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Abstract

This paper presents a general method, based on Galois
Theory, for establishing that a problem can not be solved by
a ’machine’ that is capable of the standard arithmetic op-
erations, extraction of radicals (that is, m-th roots for any
m), as well as extraction of roots of polynomials of degree
smaller than n, but no other numerical operations.

The method is applied to two well known structure from
motion problems: five point calibrated relative orientation,
which can be realized by solving a tenth degree polynomial
[6], and L2-optimal two-view triangulation, which can be
realized by solving a sixth degree polynomial [3]. It is
shown that both these solutions are optimal in the sense
that an exact solution intrinsically requires the solution of
a polynomial of the given degree (10 or 6 respectively), and
cannot be solved by extracting roots of polynomials of any
lesser degree.

1. Introduction

Many structure and motion problems can be reduced to
the solution of a system of polynomial equations, and such
systems of equations can in principle be reduced by elimi-
nation [1] to a single polynomial in one variable. If the poly-
nomial is of degree 4 or less, then it may be solved in closed
form by radicals (extraction of roots). For higher degree
polynomials, numerical methods must generally be used.
The number of solutions and an actual algorithm for solving
the problem can be obtained by computing a Gröbner basis
for the polynomial equations [8, 10, 9]. This in principle
gives a method for solving the problems, and as the papers
just cited demonstrate, for many cases it gives excellent al-
gorithms.

However, if the system of polynomials is large, this
method can be complex and unstable, and solution of a
polynomial of high degree is difficult in general. It is there-
fore advantageous to discover methods of solving structure
and motion problems that require the solution of polynomi-
als of as small degree as possible. The ideal is a solution that
requires only the solution of 4-th degree equations, since the

problem can then be solved in closed form (by radicals).
The purpose of the present paper is to present a method

for placing a lower bound on the degree of such a poly-
nomial needed to solve a particular problem. As examples
of the technique, we consider the 5-point relative motion,
and two-view triangulation problems. These can be solved
by finding the roots of single polynomials of degree 10 or
6 respectively ([6, 3]). We show here that to solve the 5-
point relative motion problem exactly, essentially requires
us to solve a polynomial of degree 10. No solution exists
that involves only the solution of polynomials of lesser de-
gree, even if we allow extraction of radicals (m-th roots)
of any order. Similarly, the two-view L2 triangulation prob-
lem requires the solution of a polynomial of degree 6. Since
known algorithms exist involving solutions of polynomials
of these degrees, these algorithms are optimal in the sense
of the degree of the polynomial that needs to be solved. In
particular, it follows that these problems have no solution in
closed form by radicals.

The Singular Value Decomposition (SVD) is a popular
and useful technique in structure from motion. Because of
its reliability, algorithms that use SVD are often referred
to as linear, although this is not strictly speaking a linear
technique. Because of space limitations we can only briefly
show how the results of this paper can be extended to apply
to SVD. Even adding this technique to our list of allowable
operations can not avoid the necessity of solving polynomi-
als of the indicated degree.

1.1. Brief Overview of the Proof

We briefly give an overview of what is to be proved, and
the proof methodology. Recall that our goal is to demon-
strate that certain problems – we are interested specifically
in geometric vision problems – require the solution of a
polynomial of a given minimum degree. As an example,
we will show that the relative orientation problem for two
views requires solution of a 10-th degree polynomial.

For this example, we show that one can not solve this
problem by solving polynomials of degree no higher than
9. We also allow the ordinary arithmetic operations, as well
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as extraction of radicals (square roots, cube roots, etc) up to
any degree, and even Singular Value Decomposition (SVD).
Still the problem can not be solved.

Our basic tool in proving our results is Galois Theory,
which was invented in order to prove that polynomials of
degree greater than 4 could not be solved by extraction of
radicals. The main study of Galois Theory is the so-called
Galois group of a polynomial. If the Galois group has a suf-
ficiently complex structure1 then the polynomial is not solv-
able in terms of radicals. In particular, this holds if the Ga-
lois group is the symmetric group Sn or alternating group
An (defined later) for n ≥ 5. A simple extension of this
result, stated in Theorem 2.4, shows that if the Galois group
of a polynomial is Sn or An, then it can not be solved by ex-
traction of radicals, or by finding the roots of a polynomial
of any lower degree.

