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Abstract

We propose a manifold learning approach to fiber tract
clustering using a novel similarity measure between fiber
tracts constructed from dual-rooted graphs. In particular, to
generate this similarity measure, the chamfer or Hausdorff
distance is initially employed as a local distance metric to
construct minimum spanning trees between pairwise fiber
tracts. These minimum spanning trees are effective in cap-
turing the intrinsic geometry of the fiber tracts. Hence, they
are used to capture the neighborhood structures of the fiber
tract data set. We next assume the high-dimensional input
fiber tracts to lie on low-dimensional non-linear manifolds.
We apply Locally Linear Embedding, a popular manifold
learning technique, to define a low-dimensional embedding
of the fiber tracts that preserves the neighborhood struc-
tures of the high-dimensional data structure as captured by
the method of dual-rooted graphs. Clustering is then per-
formed on this low-dimensional data structure using the
k-means algorithm. We illustrate our resulting clustering
technique on both synthetic data and on real fiber tract data
obtained from diffusion tensor imaging.

1. Introduction

Diffusion tensor imaging is an emerging MRI-based
technology designed to measure the diffusivity of the wa-
ter molecules in local tissue beds. Of particular interest is
the application of this technique to the brain parenchyma.
Specifically, by taking advantage of the property that water
molecules diffuse preferentially along the length of the ax-
onal tracts and less so in the direction perpendicular to the
tracts, the white matter fiber structures can be characterized
and their connectivity mapped. This information can then
be organized for use in surgical planning and in studying
a variety of disorders including neurodegenerative diseases,
addiction, epilepsy, and mental disorders. A good review of
diffusion magnetic resonance imaging can be found in [11].

Accurate and efficient visualization of this large and
complicated 3D fiber tract data set to gain clinical insight
is extremely difficult. Motivated by this shortcoming, this
paper focuses on the problem of clustering the fiber tracts
into natural anatomical bundles for ease of display and to
facilitate information exchange and interpretation.

1.1. Previous Works

Over the past few years during the time when diffusion
tensor imaging modality has gained immense popularity,
fiber tract clustering has likewise gained significant atten-
tion with the development of various clustering techniques.
In general, these algorithms all share the common theme
of first defining a similarity metric between the fiber tracts,
and then employing an algorithm for clustering based on
the established similarity measure. For example, a clus-
tering algorithm similar to k nearest-neighbors approach is
proposed in [6] with the similarity metric between paired
fiber tracts defined in terms of the length ratio and the Eu-
clidean distance between the corresponding segments of the
paired fiber tracts. A fuzzy c-means clustering algorithm is
presented in [14] incorporating various distance measures
between fiber tracts including the dot product of the cor-
responding tangents of the tracts and the average distance
between points along the tracts. In [16], an agglomera-
tive hierarchical clustering method is used in conjunction
with a distance metric based on shortest distances between
points on the tracts as defined in [15]. In [5], various pair-
wise distances between tracts (including closest point dis-
tance, symmetric chamfer distance, and symmetric Haus-
dorff distance) and geometric characteristics of fibers (in-
cluding length, center of mass, and second order moment)
are utilized for threshold-based clustering. In [10], B-spline
representations of fiber tracts are used for comparison be-
tween those fiber tracts extracted from the subject to those
from an atlas, and then based on the labeled atlas of the fiber
tracts, the subject’s fiber tracts are clustered.

Of particular interest to this paper is the work described
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in [3] which is the first to utilize manifold learning as an
image processing tool for visualizing fiber tracts. Inspired
by this work, three additional techniques have followed suit
[2, 9, 12], and they deserve special mention as they share
strong ties with the algorithm proposed in this paper. These
techniques, very much like ours, employ spectral methods
of various flavors for clustering with each method utiliz-
ing an affinity matrix constructed from a different fiber tract
similarity measure. In [2], an Euclidean feature space (com-
posed of the means and covariances of the points building
up the fiber tracts) is used as a similarity measure for pair-
wise fiber tracts. Radial basis functions are employed to
map this feature space to weights of an undirected graph
which are then partitioned into coherent sets using the nor-
malized cut criterion for clustering. In [9], a co-occurrence
matrix containing the number of times two fibers share the
same voxel is used as the affinity matrix, and eigenvalue de-
composition is performed on this affinity matrix to obtain a
set of eigenvectors for clustering by a k-means algorithm.
In [12], a k-way normalized cut procedure is proposed for
clustering with an affinity matrix composed of symmetrized
Hausdorff distances between pairwise tracts.

