
Projective Factorization of Multiple Rigid-Body Motions

Ting Li† Vinutha Kallem‡ Dheeraj Singaraju† René Vidal†

†Center for Imaging Science and ‡Department of Mechanical Engineering, Johns Hopkins University

308B Clark Hall, 3400 N Charles St., Baltimore MD 21218, USA

http://www.vision.jhu.edu/

Abstract
Given point correspondences in multiple perspective

views of a scene containing multiple rigid-body motions, we

present an algorithm for segmenting the correspondences

according to the multiple motions. We exploit the fact that

when the depths of the points are known, the point trajec-

tories associated with a single motion live in a subspace

of dimension at most four. Thus motion segmentation with

known depths can be achieved by methods of subspace sep-

aration, such as GPCA or LSA. When the depths are un-

known, we proceed iteratively. Given the segmentation, we

compute the depths using standard techniques. Given the

depths, we use GPCA or LSA to segment the scene into mul-

tiple motions. Experiments on the Hopkins155 motion seg-

mentation database show that our method compares favor-

ably against existing affine motion segmentation methods in

terms of segmentation error and execution time.

1. Introduction

The ability to extract scene geometry and motion is crit-

ical to many applications in computer vision, such as image

based rendering, 3D localization and mapping, mosaicing,

etc. Often, only a video sequence of the scene is available,

with no prior knowledge about its structure or motion. This

has motivated the following problem in computer vision:

Given multiple images taken by a rigidly moving camera

observing a static scene, recover camera motion and scene

structure from point correspondences in multiple views.

When the projection model is affine, this problem can

be solved via direct factorization of the matrix of point cor-

respondences W = MS⊤ into its motion and structure com-

ponents M and S, respectively [12]. In the case of perspec-

tive cameras, the depths λ of the point correspondences are

not known, thus the matrix of point correspondences W(λ)
cannot be directly factorized. Algebraic methods proceed

by algebraically eliminating the depths, solving for camera

motion using two-view and three-view geometry, and com-

puting the depths using triangulation [4]. However, these

methods have difficulties handling all views simultaneously.

The Sturm/Triggs (ST) algorithm [10] obtains an initial

estimate of the depths λ using two-view geometry. Then the

matrix W(λ) containing point correspondences in all views,

is factorized into the motion and structure of the scene.

Simple iterative extensions to the ST algorithm (SIESTA)

[14, 4] alternate between the estimation of motion + struc-

ture and the estimation of the depths. Unfortunately, with-

out proper initialization, SIESTA can converge to a trivial

solution where all the depths are zero. [7] proposed an ex-

tension of SIESTA that incorporates additional constraints

into the optimization problem. However, [8] showed that in

spite of such constraints, SIESTA can still result in trivial

solutions. To overcome these issues, [8] proposed a prov-

ably convergent method called CIESTA which uses regular-

ization in the optimization to adjust the estimated depths so

as to keep them close to their correct values.

Over the past few years, there has been an increasing

interest on extending motion estimation methods to scenes

with multiple motions. This requires one to group the points

according to the different motions before applying standard

motion estimation techniques to each group. In computer

vision, this is known as the motion segmentation problem:

Given point trajectories corresponding to n objects un-

dergoing n different rigid-body motions relative to the cam-

era, cluster the trajectories according to the n motions.

This problem has been addressed mostly under the as-

sumption of an affine camera model, where-in the trajecto-

ries associated with each motion live in a linear subspace of

dimension four or less [12]. This subspace constraint was

used by Costeira and Kanade (CK) [1] to propose a multi-

frame 3-D motion segmentation algorithm based on thresh-

olding the entries of the so-called shape interaction matrix

Q. This matrix is built from the singular value decomposi-

tion (SVD) of the matrix of point trajectories W, and has the

property that Qij = 0 when points i and j correspond to

independent motions. However, this thresholding process

is very sensitive to noise [2, 5]. Kanatani scales the entries

of Q using the geometric Akaike’s information criterion for

linear [5] and affine [6] subspaces. Gear [2] uses bipartite

graph matching to threshold the entries of the row echelon

1-4244-1180-7/07/$25.00 ©2007 IEEE

canonical form of W. Unfortunately, the equation Qij = 0
holds only when the motion subspaces are linearly indepen-