This is the theoretical basis of our non-solvability results.
We explain how this may be applied to geometric vision
problems. Many such problems, and in particular the two
problems that we explicitly consider in this paper have been
solved by methods that involve the solution of a polyno-
mial. The relative orientation problem can be solved using
a 10-th degree polynomial, and the triangulation problem
involves a 6-th degree polynomial. The class of problems
that can be solved in this way is quite broad, and in the-
ory extends to the general structure and motion problem.
In fact any problem whose solution involves minimizing a
cost-function that is a rational expression in the problem pa-
rameters can be solved this way, since the partial derivatives
of the cost function are also rational. The required solution
is a point at which the partial derivatives with respect to all
the variables vanish, and all such points may be found by
solving a system of polynomial equations. (Of course this
approach is practical only for small problems.)

To be concrete, think of the relative orientation and tri-
angulation problems. Just because solutions exist involving
polynomials of a given degree, (n = 10 or n = 6 in the
problems above), does not mean that the problems can not
be solved perhaps in several steps by solving polynomials
of smaller degree.

To show that this is in fact not possible, we examine the
polynomial that arises in the problem solution, and show
that it has Galois group Sn. This implies that the roots of the
polynomial can not be found other than by explicitly solving
a polynomial of degree n, or higher. This is not enough,
however, since perhaps there is a quite different solution
that involves different polynomials, or perhaps even linear
techniques. Our goal is not to show that the polynomial
involved in a specific solution is of a given complexity, but
rather to show that the problem itself has such a complexity.

The gap is filled by showing that the roots of the polyno-
mial involved in a specific solution are closely linked arith-

1to be precise, if the group is not solvable

Figure 1. An algorithm to solve a problem F may involve the solu-
tion of a polynomial f . If the Galois group of f is Sn or An, with
n ≥ 5, then finding the roots of f intrinsically requires solving an
n-th degree polynomial (we say f is not Cn−1-solvable), and nei-
ther is any root x. Now, consider the set of numbers L occurring
in the solution of problem F . The reduction step is to demon-
strate that x can be computed from L without involving a degree n
polynomial – x is Cn−1-solvable from L (green arrow). It follows
that the solution L can not be Cn−1 solvable given the problem
instance F (red arrow), otherwise x would be Cn−1-solvable.

metically to the the numbers that appear in the solution of
the problem itself. Often this is very easily shown. More
precisely, we argue that the problem of finding one of the
roots of a specific polynomial can be reduced to solving a
given instance of the problem in question. If we can solve
the problem, then we can find one of the roots of the poly-
nomial. But, since finding one of the roots of the polyno-
mial involves solving a polynomial of degree n, so must the
problem itself. This method of reduction is illustrated in
Fig 1.

Genericity Our goal is to show that a given problem re-
quires the solution of a polynomial of a given degree. To
do this, it is sufficient to show this for a specific instance
of the problem, and we choose specific examples that have
the required properties. If one can not solve these specific
instances without solving an n-th degree polynomial, then
one can not solve the problem generally. We choose the ex-
amples for their numerical simplicity, in fact with integer
data, to allow relative ease of computation of the polynomi-
als and their Galois groups.

The reader may object that perhaps the “average” prob-
lem instance will have simpler Galois group and may be
solvable by lower-degree polynomials – that in effect, the
problem instances chosen are in some sense perverse. It can
be shown that this is not the case. In fact, exhibiting a single
example where the Galois group is Sn is sufficient to show
that this is the generic case. The argument involves showing
that the Galois group of the n-th degree polynomial arising
from a set of data is equal to Sn, except on the union of a



countable number of varieties in the data space, considered
as a real vector space. Existence of a single example where
the Galois group is Sn ensures that none of these varieties
covers the whole of the input data space. Hence the set of
data for which the group is Sn is everywhere dense. Details
of the proof are omitted for space reasons.

1.2. Numbers of Solutions and Symmetries

A measure of the degree of difficulty of a problem is
the number of possible solutions it allows. However, this
is not an infallible guide. Some polynomials of high degree
may be solved more easily than their degree (and number
of solutions) indicates. As a simple example, a polynomial
ax6 + bx4 + d has degree 6, and generally 6 distinct so-
lutions. However, we may find its roots by first solving
ay3 + by2 +d, and then taking square roots to find the roots
x. This method avoids directly solving a 6-th degree equa-
tion. More general examples are discussed in section 4.1.

In structure from motion problems, such behaviour arises
from geometric structure or symmetries specific to the prob-
lem in question. As an example of this, in the relative ori-
entation problem, because of twisted pairs of solutions ([4])
there are actually 20 solutions for rotation and translation.
Nevertheless, solving this problem via the essential matrix
requires solution of only a 10-th degree polynomial. Each
essential matrix gives rise to two solutions, a twisted pair.
Thus, despite having 20 solutions, this problem requires the
solution of only a 10-th degree polynomial.

