
Joint Optimization of Cascaded Classifiers for Computer Aided Detection

M. Murat Dundar
Knowledge Solutions and CAD

Siemens Medical Solutions Inc. USA
51 Valley Stream Parkway

Malvern, PA 19355
murat.dundar@siemens.com

Jinbo Bi
Knowledge Solutions and CAD

Siemens Medical Solutions Inc. USA
51 Valley Stream Parkway

Malvern, PA 19355
jinbo.bi@siemens.com

Abstract

The existing methods for offline training of cascade classifiers
take a greedy search to optimize individual classifiers in the cas-
cade, leading inefficient overall performance. We propose a new
design of the cascaded classifier where all classifiers are optimized
for the final objective function. The key contribution of this paper
is the AND-OR framework for learning the classifiers in the cas-
cade. In earlier work each classifier is trained independently using
the examples labeled as positive by the previous classifiers in the
cascade, and optimized to have the best performance for that spe-
cific local stage. The proposed approach takes into account the
fact that an example is classified as positive by the cascade if it
is labeled as positive by all the stages and it is classified as nega-
tive if it is rejected at any stage in the cascade. An offline training
scheme is introduced based on the joint optimization of the classi-
fiers in the cascade to minimize an overall objective function.

We apply the proposed approach to the problem of automati-
cally detecting polyps from multi-slice CT images. Our approach
significantly speeds up the execution of the Computer Aided Detec-
tion (CAD) system while yielding comparable performance with
the current state-of-the-art, and also demonstrates favorable re-
sults over Cascade AdaBoost both in terms of performance and
online execution speed.

1. Problem Specification

Cascade classifiers have long been used in machine
learning for real-time object detection from images.

The typical steps involved in object detection are:
1. Identify candidate structures in the image: In 2D ob-

ject detection this is achieved by taking sub-windows of the
image at different scales. Each sub-window is a candidate.
In 3D lesion detection from medical images, particularly
image volumes generated by high-resolution computed to-
mography (CT), a more sophisticated candidate generation
algorithm based on the image/shape characteristics of the
lesion is required.

2. Extract features for each candidate: A number of
image features are usually calculated to describe the target
structure.

3. Classify candidates as positive or negative: A
previously-trained classifier is used to label each candidate.

High sensitivity (ideally close to 100%) is essential, be-
cause any target structure missed at this stage can never be
found by the system, which otherwise may be detected later
in the classification stage by exploring effective features.
Hence, a lot of false positives are generated in step 1 above
(less than 1% of the candidates are positive), which makes
the classification problem highly unbalanced. In Figure 1
a cascade classification scheme is shown. The key insight
here is to reduce the computation time and speed-up online
learning. This is achieved by designing simpler yet highly
sensitive classifiers in the earlier stages of the cascade to
reject as many negative candidates as possible before call-
ing upon classifiers with more complex features to further
reduce the false positive rate. A positive result from the
first classifier activates the second classifier and a positive
result from the second classifier activates the third classi-
fier, and so on [10]. A negative outcome for a candidate
at any stage in the cascade leads to an immediate rejection
of that candidate. Under this scenario Tk−1 = Tk ∪ Fk

and T0 = TK ∪ ⋃K
1 Fk where Tk and Fk are the sets of

candidates labeled as positive and negative respectively by
classifier k.

2. Brief Overview of Cascaded Methods

Previous cascade classification approaches are mostly
based on AdaBoost [4, 9, 6]. Cascade AdaBoost serves as a
great tool for building real-time robust applications [11, 10],
especially for object detection systems.

