, 3-vector

for gyro bias components in all three rotational axes. We

choose quaternion representation for attitude since it has

several practical properties. Each component of the rota-

tion matrix in quaternion is algebraic, eliminating the need

for transcendental functions. It is also free of the singu-

larities that are present with other representations and the

prediction equations are treated linearly. Based on this, the

process model we adopted is given by

Xk = Xk−1 + RT (qk−1)xrel

qk = qk−1 ⊗ q(ρrel)

ωk = ωk−1 + nw,k−1

bk = bk−1 + nb,k−1

vk = vk−1 + nv,k−1

(11)

where

xrel = vk−1∆tk + nv,k−1∆tk

ρrel = ωk−1∆tk + nw,k−1∆tk
(12)

and ⊗ is used to denote the quaternion product operation.

Above, ρrel is the rotation vector (representing the rotation

axis) in the body frame, R(q) is the rotation matrix deter-

mined by the attitude quaternion q in the navigation frame,

and q(ρrel) is the quaternion obtained from the rotation



vector ρ. White Gaussian noise {nb,k} is used in the gyro

bias process model. Undetermined accelerations in both

translational and angular velocity components are modeled

by zero mean white Gaussian noise processes {nv,k} and

{nw,k}. The filter runs at the frame rate, meaning that

the discrete time index denoted by k corresponds to the

frame times when pose outputs are also available from vi-

sual odometry system.

The multicamera visual odometry frame to frame local

pose measurements expressed in the coordinate frame of the

front left camera, Pk , P(tk, tk + 1), are converted to ve-

locities by extracting the rotation axis vector corresponding

to the rotation matrix Rk, together with the camera transla-

tion given by −RT Tk, ( where Pk = [Rk; Tk] ) and then

dividing by the timestep, ∆tk = tk+1−tk. The angular rate

sensor (gyro) and accelerometer readings from the IMU are

used directly as measurements in the Kalman filter. Hence,

the observations from visual odometry and IMU are used

according to the following measurement model:

vvo
k = vk + nvo

v,k

ω
vo
k = ωk + nvo

w,k

ω
imu
k = ωk + bk + nimu

w,k

aimu
k = R(qk)g + nimu

a,k .

(13)

Here, vvo
k and ω

vo
k are translational and angular veloc-

ity measurements provided by visual odometry (vo), ω
imu
k

and aimu
k are the gyro and accelerometer outputs provided

by the IMU and g = [0 0 9.8]T is the gravity vector .

Uncertainty in the visual odometry pose estimates, repre-

sented by the noise components nvo
v,k and nvo

ω,k, is estimated

based on the reprojection error covariance of image features

through backward propagation [6]. The gyro noise errors

are modeled with fixed standard deviation values that are

much higher than those corresponding to the visual odome-

try noise when the pose estimates are good (which is most

often the case) and are comparable in value or sometimes

much less when vision based pose estimation is difficult for

brief durations. This allows the filter to effectively com-

bine the two measurements at each measurement update,

relying more on the sensor with the better noise character-

istics. During filter operation bad measurements from all

sensors are rejected using validation mechanisms based on

Chi-square tests on the Kalman innovations. In addition,

those measurements from visual odometry causing large ac-

celerations are also discarded. Also, note that since the

uncertainty in the absolute location component Xk grows

without bound in the lack of global position measurements,

we perform periodic resets on the filter.

In our first approach, we did not include the gyro bias as

part of the filter state. We observed that throughout most of

the data sequences , there is a high degree of agreement be-

tween the angular velocities computed by visual odometry

alone and those available from the gyros. However, if we

always used the gyro angular velocity measurements alone,

e.g., by removing the second equation from the above mea-

surement model, then we notice that there is a very large

drift in the overall trajectory. So, although the difference

between the angular velocities at each time instant are small

(at those times when visual odometry is working well), the

approximation errors in the conversion of velocities to rela-

tive poses and gyro bias add up quickly over time. On the

other hand, visual odometry trajectory is very accurate ex-

cept for brief regions where it might ”break” causing gross

errors in the global sense. And these are the exact moments

where we would like to take the most advantage of the IMU

measurements. So, in order not to corrupt the visual odom-

etry measurements at all when it is working well, we com-

puted at each time instant the difference in velocities in all

three rotation axes provided by both sources and compared

to a threshold. If this difference in all axes was smaller

than this threshold (which is satisfied more than 90% of the

time in all our datasets), then we removed the third equation

from the measurement model, meaning that gyro observa-

tions were not used. This also served as a double check on

the quality of the visual odometry output, in the sense that if

it is close to the gyro output we choose the visual odometry

alone, which totally eliminates any corruption from the gyro

measurements at those time instants. However, when we

later tested on a different system configuration and placed

the cameras on a car, we noticed that the threshold values

computed on the backpack did not work as effectively on the

other system. In order to prevent this dependence and the

effect of hard thresholds which proved to be not the most ro-

bust choice, we included the bias as part of the filter state so

that, the time varying gyro bias is always estimated based on

the visual odometry outputs, thereby eliminating the need to

implement such a threshold mechanism and the need to treat

the third equation in the aforementioned manner.