Another example is the three point perspective pose
problem [2], which can be solved in closed form with four
symmetric pairs of solutions. The symmetry corresponds
to reflection of the projection center across the plane of the
three points, an ambiguity that can be removed (after all the
solutions have been computed) by requiring that the points
reside in front of the camera. This example is particularly
enlightening, because if the camera is non-central, the sym-
metry is no longer apparent. In this case an eighth degree
polynomial can be used to solve this problem ([7]); with
our method we have shown conclusively (details are omit-
ted) that indeed an 8-th degree polynomial is required.

2. Preliminaries

All polynomials up to and including degree four are solv-
able in closed form (by radicals). The Greeks were able to
solve the quadratic by geometric methods, see for exam-
ple Euclid (325-270 BC), while formulas for the cubic and
quartic were established around 1545. The quintic resisted
solution and in 1824, Abel proved that the quintic is not
solvable in general. Galois gave a general theory for when
a polynomial is solvable in radicals.

The essence of Galois Theory is the connection between
the theory of fields, particularly as it relates to solutions of

polynomials, and group theory. The connection is made via
the Galois group of a polynomial, or of a field extension.
Essential to our approach is the ability to compute Galois
groups of polynomials. To do this we use the Magma alge-
braic software system, [5].

We assume the reader is familiar with the basic concepts
of group theory, such as group, homomorphism, normal
subgroup and quotient group. In addition we assume some
knowledge of field theory, including extension fields. Ex-
cellent information on these topics is available on line. We
recommend the Wikipedia articles on these topics which are
easily found, via a web search.

Groups. We are interested in two particular groups, the
symmetric group Sn, which is the group of all permutations
of n symbols, and the alternating group An, which is the
group of all even permutations of n symbols. Group Sn

has order n! and An has order n!/2. It is an important fact
that for n ≥ 5, the group An has no proper normal sub-
groups (that is, normal subgroups other than itself and the
trivial group). Furthermore, Sn has only one proper nor-
mal subgroup, namely the alternating group An. This fact
is basic to the application of Galois theory in showing the
non-solvability of generic polynomial equations for degree
5 or greater. It is also the basis of our results.

Fields and field extensions. All fields that we consider
will have characteristic zero, which simply means that they
contain a copy of the integers2 .

Given a polynomial p over F , we say that an extension
field K of F is a splitting field for p if the polynomial splits
into linear factors over K , but not over any smaller field.
Another way of saying that K is a splitting field of some
polynomial over F , is to say that K is a finite normal exten-
sion of F , or more briefly a normal extension, and denote
this by F � K . If K is an extension of a field F , we are
interested in the automorphisms of K that fix every element
of F . Such automorphisms form a group, known as the Ga-
lois group of the extension K/F . If K is a splitting field
of a polynomial p over F , then we also refer to this as the
Galois group of the polynomial.

2.1. Definitions

Problems. We begin by defining a “problem”. Though
the following definition may not correspond to most peo-
ple’s conception of a problem, it focusses on the essentials
for the present purposes, and gives an abstract definition of
a problem as something that takes a set of inputs, and re-
quires a solution, namely a set of numbers.

Definition 2.1. A problem is a mapping P : F a �→ Kb,
where F is a field (the base field) and K is an exten-

2This assumption is harmless, and is necessary only to avoid certain
technical difficulties in the next paragraph.



sion field of F . The problem P takes an input vector
X = (x0, . . . , xa) ∈ F a and associates to it a solution vec-
tor Y = (y0, . . . , yb) = P (X) ∈ Kb.

Thus, for instance in the triangulation problem, the input
is a vector of numbers denoting the internal and external
calibration of a set of cameras, plus a set of coordinates
of corresponding image points. The solution is the vector
consisting of the coordinates of the optimal 3D point.

In the relative orientation problem, the input consists of
the coordinates of a set of matching points in two images.
The solution is the vector consisting of the entries of the
essential matrix (or alternatively, the entries of the rota-
tion and translation of the relative motion). Note that this
problem actually has multiple solutions. Our definition of a
problem still applies; we may assume either that the map-
ping P arbitrarily picks one of these solutions, or provides
all solutions concatenated into one vector.

A problem instance is a pair (P,X), consisting of a prob-
lem and a specific input.