However, cascade AdaBoost works with two implicit as-
sumptions: 1. a significant amount of representative data
is available for training the cascade classifier; 2. all fea-
tures can be equally evaluated with a relatively low com-
putational cost. These assumptions, unfortunately, often do
not hold in practice. Available data can be noisy and hardly
represent all aspects of the target characteristics. One of the
major concerns about cascade classification approaches is if
a classifier within the cascade does not generalize well and

1-4244-1180-7/07/$25.00 ©2007 IEEE

Figure 1. A general cascade framework used for online classifica-
tion and offline training

hence screens out more true positives than necessary, then
these true positives will never be recovered at later stages.
The more stages in the cascade, the riskier the system be-
comes unstable. This observation motivates us to design a
cascade that consists of significantly few stages. Further-
more, simple and low-cost image features are often not suf-
ficient for detecting target structures especially in 3D med-
ical images. Advanced features are indispensable for per-
formance enhancement, but they require great computation
time. If these features need to be calculated for a large por-
tion of the candidates at the early stage of the cascade, the
system may become prohibitively slow. Cascade AdaBoost
treats all features equally when selecting features for each
individual stage classifier, which leads to a computational
inefficiency.

Unlike cascade AdaBoost, the recently proposed cascade
approach for Computer Aided Detection (CAD) [1] incor-
porates the computational complexity of features into the
cascade design. The cascading strategy in this approach
brings some advantages: 1. High computational efficiency:
early stages weed out many non-target patterns, so most
stages are not evaluated for a typical negative candidate.
Computationally expensive features are only calculated for
a small portion of the candidates at later stages. 2. Robust
system: the linear program with a �1-norm regularization at
each stage is a robust system. Although no theoretical jus-
tification is derived, a cascade of very few stages unlikely
harms the robustness of linear classifiers, opposed to a cas-
cade of over 20 stages as AdaBoost cascade often obtains.

The fundamental problem with the cascade AdaBoost
and other greedy cascade classifiers including the approach
in [1] is that each classifier serves for its own purpose to op-
timize a local problem without worrying much about the
overall performance. The cascade is trained by sequen-
tially optimizing the classifiers at each stage. This train-
ing scheme potentially limits the performance of the over-

Figure 2. The proposed cascade framework for offline training of
classifiers

all system. For example there may be positive candidates
in the dataset which would be incorrectly classified eventu-
ally at stage K. These candidates could be compromised
for a bulk of negative candidates earlier in the cascade to
gain significant computational advantages without sacrific-
ing from the overall sensitivity. Likewise some of the posi-
tives which are missed in the earlier stages could have other-
wise been detected in later stages with the help of additional
features. Since the cascade is trained sequentially using the
framework in Figure 1, cascade AdaBoost and other greedy
cascade classifiers does not fully exploit the potential of a
cascaded framework.

In this study we propose a cascade classification scheme,
where the classifiers in the cascade are jointly trained to
achieve optimization at the system level, i.e. maximize
the area of the region of interest under the Receiver Op-
erating Characteristics (ROC) curve at “stage K”. In this
approach the framework for online classification of candi-
dates remains the same as in Figure 1 but the framework
for offline training of the classifiers is modified as in Figure
2. The main motivation for our approach is that; a negative
candidate is correctly classified by the cascade when at least
one of the classifiers in the cascade rejects it whereas a pos-
itive candidate is classified correctly if all of the classifiers
in the cascade detect it. The design parameters for an indi-
vidual classifier may be updated depending on how well the
other classifiers are performing. In this framework since we
are optimizing at the system level some of the classifiers in
the cascade may yield suboptimal performances.

3. Learning a Cascade Classifier in an AND-
OR Framework

In this section we first review the hyperplane classifiers
with hinge loss. Then develop the AND-OR training algo-
rithm, which will form the basis for the proposed cascade
framework.

3.1. Review of hyperplane classifiers with hinge
loss

We are given a training dataset {(xi, yi)}�
i=1, where xi ∈

�d are input variables and yi ∈ {−1, 1} are class labels.
We consider a class of models of the form f(x) = αT x,
with the sign of f(x) predicting the label associated with
the point x. An hyperplane classifier with hinge loss can be
designed by minimizing the following cost function.