dent [5]. That is, CK’s algorithm and its extensions are not

provably correct for most practical motion sequences which

usually exhibit partially dependent motions. The local sub-

space affinity method (LSA) [19] deals with partially de-

pendent motions by locally estimating a subspace passing

through each point trajectory. The point trajectories are then

segmented by applying spectral clustering to a similarity

matrix built from the angles between pairs of subspaces. As

the subspaces are estimated locally, LSA cannot deal with

transparent motions. [16] deals with transparent and par-

tially dependent motions and also with missing data. This

is done by globally fitting a union of subspaces to the data

using GPCA+PowerFactorization. As the method is mostly

algebraic, it has difficulties dealing with outliers.

Motion segmentation using perspective cameras is rel-

atively less well studied, because in this case the trajecto-

ries associated with each motion live on a manifold. Alge-

braic methods for two [18] and three [3] views are based on

polynomial fitting and differentiation. While these meth-

ods perform well for small number of motions and mod-

erate noise levels, they fail in the presence of outliers and

when the number of motion increases. Statistical meth-

ods combine two-view geometry with model selection and

RANSAC [13] or Monte-Carlo sampling [9]. While these

methods perform well for a small number of motions, as the

number of motion increases, the number of candidate mo-

tions generated by random sampling grows exponentially.

Moreover, as these methods depend on an initial clustering

obtained from two views, some post-processing is needed to

handle multiple views. Thus, these methods can fail if the

motion between two particular views is extremely noisy.

In this paper, we present what is to the best of our knowl-

edge the first algorithm for segmenting multiple rigid-body

motions using multiple perspective views simultaneously.

Our method is a natural extension of the iterative ST algo-

rithm to multiple motions, by alternating between the es-

timation of the depths and the segmentation of the point

trajectories. Given the depths, we use subspace separation

(GPCA or LSA) to segment the scene into multiple motions.

Given the segmentation, we obtain the depth of each point

using standard techniques. Therefore, our method can also

be seen as a natural generalization of subspace separation

methods from multiple affine to multiple perspective views.

We test our algorithm on the Hopkins155 motion seg-

mentation database, which includes 155 motion sequences

with two and three motions. We explore several variants of

the main algorithm, including different choices for the ini-

tialization method, subspace separation method, data nor-

malization method, etc. The best method achieves a classi-

fication error of 3.65% for two motions with a reasonable

execution time.

2. Projective Factorization of a Single Motion

Projective factorization is a method for computing the

structure and motion of a single moving object from image

points in multiple affine [12] or perspective [10] views.

In the case of affine cameras, it is well known that xfp ∈
R

2, which is the inhomogeous coordinate of the image of

point Xp ∈ P
3 in frame f , satisfies the projection equation

xfp = AfXp. (1)

Af ∈ R
2×4 is the affine camera matrix for frame f , which

depends on the relative motion between the object and the

camera at frame f . Using (1), we see that the projection

equation for all the P points in F frames can be written as

2F×P
︷ ︸︸ ︷

x11 · · · x1P

...
...

xF1· · ·xFP

 =

2F×4
︷ ︸︸ ︷

A1

...

AF

4×P
︷ ︸︸ ︷
[

X1· · ·XP

]

W = M S
⊤.

(2)

Each column of the 2F × P measurement matrix W corre-

sponds to the trajectory of a 3D point in the image plane.