Classes of polynomials. We are interested in problems
that can be solved by finding the roots of polynomials of
a restricted kind. Most importantly, we are interested in
polynomials belonging to the following class, which we will
denote by Cn:

1. polynomials of degree at most n; and

2. polynomials of the form p(x) = xm − a for any m.

Other wider (or more restrictive) classes C of polynomials
are also of potential interest, as we shall see. We focus on
numbers that may be computed by solving a sequence of
polynomials of a given class.

Definition 2.2. Let C be a class of polynomials. A number
y is C-computable over a base field F0, if there exists a se-
quence of fields F0 � F1 � . . . � FN such that y ∈ FN and
each Fi+1 is obtained from Fi by adjoining all the roots of
a polynomial over Fi belonging to the class C.

In this definition, we could instead have specified that each
Fi+1 is obtained by adjoining only some of the roots of a
polynomial but it is easily seen that this is an equivalent
definition. The concept of C-computability extends also to
problems, as follows.

Definition 2.3. A problem instance (P,X) is C-solvable
over a base-field F0 if each entry yi in the solution vec-
tor Y = (y1, . . . , yn) is C-computable over F0. A problem
P is C-solvable if every instance (P,X) is C-solvable for all
inputs X ∈ F a

0 .

To understand this definition, note that if we start with a
set of numbers in F = F0 (consider these numbers the in-
put data), and apply arithmetic (addition, subtraction, mul-
tiplication or division) operations, we obtain numbers in the

base field F0. By taking one or more roots of a polyno-
mial p0, followed by further arithmetic operations, we ob-
tain numbers that lie in the extension field F1. Taking roots
of further polynomials, and applying further arithmetic op-
erations extends the set of numbers that we can compute to
the extension fields Fi, until eventually we reach a field in
which the number y lies.

We will also have occasion to use terms such as C-
extension, C-reducible and others, with meaning that should
be obvious from the context.
The main theorem. The main theorem that enables us
to evaluate the degree of difficulty of a problem can now be
stated.

Theorem 2.4. Let y be a root of a polynomial p of degree
n ≥ 5 over a field F0. If the Galois group G(p) is equal to
An or Sn, then y is not Cn−1-computable over F0.

We will give a relatively complete proof of this theorem so
as to give the reader some feeling for why it is true.

3. Reduction

In proving that certain problems are not C-solvable over
a field F0, our strategy is to demonstrate that some number
y related to the solution of the problem is not C-computable.
This number will generally not be precisely the solution to
the problem in question. However, we will be able to reduce
the computation of y to solving the original problem. Thus,
let P be a problem and suppose that P is C-solvable. If
starting from the solution to P we could easily compute the
value y, then it would follow that y would be C-computable.
Conversely, if we know that y is not C-computable, then it
follows that P can not be C-solvable.

This argument can be made more formal, as follows. A
solution to a problem P over a field F0 is a vector Y of
numbers lying in an extension field FN of F0.

Now, suppose that in turn, the element y is C-computable
over FN , then it follows that y is C-computable over F0,
since we can extend the field hierarchy

F0 � F1 � . . . � FN

by a further sequence of C-computable extensions, until ul-
timately we reach a field extension containing y.

We make the following definition of reducibility.

Definition 3.5. Let Y = (y0, y1, . . . , ym) be the solution
to a problem instance (P,X) defined over a base field
F0. If a number y lies in a C-extension of the field
F (y0, y1, . . . , ym), then the problem of computing y is said
to be C-reducible to solving the problem instance (P,X).

In other words, we can compute y starting from the solution
Y, using only arithmetic operations and solving of polyno-
mials in the class C. (Often, as in the problems considered
in this paper, arithmetic operations alone suffice.)



General Strategy. The strategy for proving that a given
problem P is not C-solvable is as follows.

1. Consider a specific problem instance (P,X) with in-
puts in a base field F0 and with solution Y.

2. Find a number y with the properties that

(a) y is not C-computable over F0.

(b) Computing y is C-reducible to computing Y.

It then follows that the specific problem instance (P,X) is
not C-solvable, and hence neither is problem P . The num-
ber y mentioned here is typically a root of a polynomial
arising from an algorithm used to solve the problem.

4. The Theory

We require a basic result, known as the Fundamental
Theorem of Galois Theory, which we will state in the fol-
lowing form.