1.2. Contributions of Our Work

In the literature, there appears to be disproportionately
more effort and emphasis placed on the development of a
better clustering algorithm and less so on the design of a bet-
ter similarity measure between the fiber tracts, even though
the latter is more important in determining the success of a
fiber tract clustering algorithm. The challenge in the clus-
tering arena is to find the most appropriate distance measure
that will farthest separate the fiber tracts belonging to dif-
ferent clusters while keeping fiber tracts of the same cluster
close by. Popular distance measures including the chamfer
and the Hausdorff distances have been proposed that ade-
quately capture the local relationship of the fiber tracts but
tend to lack the ability to capture the global structure of
the input data set. In this paper, we propose a similarity
measure based on dual rooted diffusion [7] which provides
a more geometrically descriptive measure of the similarity
between fiber tracts. Importantly, it captures both the local
and the global intrinsic geometry of the data set in a princi-
pled and effective manner.

Similar to the approaches taken by others [2, 9, 12], our
proposed distance measure is then incorporated into a man-
ifold clustering algorithm, which in our case is Locally Lin-
ear Embedding, for data partitioning. Manifold learning ap-
proaches seek to define a low-dimensional embedding of
the input data points that preserves the neighborhood struc-
ture of the high dimensional point set. We believe that this
methodology will be an effective mechanism to reveal the
underlying meaningful low dimensional information hidden
within high dimensional observations for successful cluster-

ing of the input fiber tract data.

1.3. Paper Organization

The rest of this paper is organized as follows. In Sec-
tion 2, we introduce the similarity measure between pair-
wise fiber tracts that we use in our technique. Section 3
describes how we utilize a variant of the Locally Linear Em-
bedding method for manifold clustering. Section 4 presents
preliminary results of our algorithm using both synthetic
and actual diffusion tensor imaging data. We offer our con-
cluding remarks and future research directions in Section 5.

2. Fiber Tract Similarity Measure

In this section, we introduce two well studied distance
measures for 3D space curves, the chamfer [1] and the
Hausdorff [8] distances. Both of these distance measures
provide some form of local similarity measure between
fiber tracts. As a more effective means of capturing the
local and global relationships between the fiber tracts, we
describe how either one of these distance measures can be
incorporated into a framework of dual rooted graph diffu-
sion to obtain a novel fiber tract similarity metric which is
capable of capturing the intrinsic geometry of the data set.

2.1. Chamfer and Hausdorff Distances

Let XM = {x1, ...,xM} be the set of M fiber tracts in a
high dimensional vector space R

d. A reasonable and popu-
lar distance measure between fiber tract xi = {xip}P

p=1 and

fiber tract xj = {xjq}Q
q=1 is the chamfer distance which is

given by the average of the distances between each point
xip ∈ xi and its closest point in xj :

dchamfer(xi,xj) =
1
n

∑
xip∈xi

min
xjq∈xj

‖xip − xjq‖

where ‖ · ‖ denotes the Euclidean norm. A different but
equally popular distance measure between fiber tract xi and
fiber tract xj is the Hausdorff distance [8] which is given by
the maximum1 of the distances between each point xip ∈ xi

and its closest point in xj :

dHausdorff (xi,xj) = max
xip∈xi

{
min

xjq∈xj

‖xip − xjq‖
}
.

Both of these distance measures can easily be made
symmetric by taking the average between d(xi,xj) and
d(xj ,xi) so as to obey the metric properties. To a certain
degree, both these measures are effective in capturing the
local neighborhood structures of the input fiber tract data set
but inadequate in capturing distant relationships. Of note,

1Others have also proposed the use of the median distance instead of
the average (chamfer) or the maximum (Hausdorff) distance.



an inherent problem with Hausdorff distance is that a point
in xi that is farthest from any point in xj dominates and
may inappropriately skew this distance measure.

2.2. Dual Rooted-Graphs

Motivated by the notion of a diffusion distance built upon
random walks on graphs [4], a novel and more robust simi-
larity criterion between high dimensional data points (such
as fiber tracts) is introduced in [7]. This measure is suited
for clustering on smooth manifolds, and is effective in cap-
turing the intrinsic geometry of the input data.

The specifics of this algorithm based on dual rooted
graphs is described here. For each fiber tract x ∈ XM , re-
cursively grow a minimum spanning tree (MST) rooted in
x in the following manner. Start at the root node of the
tree x at time k = 0 with the set MST0(x,XM ) = x. Let
MSTk(x,XM ) denote the set of fiber tracts in the tree at
time k rooted at x. With each successive discrete time point
k, add a fiber tract closest to the root node x that is in XM

but not already in MST(k−1)(x,XM ). Chamfer or Haus-
dorff distance is used here to measure the distance between
two fiber tracts in R

d.2 At the end of time k = M − 1, all
the fiber tracts in XM will be included in MSTk(x,XM )
arranged in an ascending order of distance to the root node
x. Time stamps of when each fiber tract is added to the
tree is also recorded. This process is repeated M times to
produce M fully grown trees with each fiber tract x ∈ XM

serving as a root node in this set of M MSTs.
Next, define the hitting time τ(xa,xb) between the fiber

tracts xa and xb in XM as the time k when the two MSTs
rooted in xa and xb intersect, i.e.