J (α) = Φ(α) +
�∑

i=1

wi

(
1 − αT yixi

)
+

(1)

where the function Φ : �(d) ⇒ � is a regulariza-
tion function or regularizer on the hyperplane coefficients
and (k)+ = max(0, k) represents the hinge loss, and
{wi : wi ≥ 0,∀i} is the weight preassigned to the loss as-
sociated with xi. For balanced data usually wi = w, but for
unbalanced data it is a common practice to weight positive
and negative classes differently, i.e. {wi = w+, ∀i ∈ C+}
and {wi = w−, ∀i ∈ C−} where C+ and C− are the corre-
sponding sets of indices for the positive and negative classes
respectively.

The function
(
1 − αT yixi

)
+

is a strictly convex func-
tion. The weighted sum of strictly convex functions is also
strictly convex. Therefore for a strictly convex function
Φ(α) (1) is also strictly convex. The problem in (1) can
be formulated as a mathematical programming problem as
follows:

min
(α,ξ)∈Rd+�

Φ(α) +
∑�

i=1 wiξi

s.t. ξi ≥ 1 − αT yixi

ξi ≥ 0, ∀i

(2)

For Φ(α) = ‖α‖2
2, (2) results in the conventional

Quadratic-Programming-SVM, and for Φ(α) = |α|, it
yields the sparse Linear-Programming-SVM.

3.2. Formulation of AND-OR learning

As discussed earlier, previous cascaded classification
approaches train classifiers sequentially for each different
stage, which amounts to a greedy scheme, meaning that
the individual classifier is optimal only to the corresponding
specific stage. The classifiers are not necessarily optimal to
the overall structure where all stages are taken into account.
The proposed approach optimizes all of the classifiers in the

cascade in parallel by minimizing the regularized risk of the
entire system and providing implicit mutual feedback to in-
dividual classifiers to adjust parameter design.

More specifically, we assume the feature vector xi ∈
�d is partitioned into K subsets of non-overlapping vari-
ables in the order of increasing computational complexity
as xi = (x̄i1 . . . x̄iK), with x̄ik ∈ �pk for k = 1, . . . ,K,∑K

k=1 pk = d. The feature set at stage k is the accumula-
tive set of all the k feature subsets i.e. x́ik = [x̄i1 . . . x̄ik]
and x́iK = xi.

In the greedy scheme (Figure 1), the training set at stage
k is {(x́ik, yi)}, for i ∈ Ψk−1, where Ψk−1 is the set of in-
dices of candidates classified positive by classifier at stage
k − 1, Ψk−1 = {i : xi ∈ Tk−1}. In this framework each
classifier eliminates as many negative candidates as pos-
sible while satisfying the designated sensitivity and leave
the remaining candidates to the next classifier in line, thus
ΨK ⊂ ΨK−1 ⊂ . . . ⊂ Ψ0. In the proposed framework as
shown in Figure 2 all of the stages in the cascade are trained
with the initial training dataset, i.e. Ψk = Ψ0∀k.

We aim to optimize the following cost function

J (α1, . . . αK) =
K∑

k=1

Φk(αk) (3)

+ ν1

∑

i∈C−

K∏

k=1

(eik)+

+ ν2

∑

i∈C+

max (0, ei1, . . . , eiK)

where eik = 1−αT
k yix́ik and (eik)+ defines the hinge loss

of the i-th training example {(x́ik, yi)} induced by classi-
fier k. Notice that classifier k uses a subset of the features
in xi so we denote the feature vector used by classifier k
as x́ik. The first term in (3) is a summation of the reg-
ularizers for each of the classifiers in the cascade and the
second and third terms accounts for the losses induced by
the negative and positive samples respectively. Unlike (1)
the loss function here is different for positive and negative
samples. The loss induced by a positive sample is zero only
if ∀k : 1 − αT

k yix́ik ≤ 0 which corresponds to the “AND”
operation in Figure 2, and the loss induced by a negative
sample is zero as long as ∃k : 1 − αT

k yix́ik ≤ 0 which
corresponds to a “OR” operation.

The objective function in (3) is nonconvex and nonlin-
ear, which by itself is computationally expensive to solve.
In the next section we propose an efficient alternating opti-
mization algorithm to solve this problem.