Given their forms, M is called the motion matrix and S is

called the structure matrix. It is clear from equation (2)

that the rank of W is at most four, and hence the trajecto-

ries should live in a subspace of dimension at most four. In

practice, noise can cause an apparent increase of rank. This

can be accounted for by projecting W to have rank four us-

ing the SVD of W. More specifically, if W = UΣV⊤, we can

obtain the rank four projection of W as

Ŵ = ÛΣ̂V̂
⊤

= U(:, 1 : 4)Σ(1 : 4, 1 : 4)V(:, 1 : 4)⊤. (3)

Matrices M and S can then be estimated up to a projective

transformation A ∈ GL(4), as M = ÛΣ̂A and S = A−1V̂
⊤

.

In the case of perspective cameras, the projection

model (1) becomes

λfpxfp = ΠfXp, (4)

where λfp is the projective depth of xfp ∈ P
2, which is now

the homogenous coordinate of the image point. Πf ∈ R
3×4

is the camera matrix for the frame f , which depends on

the motion of the object relative to the camera at frame f .

Therefore, all point trajectories can stacked into a matrix

W(λ), which is now of dimension 3F × P due to the homo-

geneous representation for the image points. As before, this

matrix can be factorized into motion and structure as

3F×P
︷ ︸︸ ︷

λ11x11 · · · λ1P x1P

...
...

λF1xF1· · ·λFP xFP

 =

3F×4
︷ ︸︸ ︷

Π1

...

ΠF

4×P
︷ ︸︸ ︷
[

X1· · ·XP

] (5)

W(λ) = M S
⊤.

We can see from (5) that if the depths were known, then

the rank of W(λ) would be at most 4. Therefore, motion and

structure could be estimated from the SVD of W(λ), simi-

lar to the case of affine cameras. In reality, however, the

depths are unknown. To overcome this challenge, Sturm

and Triggs [10] propose to estimate the depths using prin-

ciples from 2-view geometry. Treating the first frame f0 as

a reference, they estimate the fundamental matrix Ff0f for

each frame f using the 8 point algorithm [4]. The epipole

ef0f is then obtained as the left null vector of Ff0f . Once

these quantities are known, the depths are estimated as

λfp =
(ef0f × xfp)

⊤(Ff0fxf0p)

‖ef0f × xfp‖2
λf0p. (6)

Given the depths, W(λ) can be factorized as MS⊤.

A drawback of the ST algorithm is that it relies on a cor-

rect estimation of the depths from two-view geometry. This

may not be possible in practice, because the image measure-

ments are corrupted by noise. This issue motivated several

iterative extensions to the ST algorithm [14, 4, 7, 8]. Given

an initial estimate for the depths, these methods iterate be-

tween two steps. First, estimating a rank-4 projection Ŵ and

consequently, the structure and motion. Second, estimating

the depths from Ŵ in the least square sense as

λfp =
Ŵ
⊤

fpxfp

x⊤
fpxfp

. (7)

where Ŵfp are the entries in Ŵ corresponding to λfpxfp.

This iterative method can be initialized using 2-view geom-

etry, as in equation (6). Alternatively, one can initialize the

algorithm by setting all the depths to 1. It was shown in [4]

that this is a good first order approximation to the projec-

tive depths when the ratio of true depths of the different 3D

points remains approximately constant during a sequence.

3. Projective Factorization of Multiple Motions

In this section, we present a generalization of the ST al-

gorithm to the case of multiple rigid-body motions.

Given F perspective views {xfp} of P points lying in

n moving objects, our goal is to recover the structure and

motion associated with each object and the grouping of the

P point trajectories according to the n motions. To that

end, let Wi(λ) ∈ R
3F×Pi for i = 1, . . . , n, be a matrix

whose columns are the trajectories of Pi points belonging

to the ith moving object. Then, the data matrix containing

the trajectories of all points can be written as

W(λ) =
[
W1(λ), W2(λ), · · · , Wn(λ)

]
Γ ∈ R

3F×P , (8)

where P =
n∑

i=1

Pi is the total number of points and Γ⊤ ∈

R
P×P is an unknown matrix permuting the columns of W(λ)

according to the n motions.