Theorem 4.6 (Fundamental Theorem of Galois Theory) .
Let F � K be a normal field extension, and let E be an
intermediate normal extension of F ; thus F � E < K .
Then, there exists a homomorphism φ mapping G(K/F )
onto G(E/F ) with kernel G(K/E). Thus

G(K/F )
G(K/E)

≈ G(E/F ).

We will not give a proof of this theorem, but it is worth
noting that the homomorphism φ mentioned in the theorem
is the result of restricting an isomorphism of K/F to the
intermediate field E. This provides an automorphism of E,
essentially because E is a normal extension. We now use
this theorem to prove a result about pairs of normal exten-
sions.

Lemma 4.7. Let Fp and Fq be normal extensions of a field
F , splitting fields of the polynomials p and q respectively.
Denote by Fpq the smallest field containing both Fp and
Fq . Then, Fpq is a normal extension of F , and also of Fp

and Fq . Moreover, G(Fpq/Fp) is isomorphic to a normal
subgroup of G(Fq/F ).

The relationship between the different field extensions is
as shown in the following diagram.

F � Fp

� �
Fq � Fpq

(1)

Proof. First, Fpq is a normal extension of Fp, since it is the
smallest extension of Fp containing the roots of polynomial
q. Thus, it is the splitting field of q over Fp. Similarly
Fq � Fpq . In addition, Fpq is the smallest field containing

the roots of both p and q, hence it is the splitting field of the
polynomial pq.

Now, since F �Fq �Fpq , according to Theorem 4.6, there
is an epimorphism φ : G(Fpq/F ) → G(Fq/F ) with kernel
G(Fpq/Fq). Also, since F � Fp � Fpq , according to Theo-
rem 4.6, G(Fpq/Fp) is a normal subgroup of G(Fpq/F ).
Restricting φ to G(Fpq/Fp) therefore maps G(Fpq/Fp)
onto a normal subgroup of G(Fq/F ). Finally, we inquire
what elements of G(Fpq/Fp) map in this way to the iden-
tity of G(Fq/F ). Such an element is an automorphism of
Fpq that fixes Fp. Since it maps to the identity in G(Fq/F ),
it must lie in the kernel of φ, namely G(Fpq/Fq). Hence, τ
fixes Fq . However, since τ fixes both Fp and Fq it must fix
Fpq , which is the smallest field containing both Fp and Fq .
In other words, τ is the identity element in G(Fpq/F ). Thus
the homomorphism φ restricted to G(Fpq/Fp) has trivial
kernel. This shows that G(Fpq/Fp) is isomorphic to a sub-
group of G(Fq/F ) as required. ��

We now show that under certain circumstances, a field
that contains one root of a polynomial must contain them
all.

Theorem 4.8. Consider a sequence of field extensions

F0 � F1 � . . . � FN−1 � FN

where each Fi is a normal extension of Fi−1. Let p be a
polynomial of degree n ≥ 5 over F0 with Galois group Sn

or An. If FN contains one of the roots of p, then it contains
all the roots of p. Furthermore, if FN is the first field in this
sequence containing the roots of p, then p is irreducible over
FN−1 and G(FN/FN−1) has a quotient group isomorphic
to Sn or An.

Proof. Let Fi(p) be the splitting field of the polynomial p
over Fi, that is, the smallest field containing Fi and the roots
of p. We have a network of field extensions of the form

F0 � . . . � FN−1 � FN

� � �
F0(p) � . . . � FN−1(p) � FN (p)

. (2)

Now, starting from the left end, and applying the first part
of lemma 4.7, we see that Fi(p)/Fi is a normal extension,
and so is Fi(p)/Fi−1 for all i. Now, according the the con-
clusion of lemma 4.7, we see that

G(FN (p)/FN ) �→ G(FN−1(p)/FN−1)
�→ . . .

�→ G(F0(p)/F0)
�→ Sn.

where A
�→ B means that A is isomorphic to a nor-

mal subgroup of B. However, since the only normal sub-
groups of Sn are Sn, An or the trivial group, it follows that
G(FN (p)/FN ) must be isomorphic to one of these groups.



Assume now that FN contains at least one root of poly-
nomial p. In this case, FN (p) is actually a splitting field
of a polynomial of degree at most n − 1 over FN , and
so G(FN (p)/FN ) can not be An or Sn. It follows that
G(FN (p)/FN ) is the trivial group, and so FN (p) = FN .
Thus FN contains all the roots of p.