4. Cyclic Optimization of CCL

We develop an iterative algorithm which, at each itera-
tion, carries out K steps, each aiming to optimize one clas-

sifier at a time. This type of algorithms is usually called
alternating or cyclic optimization approaches. At any it-
eration, we fix all of the classifiers in the cascade but the
classifier k. The fixed terms have no effect on the optimiza-
tion of the problem once they are fixed. Hence solving (3)
is equivalent to solving the following problem by dropping
the fixed terms in (3):

J (αk) = Φk(αk) + ν2

∑
i∈C− wi (eik)+

+ν1

∑
i∈C+ max (0, ei1, . . . , eik, . . . , eiK)

where wi =
∏K

m=1,m �=k (eim)+.
This can be cast into a constrained problem as follows

min
(αk,ξk)∈Rdk+�

Φk(αk) + ν1

∑
i∈C− wiξi

+ ν2

∑
i∈C+ ξi

s.t. ξi ≥ eik, ∀i
ξi ≥ 0, ∀i ∈ C−

ξi ≥ γi, ∀i ∈ C+

(4)

where γi = max
(
0, ei1, . . . , ei(m−1), ei(m+1), . . . , eiK

)
.

The subproblem in (4) is a convex problem and differs
from the problem in (2) by two small changes. First the
weight assigned to the loss induced by the negative samples
is now adjusted by the term wi =

∏K
k=1,k �=m (eik)+.

This term multiplies out to zero for negative samples
correctly classified by one of the other classifiers. For
these samples eim < 0 and ξi = 0 making the constraints
on ξi in (4) redundant. As a result there is no need
to include these samples when training the stage − m
of the cascade, which yields significant computational
advantages. Second the lower bound for ξ is now
max

(
0, ei1, . . . , ei(m−1), ei(m+1), . . . , eiK

)
. This implies

that if any of the classifiers in the cascade misclassifies
xim the lower bound on ξ is no longer zero relaxing the
constraint on xik.

4.1. An algorithm for AND-OR cascaded classifiers

(0) For each classifier in the cascade solve (2) for α0
k us-

ing the training dataset
{(

xk
i , yi

)}�

i=1
and initialize

αk = α0
k, set counter c = 1 and maximum number

of iterations to L.

(i) Fix all the classifiers in the cascade except classi-
fier k and solve (4) for αc

k using the training dataset{(
xk

i , yi

)}�

i=1
. Repeat this for all k = 1, . . . ,K.

(ii) Compute Jc(α1, . . . , αK) by replacing αc−1
k by αc

k in
(3), for all k = 1, . . . , K.

(iii) Stop if Jc−Jc−1 is less than some desired tolerance or
c > L. Else replace αc−1

k by αc
k for all k = 1, . . . ,K,

c by c + 1 and go to step i.

4.2. Convergence analysis

The cyclic optimization algorithm presented in Section
4.1 defines a point-to-set algorithmic mapping A which is
actually a composite algorithmic mapping as A = A1 ⊗
· · · ⊗ Ak ⊗ · · · ⊗ AK . Each sub-mapping Ak is character-
ized by the problem (4). We denote Ak(α̂) as the algorith-
mic mapping specified by problem (4) where all α’s except
αk are fixed to the corresponding values in α̂ and αk is a
variable to be determined. Denote ∆k(α̂) as the feasible re-
gion defined through the hinge loss constraints in problem
(4) in terms of α̂ with only αk free. Bear in mind that al-
though omitted, problem (4) has other constraints defined
by α1, · · · , αk−1, αk+1, · · · , αK with fixed values. Hence
we have

Ak(α̂) = argmin{J (α̂1, · · · , α̂k−1, αk, α̂k+1,
· · · , α̂K)|αk ∈ ∆k(α̂)} (5)

where α̂ is a given specific value.
The algorithm in Section 4.1 can be re-stated as fol-

lows: at the c-th iteration, we start from the iterate αc =
(αc

1 αc
2 · · ·αc

K), and we solve

(αc+1
1 αc

2 · · · αc
K) ∈ A1(αc) (6)