From the single-body case, we know that each Wi(λ) can

be factorized into a motion matrix and a structure matrix as

Wi(λ) = MiS
⊤
i . Thus, the data matrix W(λ) associated with

the n motions can be factorized as

W(λ) =
[
W1(λ) · · · Wn(λ)

]
Γ

=
[
M1 · · · Mn

]

S⊤1 0
. . .

0 S⊤n

Γ

= M S
⊤ Γ,

(9)

where M ∈ R
3F×D and S ∈ R

D×P for D ≤ 4n.

Recall that if the depths λ were known, then the tra-

jectories corresponding to a single motion would live in a

subspace of R
3F of dimension at most four. In the case

of multiple motions, although the permutation matrix Γ is

unknown, the columns of W(λ) live in a union of n sub-

spaces of R
3F of dimension at most 4. Therefore, motion

segmentation with known depths is equivalent to clustering

the point trajectories according to n low-dimensional sub-

spaces. This problem can be solved using techniques of

subspace separation, such as [1, 2, 5, 6, 19].

In reality, however, the depths of the points are unknown,

and we are faced with a chicken-and-egg problem. Given

the depths, we can segment the point trajectories by apply-

ing subspace separation to the columns of W(λ). Given the

segmentation of the point trajectories, we can apply factor-

ization to each group to estimate the depths of the points

using equation (7). This motivates the following iterative

algorithm for solving the motion segmentation problem.

Algorithm 1 (Multibody motion segmentation from mul-

tiple perspective views)

Given the trajectories of P feature points in F frames

1. Initialization: Obtain an initial estimate of the depths

or an initial segmentation of the point trajectories.

2. Motion segmentation: Given the depths, form the ma-

trix W(λ) and segment its columns into different sub-

spaces using subspace separation.

3. Depth estimation: Given the segmentation of the

point trajectories, apply factorization to each group to

obtain an estimate of the depth of each point.

4. Iterative refinement: Iterate between steps 2 and 3

until convergence of the depths and segmentation.

5. Motion estimation: given the final segmentation, re-

cover motion and structure for each group using fac-

torization.

We describe the main steps of our motion segmentation

algorithm in the following subsections.

3.1. Initialization

We can choose to initialize the algorithm with the depths

of the points or with the segmentation of the trajectories.

In the first case, we set all the initial depths to be one.

This is because there is no existing method that helps esti-

mate the depths without knowledge of the segmentation.

In the second case, we explore two options: (1) assume

the data to be captured by an affine camera and segment the

trajectories using the algorithms proposed in [16] and [19],

or (2) segment the motions between pairs of views using the

two-view segmentation algorithm of [18] and then combine

the segmentation results from these pairs of views using a

voting scheme. Although the latter method might not give a

good segmentation if the data in some views is too noisy, it

still serves as a good initialization to boostrap the algorithm.

3.2. Motion segmentation

Once the depths are known, we can form the W(λ) matrix

and segment the trajectories. To that end, notice that each

trajectory is of dimension 3F , which can be quite high when

working with a large number of views. Recalling that the

trajectories corresponding to each motion live in a subspace

of dimension at most 4, we project the trajectories onto a

generic subspace of dimension D ≥ 5 using the SVD of

W(λ). This yields a new matrix of projected trajectories

W̃(λ) =
[
w1, · · · , wP

]
∈ R

D×P . (10)

This projection not only reduces the dimension of the fea-

ture vectors, but also preserves the dimension and number

of the individual subspaces, as shown in [17].

The problem is now reduced to clustering subspaces of

dimension at most 4 in R
D. Since our algorithm is itera-

tive, we would like each step of the iteration not only to

yield good results, but also to be computationally cheap.

As shown in [15], Generalized PCA (GPCA) [17] and Lo-

cal Subspace Affinity (LSA) [19] are two subspace clus-

tering algorithms satisfying these criteria. The following

paragraphs describe each one of these methods.