Next, suppose that FN−1 contains no root of p. As
before, G(FN−1(p)/FN−1) is isomorphic to a normal
subgroup of G(F0(p)/F0) � Sn. This time, however,
G(FN−1(p)/FN−1) is not trivial, since FN−1 contains no
roots of p. Therefore G(FN−1(p)/FN−1) is isomorphic to
An or Sn. It follows that p is irreducible over FN−1. Fi-
nally, from the inclusion

FN−1 � FN−1(p) � FN

we deduce using Theorem 4.6 that G(FN−1(p)/FN−1) is a
quotient group of G(FN/FN−1), as required. ��

It is now possible to prove Theorem 2.4 as a corollary of
Theorem 4.8.

Proof of Theorem 2.4. Let y be a root of a polynomial
p of degree n over a field F0, and let the Galois group G(p)
be An or Sn. If y is Cn−1-computable over F0, then there
exists a sequence of normal extensions

F0 � F1 � . . . � FN

where for each i, we know that G(Fi/Fi−1) is abelian, or a
subgroup of Sn−1. However, this is incompatible with the
conclusion of Theorem 4.8 that G(FN/FN−1) has a quo-
tient group isomorphic to Sn or An.

4.1. An Example

It is instructive to give an example to show that the as-
sumption that the Galois group be Sn or An is necessary in
Theorem 4.8. We can not replace the condition by a condi-
tion that the polynomial p be irreducible.

Let f(x) = x2 + 2x − 1 and g(x) = x3 − x2 + x + 1.
It may be verified that the polynomial p(x) = f(g(x)) =
x6 − 2x5 + 3x4 − 2x3 + x2 − 2 is irreducible. However,
this polynomial does not have a Galois group equal to S6

or A6, and the conclusions of Theorem 4.8 will be seen not
to hold. It is possible to find the roots of the polynomial
p(x) in steps as follows. First, we solve f(x) and get the
roots w1 = 1 +

√
2 and , w2 = 1 − √

2 of f . Next we
solve the equations g(x) = w1 and g(x) = w2 to get the
full set of solutions to p(x) = f(g(x)) = 0. In this way,
we have found the roots of the polynomial p(x) by solving
only quadratic and cubic equations. Thus the roots of p(x)
are C3-computable.

This computation corresponds to a sequence of exten-
sions Q � F1 � F2 � F3 where

1. F1 = Q(
√

2) is the splitting field of f ,

2. F2 is the splitting field of g(x)−w1 = x3−x2+x−√
2

over F1.

3. F3 is the splitting field of g(x)−w2 = x3−x2+x+
√

2
over F2

Note that F2 contains some but not all of the roots of
f(g(x)). Thus, the conclusions of Theorem 4.8 are not true
for this polynomial and sequence of field extensions. Nei-
ther can we conclude using Theorem 2.4 that the roots of
f(g(x)) are not C5-computable.

5. The Relative Orientation Problem

Let xi ↔ x′
i be five pairs of corresponding image points.

The two-view five-point calibrated relative orientation prob-
lem is to find one (or all) of the non-zero 3 × 3 essential
matrices E that satisfy

x′�Ex = 0
2EE�E− trace(EE�)E = 0
det(E) = 0 .

(3)

In general, there may be more than one essential matrix
satisfying these conditions. We will show that none of them
is Cn-computable for n < 10. To show this, we reduce this
problem to one of finding the roots of a degree 10 polyno-
mial. We consider a specific example, defined by a set of
correspondences x′ ↔ x given by[

1 0 0
−1 1 0
−1 1 1
1 1 −1
0 1 1

]
↔

[
1 0 0
1 2 0
1 0 1
1 −1 1
1 1 0

]
(4)

where the rows of the two matrices represent point corre-
spondences, in homogeneous coordinates.

Each correspondence x′
i ↔ xi leads to a single linear

equation in the 9 entries of E. In all, we have 5 homoge-
neous linear equations in 9 unknowns. A set of four vectors
can be found to span the null-space of the equation matrix,
and they can be reassembled into four 3 × 3 matrices X, Y,
Z and W. It can be explicitly verified that a possible choice
of X, Y, Z, W is


 0 0 0
−2 1 2
0 1 0




︸ ︷︷ ︸
X


0 0 3
0 0 1
2 −2 0




︸ ︷︷ ︸
Y


 0 1 0

0 1 1
−1 0 0




︸ ︷︷ ︸
Z


0 0 1
0 0 0
0 0 1




︸ ︷︷ ︸
W

(5)

To do this, we simply observe that they each satisfy the es-
sential matrix equation x′�Ex = 0, and that they are lin-
early independent.