(αc+1
1 αc+1

2 · · · αc
K) ∈ A2(αc+1

1 αc
2 · · · αc

K) (7)

· · · ∈ · · · (8)

(αc+1
1 αc+1

2 · · · αc+1
K) ∈ AK(αc+1

1 αc+1
2 · · · αc

K)(9)

It is generally difficult to prove the convergence of a
cyclic optimization algorithm to local minimizers. For
many cyclic approaches, no convergence analysis can be
substantially established. We prove that our algorithm at
least converges from any initial point (global convergence)
to the set of sub-optimal solutions. The solution α̂ is sub-
optimal if the objective function J can not be further im-
proved at α̂ following any directions defined by αk, k =
1, · · · ,K. In other words, the solution α̂ that our algorithm
obtains satisfies: α̂k is a generalized fixed point of Ak, i.e.,
α̂k ∈ Ak(α̂). The following theorem characterizes our re-
sult.

Theorem 4.1 (a) The sequence {J c} converges to a finite
value Ĵ , (b) for any accumulation point of {αc}, denoted
as α̂, if the operation of minimization over ∆k occurs an
infinite number of times in the subsequence which has limit
α̂, then α̂k ∈ Ak(α̂).

Proof. The proof is established by following the theorem
by Fiotot and Huard [3, 8] which states as follows: Conclu-
sions (a) and (b) hold if

• α ∈ ∆k(α) for all α and k,

• ∆s is upper-semicontinuous and lower-
semicontinuous on Ω,

• if β ∈ ∆k(α), then ∆k(β) = ∆k(α),

• Ω0 = {α ∈ Ω|J (α) ≤ J (α0)} is compact.

Obviously, α is itself feasible to ∆k(α). The only constraint
we can have when we convert the unconstrained prob-
lem (3) into constrained subproblem (4) is the hinge loss
αT yixi +ξ ≥ 1. The function αT yixi is a continuous func-
tion in terms of α, so the sets {α|αT yixi < constant} and
{α|αT yixi > constant} are both open sets, proving ∆k is
upper-semicontinuous and lower-semicontinuous. If a point
β ∈ ∆k(α), it means βm = αm, for m = 1, · · · ,K, m �=
k. Then ∆k(β) = ∆k(α). The set Ω in our problem is the
entire α space. For any initial point α0, let J 0 = J (α0).
Then J (α) ≤ J 0 implies that

∑K
k=1 Φk(αk) ≤ φ which is

a constant since the error terms (the second and third terms)
in (3) are nonnegative. The set {α|∑K

k=1 Φk(αk) ≤ φ}
defines a bounded and closed set, and is thus compact.

5. CAD Applications

Although the proposed algorithm provides a general
framework which can be employed for any classifica-
tion purpose, the approach was highly motivated by
the Computer-Aided Detection (CAD) system which de-
tects abnormal or malignant tissues from medical imaging
modality, such as CT, MRI and PET.

5.1. A CAD system: automatic polyp detection

Colorectal cancer is the third most common cancer in
both men and women. It is estimated that in 2004, nearly
147,000 cases of colon and rectal cancer will be diagnosed
in the US, and more than 56,730 people would die from
colon cancer [7], accounting for about 11% of all cancer
deaths. In over 90% of the cases colon cancer progressed
rapidly is from local (polyp adenomas) to advanced stages
(colorectal cancer), which has very poor survival rates.
However, identifying (and removing) lesions (polyp) when
still in a local stage of the disease, has very high survival
rates [2], thus illustrating the critical need for early diagno-
sis.

In the area of colon cancer detection from CT images,
the key aspect of a CAD system is the improvement in sen-
sitivity with respect to detection of polyps that such system
can offer. In order to put the role of colon CAD as a second
reader in proper context, we outline it in the context of a
complete clinical workflow.