Generalized PCA (GPCA): GPCA [17] is an algebraic al-

gorithm used for clustering data lying in multiple linear sub-

spaces. In the case of motion segmentation, each motion

subspace is of dimension 4, thus the first step of GPCA is to

project the data onto a subspace of dimension D = 5. Each

projected subspace is then a hyperplane that can be repre-

sented by its unique normal bi ∈ R
5 as {w : b

⊤
i w = 0}.

The union of n subspaces is then represented as

{w : qn(w) = c
⊤νn(w) = (b⊤

1 w) · · · (b⊤n w)) = 0}, (11)

where νn(w) contains all homogeneous monomials of de-

gree n in w, and c is the vector of coefficients of the poly-

nomial qn representing all the motion subspaces. Given the

number of subspaces, c can be estimated from the projected

data w in a least squares sense. Note that for the simple case

n = 2, we have ∇qn(w) = (b⊤2 w)b1+(b⊤1 w)b2. It is easy

to check that∇qn(w) ∼ b1 or b2, if w belongs to the first or

second motion subspace, respectively. In general, for any n

one can obtain the normal to the hyperplane passing through

wp as ∇qn(wp). This allows one to define a similarity ma-

trix between two points i and j as Sij = cos(θij), where

θij is the angle between ∇qn(wi) and ∇qn(wj). Segmen-

tation of the point trajectories is then obtained by applying

spectral clustering to this similarity matrix.

Local Subspace Affinity (LSA): LSA [19] is another sub-

space separation method, which is also based on a linear

projection followed by spectral clustering. In LSA, the data

is first projected onto a subspace of dimension D ≥ 5,

where D is determined by model selection. The projected

data is then further projected onto the hypersphereSD−1 by

enforcing the norm of each point to be 1. The method then

finds the k nearest neighbors to each point i and locally fits

a subspace Wi to the point and its neighbors. The dimen-

sion di of this subspace Wi is dependent upon the kind of

motion and the configuration of the points. Subsequently,

a similarity matrix S ∈ R
P×P is constructed with its el-

ements being defined as Sij = exp{−
∑dij

m=1 sin2(θm)},

where {θm}
dij

m=1 are the principal angles between the sub-

spaces Wi and Wj , and dij is the minimum between di and

dj . The trajectories are then segmented by applying spectral

clustering to this similarity matrix.

3.3. Depth estimation

Given the segmentation of the point trajectories into n

groups, we may apply factorization to obtain the motion

and structure associated with each moving object. How-

ever, as our motion segmentation algorithm depends only

on the depths of the points, we use a simplified factoriza-

tion method to obtain the depths of the points as follows:

Algorithm 2 (Iterative depth estimation algorithm)

Given the trajectory of P feature points in F frames corre-

sponding to a single motion

1. Depth initialization: Set the depths {λfp}
p=1,...,P
f=1,...,F to

be 1, or get initial estimates using equation (6).

2. Projection: Compute the rank 4 approximation of

W(λ) to get Ŵ(λ) as in equation (3).

3. Depth estimation: Linearly estimate the depths λfp

as in equation (7) to minimize the reprojection error

between the entries of W(λ) and Ŵ(λ) .

4. Iterative refinement: Iterate between steps 2 and 3

until
‖Ŵ(λ)−W(λ)‖2

‖W(λ)‖2 is below a specified threshold.

4. Experiments

In §3, we saw that there are different variations of our

algorithm, depending on (1) the method used for initializa-

tion, (2) the method used for subspace separation, and (3)

the initialization of the algorithm for estimating the depths.

In this section, we test a few of these variations on real data

and analyze the results to conclude which version performs

better. More specifically, we test the following variations:

1. DepthInit-GPCA and DepthInit-LSA refer to variations

where we bootstrap Algorithm 1 by initializing all the

depths to be equal to 1, and perform subspace separa-

tion using using GPCA and LSA, respectively.