6. Results

Our current prototype system consists of 4 digital cam-

eras producing gray-scale images at 640x480 resolution.

All the cameras and the IMU unit are externally triggered

to provide very accurate synchronization across all com-

ponents. We have performed many tests where the person

wearing the system walks in indoor and outdoor environ-

ments along a predefined path. Here, we will present some

sample results to demonstrate its current localization per-

formance.

For the auto calibration procedure, we collected a se-

quence for which we had 2411 pose estimates obtained with

both stereo pairs. Applying the algorithm described in Sec-

tion 4, we obtained T = [0.3345 0.0667 − 0.1138] in

meters and the roll, pitch, yaw angles as -0.9267, -30.2715,

-179.6150 degrees respectively, based on the inlier set of



Figure 4. Histogram of the sequence alignment errors ‖ǫk‖, 0 ≦
k ≦ 2392, based on the pose solution P12 obtained by the auto-

calibration algorithm.

2392 data points. In Figure 4, the histogram of the align-

ment errors, ‖ǫk‖, 0 ≦ k ≦ 2392, is shown. Average error

norm in this inlier set is found to be 3.29 millimeters.

In Figure 5, we demonstrate the benefit of IMU and vi-

sual odometry integration. In certain situations such as poor

illuminations or non-textured scenes, the captured images

of the cameras fail to provide sufficient features for the

pose estimation so that the visual odometry fails to work

properly. For example, as shown in the thumbnail images

at the top, there might be cases when all the cameras see

mostly white walls so that very few features concentrated in

a small portion of the scene are extracted. As a result, the

visual odometry alone cannot estimate pose accurately and

may cause gross errors or ”breaks”. The plots at the bottom

part, show the angular rate measurements from IMU (blue),

visual odometry (red) as well as the filter output (green).

Since the designed Kalman filter is capable of producing the

optimal output by combining with the best sensor measure-

ment, the filter output closely follows the visual odometry

measurements majority of the time when that is the most

accurate, and then follows the IMU measurements mostly

during these difficult portions of the sequence.

In Figure 6, we show the final trajectory obtained by our

system after a 530 meter long outdoor/indoor sequence. To

make this visually more clear we manually overlaid it on

a map. In comparison, Figure 7 shows the trajectories ob-

tained by the front and back pairs alone, where due to gross

errors in several spots both result in large drifts. In this se-

quence, the person with the backpack enters and exits two

buildings, opens and closes several doors along the way.

In Figure 8, we show results from a 264 meter long com-

pletely indoor sequence where the person climbs up and

down one flight of stairs in two different places and returns

to the same spot where he started.

Figure 5. At the top are a sequence of images captured while the

person is turning at the bottom of a staircase. They correspond

to the section between frames 2096 to 2106. This region of the

sequence is challenging for visual odometry as both stereo pairs

have very limited scene content. At the bottom, in red are the

multicamera visual odometry based angular rates, in blue are the

gyro outputs and in green are the Kalman filter outputs. Notice

how the Kalman filter output follows the gyro measurements in

this brief period, as desired during the failure of visual odometry

estimates.

Figure 6. Trajectory obtained by our system from a 530 meter long

outdoor/indoor sequence overlaid in ’blue’ on a map. Loop closure

error is 3.9 meters.



Figure 7. Visual odometry trajectories obtained by the individual

stereo pairs alone. The regions where gross errors, ”breaks”, oc-

cur are highlighted and some thumbnail images corresponding to

those moments are shown.

Figure 8. Trajectory obtained by our system from a 264 meter long

indoor sequence that includes staircase climbing. Loop closure

error is 2.1 meters.

7. Conclusion

In this paper, we described a visual odometry system

based on multiple stereo cameras and an inertial measure-

ment unit which we proposed as a powerful method to ad-

dress the problem of localization in GPS denied environ-

ments. We provided results demonstrating the robustness of

our approach against many challenges facing such a system

and showed that it can provide reliable pose estimates over

long distances. For future work, we will continue improv-

ing our algorithms, especially concentrating our efforts in

the visual odometry and IMU integration framework which

is a key component in further increasing the achievable ro-

bustness and overall performance in localization accuracy.

We also plan to miniaturize our system configuration and

test helmet mounted cameras to make it more user friendly.
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