A workflow with integrated Colon CAD system would
consist of the following 4 stages:

• Case Loading: physician loads the case for review -
CAD system begins processing in the background.

• First read: physician reviews the case, prone and
supine, finalizes its findings.

• CAD results are invoked (CAD button is pressed):
physician acknowledges she/he has completed the re-
view of the case.

• Second read: physician reviews additional CAD find-
ings, and rejects any considered false positives.

To avoid any delays in the workflow of a physician the
CAD results should be ready by the time physician com-
pletes the first read. Therefore there is a run-time require-
ment a CAD system needs to satisfy. The stages involved
during online processing of a volume and the median time
it takes are listed below.

• Interpolation, 47 sec

• Detagging, 50 sec

• Segmentation, 38 sec

• Candidate Generation, 1 min 29 sec

• Feature Computation, 4 min 46 sec

• Classification, negligible

• Total, 8 min 14 sec

Feature computation is by far the most computational
stage of online processing (4 min 46 sec). In this study we
aim to speed up this stage by first partitioning the original
feature set into subsets with increasing computational costs.
Then we use the proposed AND-OR framework to build a
cascade classifier in which earlier stages are trained by the
less computational features. This way during online execu-
tion earlier stages filter out as many candidates as possible
before later stages that require advanced features are called
upon.

5.2. Numerical Results

We validate the proposed cascade classification algo-
rithm with respect to its generalization performance and
computational efficiency. We compared our algorithm to
a single stage SVM classifier constructed using all the fea-
tures, and the commonly-used cascade classifier based on
AdaBoost.

5.2.1 Data and experimental settings

The database of high-resolution CT images used in this
study were obtained from two different sites across US. The
370 patients were randomly partitioned into two groups:
training (n=169) and test (n=201). The test group was se-
questered and only used to evaluate the performance of the
final system.

Training Data Patient and Polyp Info: There were 169
patients with 338 volumes. The candidate generation (CG)
algorithm identifies a total of 88 polyps while generating an
average of 137.7 false positives per volume. Testing Data
Patient and Polyp Info: There were 201 patients with 396
volumes. The candidate generation (CG) algorithm iden-
tifies a total of 106 polyps while generating an average of
139.4 false positives per volume.

The candidate generation algorithm was independently
applied to the training and test sets, achieving 90.72% de-
tection rate on the training set at 137.7 FPs per volume and
90.91% detection rate on the test set at 139.4 FPs per vol-
ume, resulting in totally 46764 and 55497 candidates in the
respective training and test sets.

Numerical image features of totally 46 were designed,
7 of which came from the CG step with no extra compu-
tational burden. The remaining features were grouped into
three according to their computational costs. A three-stage
cascade classifier was built. The feature set 1 which was
composed of the least computational 17 features took 0.2
sec cpu time per candidate, and was used together with the
CG features to train the first classifier. The feature set 2
which was composed of 7 relatively more computational
features required an average of 0.5 sec. cpu time per can-
didate, and was used together with the feature set 1 and
CG features to learn the second classifier. The feature set 3
which was composed of 15 computationally most demand-
ing features required on average of 1.4 sec. cpu time per
candidate, and was used with all the other features to learn
the third classifier.

5.2.2 Classifier design

We set aside 30% of the training data as validation data and
use it for parameter tuning. During this process the clas-
sifiers are trained with the 70% and are validated with the
remaining 30%. However when the tuning process is over,
i.e. classifier parameters, thresholds are all set, the entire
training data is used to train the classifiers. In most CAD
applications 0-5 fp/vol is defined as the clinically admissi-
ble range of false positives per volume. Therefore this re-
gion on the ROC curve is set as our region of interest (ROI)
and all classifiers are tuned to maximize this portion of the
area under the ROC curve with the validation data.

For the proposed approach we set Φk(k) = ‖α‖2
2,

i.e. SVM. The parameters ν1 and ν2 are estimated from

a coarsely tuned discrete set of five values. The values
that maximizes the area of ROI under the ROC curve for
the overall system with the validation dataset are found as
ν1 = 50 and ν2 = 1.