2. SegInit-GPCA and SegInit-LSA refer to variations

where we bootstrap Algorithm 1 by giving an initial

segmentation. The initialization is done using the same

segmentation scheme as that used in [16] or [19].

In all these variations, Algorithm 2 for estimating depths is

initialized by setting all depths to 1. Also, recall that before

segmentation we perform a rank-D approximation of the

W(λ) matrix. Following [15], we use D = 5 for GPCA and

D = 4n for LSA, where n is the number of motions.

We compare these 4 variations with existing algorithms

for motion segmentation from multiple affine views. More

specifically, we compare with GPCA [16], Local Subspace

Affinity (LSA) [19] and Multi-Stage Learning (MSL) [11].1

The comparison is made on the Hopkins155 database [15],

which consists of 155 sequences of both indoor and outdoor

scenes with degenerate and non-degenerate motions, inde-

pendent and partially dependent motions, articulated mo-

tions, nonrigid motions, etc. The database contains 120 se-

quences with 2 motions and 35 sequences with 3 motions.

The sequences can further be categorized into checkerboard

sequences, traffic sequences and scenes with articulated

motions. We present results for each category in order to

get a better analysis of the algorithms’ performance.

In our comparison, we investigate the use of certain tech-

niques that affect the numerical stability of our algorithm.

The first technique involves normalizing the columns and

rows of the W(λ) matrix to be 1, and is referred to as bal-

ancing [14]. Balancing prevents the factorization step from

being numerically ill-conditioned. From our experiments,

we concluded that balancing helps improve our results. The

second technique is that of projecting the trajectories to

have norm 1 before segmenting them. This eliminates any

scaling and ensures that the subspaces are well separated.

Since the LSA algorithm explicitly requires projecting the

trajectories to have norm 1, we see that projection helps im-

prove the results for LSA. GPCA however performs better

without projection. Finally, we consider normalizing the

image coordinates to be between -1 and 1. This is done

1Notice that the affine methods (including GPCA and LSA) operate on

a 2F ×P data matrix W. However, whenever we use GPCA or LSA in step

2 of our method, we use them on a 3F × P matrix W(λ).

in order to ensure that the homogeneous coordinates of the

points are of the same order of magnitude. Experiments

show that our variations perform better segmenting normal-

ized data as opposed to un-normalized data. However, the

initial segmentations by GPCA and LSA are obtained using

un-normalized data. Even though this might seem inconsis-

tent, recall that affine methods operate on in-homogeneous

coordinates. In this paper, we have used those combinations

that give the best results.

We now present a comparison of the statistics of errors

and computation times of different segmentation methods.

For each sequence in the database, the classification error is

computed with respect to the ground truth as the percentage

of incorrectly classified points. Tables 1 and 3 give the error

statistics for sequences with 2 and 3 motions, respectively.

Tables 2 and 4 list the statistics of computation times for

the same. Figure 1 gives two histograms of the classification

errors over the sequences with 2 and 3 motions respectively.

Table 1. Classification errors (%) for sequences with 2 motions

Method DepthInit- DepthInit- SegInit- SegInit- GPCA LSA MSL

GPCA LSA GPCA LSA

Checkerboard: 78 sequences

Mean 5.02 3.21 5.42 2.97 6.41 2.57 4.46
Median 2.16 0.24 1.61 0.25 1.48 0.27 0.00

Traffic: 31 sequences

Mean 0.82 5.34 0.94 5.36 1.31 5.43 2.23
Median 0.00 1.37 0.00 1.51 0.00 1.48 0.00

Articulated: 11 sequences

Mean 0.19 5.99 0.12 3.83 3.65 4.10 7.23
Median 0.00 1.37 0.00 0.95 0.00 1.22 0.00

All: 120 sequences

Mean 3.65 4.02 3.87 3.67 4.84 3.45 4.14
Median 0.88 0.62 0.67 0.57 0.30 0.59 0.00

Table 2. Average computation times for 2 motions.