The essential matrix must therefore be of the form

E = xX + yY+ zZ + wW (6)



for some scalars x, y, z and w. The four scalars are defined
only up to a common factor. The possibility w = 0 is tested
separately and it is then assumed that w = 1.

Next, the non-linear constraints given in (3) are applied
to the matrix E given by (6). This results in a set of 10
cubic equations in the unknowns x, y and z. The constraint
2EE�E − trace(EE�)E = 0 provides 9 equations, and the
constraint det(E) = 0 gives a single cubic equation.

Now, each of these cubic equations can be considered as
a combination of the 10 monomials x3, y3, x2y, y2x, x2,
y2, xy , x, y, 1 in x and y of degree not exceeding 3, where
each monomial is multiplied by some polynomial in z. The
whole set of 10 constraints may be written as a matrix equa-
tion, shown in Fig 2. Each row corresponds to a single cubic
equation in x, y, z. Since this set of equations must have a
non-zero solution for some value of z, the determinant of
the matrix must be zero. In this example, the determinant
of this matrix is 2048 p(z) where

p(z) =11174859 z
10 + 41361525 z

9 + 16413339 z
8 − 91333374 z

7

− 96079221 z
6 + 69546666 z

5 + 116458948 z
4 − 26685632 z

3

− 29121184 z
2 − 1453312 z − 1971200

(7)

This polynomial can be demonstrated using Magma to have
Galois group S10. It follows from Theorem 2.4 that the
value of z obtained as a root of the polynomial p(z) is not
Cn-computable for any n < 10. Now, looking carefully
at the particular entries of the matrices X, Y, Z and W, we
see that z/w = E12/E33, and since we had normalized
so that w = 1, we see that z = E12/E33. Therefore, the
ratio E12/E33 is not Cn-computable, and hence neither is
the essential matrix E.

6. The Triangulation Problem

Let P and P′ be two 3 × 4 camera matrices and let x and
be x′ be the two observed image points. The two-view L2-
optimal triangulation problem is, given P, P′,x,x′, to find
the 3D point X that minimizes the rational cost function that
is the sum c + c′ of the squared reprojection errors, where

c = (
(PX)1
(PX)3

− x1

x3
)2 + (

(PX)2
(PX)3

− x2

x3
)2 (8)

in the first image and analogously for the second image.
By a simple image transformation in each image that

does not materially change the problem, we can assume that
the two image points are both at the origin of image co-
ordinates, namely the point with homogeneous coordinates
(0, 0, 1). Similarly, we may assume that the two epipoles
of the cameras lie on the x-axis of the image, at points with
homogeneous coordinates (1, 0, f) and (1, 0, f ′).

Since our goal is to prove that the triangulation problem
can not generally be solved without solving a 6-th degree
polynomial, it is sufficient to prove this fact for the particu-
lar simplified triangulation problem considered here.

In this case, the fundamental matrix has the form

F =


 ff ′d −f ′c −f ′d

−fb a b
−fd c d


 (9)

and the constants f , f ′, a, b, c and d are easily computed by
constructing the fundamental matrix from the camera ma-
trices, then reading them from the above form for F.

It was shown in [3] (see also [4]) that if the epipolar line
in the first image corresponding to the optimal 3D point
X passes through the point with homogeneous coordinates
(0, t, 1)�, then t satisfies the equation

p(t) = t
(
(at + b)2 + f ′2(ct + d)2

)2 −
(ad − bc)(1 + f2t2)2(at + b)(ct + d) .

(10)

Note that the value t may be interpreted geometrically as
the intercept of the epipolar line with the y-axis.

The polynomial in (10) is a sixth-degree polynomial.
Once the roots of this polynomial are found, it is an easy
matter to compute (with standard arithmetic operations) the
3D point that solves the triangulation. Hence, the two-view
triangulation problem is generically C6-solvable.

The key to proving that the triangulation problem is not
C5-solvable is to find an instance of this problem for which
the polynomial p has Galois group S6.

6.1. Non-C5-solvable Instance

Consider the instance of the triangulation given by the
fundamental matrix (9) in which f = f ′ = 1, a = 1, b = 2,
c = 3 and d = 4. Both points x and x′ are at the origin. In
this case, the polynomial p is 8 + 210t + 579t2 + 612t3 +
294t4+60t5+3t6. It may be verified that p(t) is irreducible,
has two complex and four real roots, and Galois group equal
to S6.