In the experiments with cascade AdaBoost, we referred
to the procedure described in [10]1. Unlike [10] where each
stage classifier was learned in the presence of all the avail-
able features, similar to the design of the proposed cascaded
classifier we split the feature set into three and adopt a three
phase training of the AdaBoost cascade. During Phase 1 us-
ing the feature set 1 and the CG features the first k1 stages
of the cascade were built. The feature set 2 is used together
with feature set 1 and CG features to build the stages k1 +1
through k2 of the cascade in Phase 2. Finally during Phase
3 all of the features were used and stages k2 + 1 through
k3 were built. The validation dataset was used to tune the
decision thresholds and to estimate the number of stages
in each phase, i.e. k1, k2, k3. The decision thresholds at
each stage were tuned to satisfy the target sensitivity for
each phase. Based on the performance with the validation
set the desired target sensitivities were no polyp miss for
phase one and two and one polyp miss per stage for phase
three of the training. The number of stages in each phase
were estimated to minimize the area of ROI under the ROC
curve. During each phase the number of stages is increased
in a greedy manner until no further increase in this area is
observed upon when the next phase starts. Designing the
cascade AdaBoost classifier this way yielded one stage for
phase 1, one stage for phase 2 and three stages for phase 3
making a five-stage cascade classifier.

We also designed an SVM classifier using all of the
features available without any cascading. The parameters
ν1 = 15 and ν2 = 2 are estimated using the same approach
described above for the proposed AND-OR cascade.

5.2.3 Generalization performance and speed

The three classifiers obtained respectively by AND-OR cas-
cade, single stage SVM, and cascade AdaBoost were evalu-
ated on the sequestered test set. The results that includes the
total number of polyps detected and the remaining number
of candidates per volume after each stage in the cascade can
be found in Table 1. Also present in this table is the aver-
age feature computation time per volume in CPU seconds.
Overall system performance at 5fp/vol for the three classi-
fiers is also included in this table. Finally the overall system
performance obtained by the three classifiers are compared
in Figure 3 by plotting the ROC curves corresponding to the
final stage of the cascade classifiers and single-stage SVM.

1The AdaBoost approach [6] used in [10] has been imple-
mented by other sources. A MatLab version of the imple-
mentation was downloaded from MatLab Statistics web page
http://www.mathtools.net/MATLAB/Statistics/

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

FP/Vol

S
en

s

Comparing the Overall System Performance for Single−Stage SVM, AdaBoost Cascade, and Three−Stage AND−OR Cascade

Single−Stage SVM

AdaBoost Cascade

3−Stage AND−OR Cascade

Figure 3. ROC curves obtained by the three classifiers on the test
data.

Clearly, both cascade classifiers demonstrate computa-
tional efficiency compared to single-stage SVM. The AND-
OR cascade requires an average of 81.0 CPU secs per vol-
ume for feature computation across the three stages, Ad-
aBoost cascade requires 118 CPU secs for feature compu-
tation for the three phases (five stages). Both numbers are
significantly lower than the 286.0 cpu secs required for the
single-stage SVM with the proposed AND-OR cascade be-
ing more than three times faster than the single-stage SVM.
From a performance generalization perspective we observe
no statistically significant difference between the proposed
cascade classifier and the single stage SVM when the ROC
curves obtained by these classifiers on the test data are com-
pared. When the proposed AND-OR Cascade is compared
against the AdaBoost Cascade we achieve roughly 30% im-
provement in the average online processing time of a vol-
ume and observe statistically significant improvement in the
performance with a p-value=0.002 in favor of the AND-OR
cascade (p-value is computed for the ROI, using the tech-
nique in [5]). The main motivation for our work was to
speed up the online execution of the CAD system without
sacrificing from the system performance. This is achieved
through the proposed AND-OR cascade algorithm by con-
structing a series of linear classifiers all trained simultane-
ously in an AND-OR framework using features of increas-
ing complexity.