Method DepthInit- DepthInit- SegInit- SegInit- GPCA LSA MSL

GPCA LSA GPCA LSA

Check. 108.34s 37.51s 120.44s 42.96s 353ms 8.237s 7h 4m

Traffic 33.92s 122.03s 63.45s 92.28s 288ms 7.150s 21h 34m

Articul. 24.13s 21.94s 25.71s 37.46s 224ms 4.178s 9h 47m

All 81.39s 57.92s 97.04s 55.20s 324ms 7.584s 11h 4m

From the statistics, we see that our algorithm can im-

prove the result of GPCA [16], but cannot improve that of

LSA [19]. It is also worth noting that our algorithm is quite

fast. On average, it takes about 100s to segment a sequence

with 2 motions and a little more than 200s for 3 motions.

This is much faster than MSL that can take hours to con-

verge to the result. Tables 2 and 4 show a comparison of the

running times of the algorithms. The MSL method is run on

an Intel Xeon MP with 8 processors at 3.66GHz and 32GB

of RAM, while our method is run on an Intel Xeon TM with

Table 3. Classification errors (%) for sequences with 3 motions

Method DepthInit- DepthInit- SegInit- SegInit- GPCA LSA MSL

GPCA LSA GPCA LSA

Checkerboard: 26 sequences

Mean 21.21 7.11 21.60 7.26 27.48 5.80 10.38
Median 23.83 3.15 20.25 1.52 29.32 1.77 4.61

Traffic: 7 sequences

Mean 7.74 27.14 3.59 20.95 14.03 25.07 1.80
Median 4.07 30.91 2.55 21.23 10.49 23.79 0.00

Articulated: 2 sequences

Mean 18.84 3.19 12.97 3.19 14.77 7.25 2.71
Median 18.84 3.19 12.97 3.19 14.77 7.25 2.71

All: 35 sequences

Mean 18.38 10.89 17.50 9.77 24.06 9.73 8.234
Median 16.11 4.04 16.74 2.33 20.21 2.33 1.76

Table 4. Average computation times for 3 motions.

Method DepthInit- DepthInit- SegInit- SegInit- GPCA LSA MSL

GPCA LSA GPCA LSA

Check. 264.49s 294.63s 198.14s 114.40s 842ms 17.916s 2d 6h

Traffic 194.64s 59.65s 470.87s 76.90s 529ms 12.834s 1d 8h

Articul. 17.29s 80.49s 97.37s 83.55s 125ms 1.400s 1m 20s

All 236.39s 235.40s 246.93s 105.13s 738ms 15.956s 1d 23h

2 processors at 3.2GHz with 4GB of RAM (but each algo-

rithm exploits only one processor, without any parallelism).

We see that our approach performs on par, if not better than

other methods, and it does so at low computational expense.

0 10 20 30 40 50
0

20

40

60

80

100

120

Classification error(%)

N
u
m

b
e
r

o
f
s
e
q
u
e
n
c
e
s

DIGPCA
DILSA
SIGPCA
SILSA
GPCA
LSA
MSL

Classification errors for two motions

0 10 20 30 40 50 60
0

5

10

15

20

25

Classification error(%)

N
u

m
b

e
r

o
f

s
e

q
u

e
n

c
e

s

DIGPCA
DILSA
SIGPCA
SILSA
GPCA
LSA
MSL

Classification errors for three motions

Figure 1. Classification error histograms on Hopkins155 database.

5. Conclusions

We have presented a new algorithm for segmenting mul-

tiple rigid motions using multiple perspective views simul-

taneously. The algorithm uses the trajectories across all

frames at once, hence it is preferable over algorithms that

combine the segmentation over 2 or 3 views. Our method

is iterative in nature and alternates between segmentation of

the point trajectories and the estimation of the depths. A de-

tailed analysis of the performance of the different variations

of our algorithm on the Hopkins155 database shows that

our method compares favorably against existing methods in

terms of misclassification error as well as computation time.