6.2. Reduction of the Problem

Finally, it is necessary to show that finding a root of
this polynomial may be reduced to solving the triangulation
problem. We show that from the solution to the triangula-
tion problem it is possible to compute the value t. Recall
that we are assuming that the problem has been simplified
by assuming that the measured points are at the origin, and
the epipoles are on the x-axis. It is a simple matter to mod-
ify an arbitrary problem so that it is of this form.

Now, given the optimal 3D point X constituting the so-
lution to the triangulation problem, we now project X into
the first image, to obtain a point x = PX. We also com-
pute the epipole e in the first image. Next, we compute the
epipolar line as the line joining e and x. The intersection of
this line with the y-axis is the value t.

The only operations involved in this reduction are the
arithmetic field operations. Thus, computing t reduces to
solving the triangulation problem.






0 0 −6 6 −2 −4z 2 + 7z 3z − 2z2 −2z + 4z2 z2 − z3

0 0 −24 −12 −8 − 4z 12 − 8z −4 − 8z −4z − 6z2 4 − 6z + 4z2 −2z

0 0 12 6 4 − 6z −12 + 14z 8 + 10z 2 + 6z − 2z2 −4 + 8z + 8z2 2z2

0 6 −6 24 −2 + 4z 20 + 18z 8 + 8z 4z + 6z2 12 + 2z + 2z2 2 + 2z3

−16 0 −12 8 −14z 4 − 8z 20 + 12z 4 − 4z − 6z2 2z + 4z2 −2z2

10 0 −8 8 4 + 20z −4 − 2z −12 + 10z −2 + 6z + 8z2 −8z + 12z2 −2z + 2z2 + 2z3

16 2 24 12 2 + 20z 6 + 8z 32z 4 + 8z + 6z2 2 + 2z + 12z2 2z + 2z2

−4 −4 8 −16 −8 − 4z −12 − 10z −4 + 4z −4z + 6z2 6z + 2z2 2z3

−6 4 −4 14 4 + 2z 12 + 12z −4 − 10z 6z + 6z2 8z − 4z2 2z + 2z2

4 0 −22 −12 14z 18 − 16z −8z 4z + 6z2 6 − 6z − 4z2 2
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1


 = 0

Figure 2. Matrix of equations for 5-point relative reconstruction problem.

6.3. Singular Value Decomposition

We will summarize our results concerning Singular
Value Decompostion (SVD). Many algorithms in multi-
view geometry are addressed by algorithms involving SVD.
Some such algorithms (for instance the Tomasi-Kanade al-
gorithm for affine structure from motion) achieve optimal
solutions using SVD. Others (such as the 8-point algorithm
for two-view projective relative motion) achieve good, but
non-optimal results. Often algorithms involving the SVD
are referred to as “linear algorithms”, though this is not
strictly correct. We are interested in the question of whether
adding the SVD to our set of available operations can make
our problems solvable.

SVD is a weaker capability than being able to solve poly-
nomials of arbitrary degree. In fact, it may be shown that
it is weaker than being able to solve polynomials with all
real roots, in that if one can solve polynomials with all real
roots, then one can do Singular Value Decomposition. It is
our goal to show that we can not solve certain problems us-
ing SVD. In fact, we show the stronger result that we can
not solve them even if we can solve polynomials with all
real roots.

This conclusion relies on an extension of Theorem 2.4 to
cover polynomials with all real roots, stated as follows.

Theorem 6.9. Let F be a subfield of the real numbers, Sup-
pose y is a real root of a polynomial p over F , and the
Galois group of p is either An or Sn. Suppose in addition
that the polynomial p has at least one complex root. Then y
is not C-computable, where C consists of the polynomials of
degree n− 1, polynomials of any degree with all real roots,
and polynomials xm − a.

The proof of this is a little tricky (though we have a com-
pletely written-down proof), and will not be included be-
cause of lack of space.

The polynomials used to prove our results for the tri-
angulation and relative motion problems also had complex
roots, Theorem 6.9 applies, and we may conclude that even
if SVD of arbitarily-sized matrices is allowed in addition
to the other operations, the respective problems remain un-
solvable, without solution of degree-6 or degree-10 polyno-
mials respectively.

7. Conclusion

The method introduced in this paper effectively demon-
strates that the two problems considered are optimally
solved (in terms of polynomial degree) by the existing al-
gorithms. There is no point in searching for linear algo-
rithms, or algorithms involving lower degree polynomials.
The method is quite general and could be applied to other
similar problems. As an example, we have also shown that
the non-central camera pose problem requires the solution
of an 8-th degree polynomial.
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