6. Conclusions

We have proposed and investigated a novel cascade clas-
sification algorithm based on an AND-OR design of hyper-
plane classifiers. The proposed approach aims to address
the shortcomings of previous approaches where each clas-
sifier in the cascade is optimized locally. Our approach
optimizes the overall system performance even if this re-

quires ending up with non-optimal local classifiers. We
also provide a complete implementation to solve the pro-
posed classification formulation through alternating opti-
mization techniques. Preliminary convergence analysis is
further supplied to justify our algorithm and our algorithm
converges to a cascade of classifiers where each classifier in
the cascade is a fixed point of the algorithmic mapping, and
hence optimal when the cascade is fixed in any other stages.

The content of this paper focuses on the offline training
of the classifiers which does not necessarily restrict how the
classifiers should be ordered in the cascade sequence. The
order of the classifiers is problem-specific in our cascade de-
sign. Any suitable domain or prior knowledge can be used
to determine it. For example, in our experiments, the com-
putational complexity of different sets of features should be
a major factor in deciding which classifiers need to be exe-
cuted earlier, and which later. Our experiments show favor-
able results in comparison with single-stage classifiers and
the cascade AdaBoost. The proposed framework signifi-
cantly reduces the online execution time of the CAD system
as illustrated in the system of automatic polyp detection.

References

[1] J. Bi, S. Periaswamy, K. Okada, T. Kubota, G. Fung, M. Sal-
ganicoff, and R. B. Rao. Computer aided detection via asym-
metric cascade of sparse hyperplane classifiers. In Proceed-
ings of the Twelfth Annual SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pages 837–
844, Philadelphia, PA, 2006.

[2] L. Bogoni, P. Cathier, M. Dundar, A. Jerebko, S. Lakare,
J. Liang, S. Periaswamy, M. Baker, and M. Macari. Cad for
colonography: A tool to address a growing need. British
Journal of Radiology, 78:57–62, 2005.

[3] J. C. Fiorot and P. Huard. Composition and union of gen-
eral algorithms of optimization. Mathematical Programming
Study, 10:69–85, 1979.

[4] Y. Freund and R. Schapire. Game theory, on-line predic-
tion and boosting. In Proceedings of the Ninth Annual Con-
ference on Computational Learning Theory, pages 325–332,
1996.

[5] J. A. Hanley and B. J. McNeil. A method of comparing the
areas under receiver operating characteristic curves derived
from the same cases. Radiology, 148:839–843, 1983.

[6] T. H. J. Friedman and R. Tibshirani. Additive logistic regres-
sion: A statistical view of boosting. The Annals of Statistics,
38, 2000.

[7] D. Jemal, R. Tiwari, T. Murray, A. Ghafoor, A. Saumuels,
E. Ward, E. Feuer, and M. Thun. Cancer statistics, 2004.

[8] J. D. Leeuw. Block relaxation algorithms in statistics, 1994.

[9] R. Schapire and Y. Singer. Improved boosting algorithms
using confidence-rated predictions. Machine Learning, 37,
1999.

[10] P. Viola and M. Jones. Robust real-time face detection. In-
ternational Journal of Computer Vision, 57, 2004.

AND-OR Cascade SVM Cascade AdaBoost
Phase 1 Phase 2 Phase 3

C1 C2 C3 C1 C2 C3 C4 C5

Avg. CPU time
per volume (sec.) 28 27.5 25.48 294.0 26.0 25.0 67.48
number of polyps
found (out of 106) 105 100 100 99 103 103 102 102 91

False positives
per volume (initially 139.4) 55 18.2 5 5 50 48.2 30.8 20.6 5.0

Table 1. Results by the three classifiers obtained, respectively, by our approach, the traditional SVM, and the cascade AdaBoost. Numbers
are given for every stage in the cascade.

[11] T. S. X. Tang, Z. Ou and P. Zhao. Cascade adaBoost classi-
fiers with stage features optimization for cellular phone em-
bedded face detection. Lecture Notes in Computer Science
(Advances in Natural Computation), 2005.