Acknowledgements

This work is supported by startup funds from Johns Hop-

kins University, and by grants NSF CAREER IIS-04-47739,

NSF EHS-05-09101 and ONR N00014-05-1083..

References

[1] J. Costeira and T. Kanade. A multibody factorization method for

independently moving objects. International Journal of Computer

Vision, 29(3):159–179, 1998. 1, 3

[2] C. W. Gear. Multibody grouping from motion images. International

Journal of Computer Vision, 29(2):133–150, 1998. 1, 3

[3] R. Hartley and R. Vidal. The multibody trifocal tensor: Motion

segmentation from 3 perspective views. In IEEE Conference on

Computer Vision and Pattern Recognition, volume I, pages 769–775,

2004. 2

[4] R. Hartley and A. Zisserman. Multiple View Geometry in Computer

Vision. Cambridge, 2000. 1, 3

[5] K. Kanatani. Motion segmentation by subspace separation and model

selection. In IEEE International Conference on Computer Vision,

volume 2, pages 586–591, 2001. 1, 2, 3

[6] K. Kanatani and C. Matsunaga. Estimating the number of indepen-

dent motions for multibody motion segmentation. In European Con-

ference on Computer Vision, pages 25–31, 2002. 1, 3

[7] S. Mahamud, M. Hebert, Y. Omori, and J. Ponce. Provably-

convergent iterative methods for projective structure from motion.

In IEEE Conference on Computer Vision and Pattern Recognition,

volume I, pages 1018–1025, 2001. 1, 3

[8] J. Oliensis and R. Hartley. Iterative extensions of the sturm/triggs

algorithm: Convergence and nonconvergence. In ECCV (4), pages

214–227, 2006. 1, 3

[9] K. Schindler, J. U, and H. Wang. Perspective n -view multibody

structure-and-motion through model selection. In ECCV (1), pages

606–619, 2006. 2

[10] P. Sturm and B. Triggs. A factorization based algorithm for multi–

image projective structure and motion. In European Conference on

Computer Vision, pages 709–720, 1996. 1, 2, 3

[11] Y. Sugaya and K. Kanatani. Geometric structure of degeneracy for

multi-body motion segmentation. In Workshop on Statistical Meth-

ods in Video Processing, 2004. 5

[12] C. Tomasi and T. Kanade. Shape and motion from image streams

under orthography. International Journal of Computer Vision,

9(2):137–154, 1992. 1, 2

[13] P. H. S. Torr. Geometric motion segmentation and model selection.

Phil. Trans. Royal Society of London, 356(1740):1321–1340, 1998.

2

[14] B. Triggs. Factorization methods for projective structure and motion.

In IEEE Conference on Computer Vision and Pattern Recognition,

pages 845–51, 1996. 1, 3, 5

[15] R. Tron and R. Vidal. A benchmark for the comparsion of 3-D mo-

tion segmentation algorithms. In IEEE Conference on Computer Vi-

sion and Pattern Recognition, 2007. 4, 5

[16] R. Vidal and R. Hartley. Motion segmentation with missing data

by PowerFactorization and Generalized PCA. In IEEE Conference

on Computer Vision and Pattern Recognition, volume II, pages 310–

316, 2004. 2, 4, 5

[17] R. Vidal, Y. Ma, and S. Sastry. Generalized Principal Component

Analysis (GPCA). IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 27(12):1–15, 2005. 4

[18] R. Vidal, Y. Ma, S. Soatto, and S. Sastry. Two-view multibody

structure from motion. International Journal of Computer Vision,

68(1):7–25, 2006. 2, 4

[19] J. Yan and M. Pollefeys. A general framework for motion segmenta-

tion: Independent, articulated, rigid, non-rigid, degenerate and non-

degenerate. In European Conference on Computer Vision, pages 94–

106, 2006. 2, 3, 4, 5