τ(xa,xb)=min{k :MSTk(xa,XM )∩MSTk(xb,XM )�=0}.

From an implementational stand point, the hit time
τ(xa,xb) is determined by parsing MSTk(xa,XM ) and
MSTk(xb,XM ) sequentially until a common point is
found between the two MSTs. Once τ is found, the total
path length between xa and xb is calculated by summing up
the pairwise distances between sequential fiber tracts within
each of the two MSTs up to the hit time τ . A M × M sym-
metric square matrix T containing the distances between
every pairwise fiber tracts in Xm can be generated in this
fashion. We believe that this proposed methodology cap-
tures the local structure of the input data via the chamfer or
the Hausdorf distance while the global structure is captured
through the complexity of the paths taken between any pair
of fiber tracts in the data set via the MSTs.

3. Manifold Clustering With LLE

Various methods can be employed to analyze matrices
of pairwise distances for spectral clustering, and we chose

2In fact, any reasonable distance metric between curves can be used.

a variant of the Locally Linear Embedding (LLE) as de-
scribed in [13]. The goal of LLE is to map high dimensional
inputs XM to low dimensional outputs YM using local lin-
ear reconstruction weights W. To accomplish that, LLE
first attempts to represent the input data manifold locally by
reconstructing each data point xi as weighted combination
of its neighbors through the weights W. Specifically, we
seek Ŵ as below:

Ŵ =argmin
W

M∑
i=1

‖xi −
∑

j∈N (i)

Wijxj‖2 s.t. ∀i
∑

j

Wij=1 .

However, instead of calculating the reconstruction
weights based on the above equation using fiber tract data
xi, we opt to use the method described in [13] and calcu-
late them based on the pairwise distances of the fiber tracts.
In particular, given the distance matrix T computed as de-
scribed in Section 2, the nearest K neighborsNK(i) of fiber
tract xi is identified by parsing T to find the K smallest
non-zero elements corresponding to each fiber tract. Know-
ing the neighborhood structure of each fiber tract, the local
covariance matrix Cij of fiber tract xi and its K neighbor-
ing fiber tracts xj with j ∈ NK(i) can be derived by com-
puting the following:

Cij =
1
2
(Di + Dj − Dij − D0),

where Dij is the square of the distance between the ith and
the jth neighbors as provided by T , Dl =

∑
z Dlz , and

D0 =
∑

ij Dij [13]. In terms of Cij , the optimal recon-

struction weights Ŵ to best reconstruct each fiber tract xi

from its neighbors are given by:

ŵj =

∑
k C−1

jk∑
lm C−1

lm

.

The optimal weights Ŵ is an M × M sparse matrix cal-
culated to capture the neighborhood structure of the fiber
tracts. Based on these weights, the next step is to map
the high dimensional observation data XM to a low dimen-
sional vectors YM by minimizing an embedding quadratic
cost functional:

Ŷ=argmin
Y

M∑
i=1

‖yi −
∑

j∈N (i)

Ŵijyj‖2 s.t.
Y1 = 0
YY′ = IM

.

Importantly, only the geometric information encoded by the
weights Ŵ is used to construct the embedding and not the
input data XM . Since this embedding cost functional is
quadratic in Y, it can be estimated by solving a sparse
M × M eigenvector problem. The eigenvectors associated
with the smallest d positive eigenvalues define the best d
dimensional fit. Finally, as is common practice, a k-means
method is applied to partition the resulting d eigenvectors
for clustering. The number of clusters d is defined a priori.
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Figure 1. Trivial synthetic fiber tract clustering example. (a) Input data consisting of 121 synthetic fiber tracts each described by 50 data
points. (b) Correct partitioning of fiber tracts into 11 bundles with K = 4 and d = 10.

4. Preliminary Results

Results based on both synthetic and real fiber tract data
are presented in this section to illustrate the performance of
our clustering algorithm. All algorithms are implemented in
Matlab. In section 4.1, we show simulation results specif-
ically designed to illustrate some of the features and capa-
bilities of our algorithm as described earlier in the paper.
Section 4.2 demonstrates the performance of our approach
by applying it to the clustering of a real fiber tract data set
obtained from diffusion tensor imaging.

4.1. Synthetic Dataset

The purpose of the first synthetic example as shown in
Figure 1 is to demonstrate some of the basic features of
our manifold clustering algorithm, specifically, its ability to
cluster a 3D data set (121 fiber tracts each consisting of 50
data points) into multiple bundles (11) accurately and in an
efficient manner (28 seconds on a 3.1GHz Intel Xeon pro-
cessor). The second synthetic example shown in Figure 2
is intended to demonstrate the robustness of our clustering
algorithm in a more hostile environment–one corrupted by
additive noise, with complicated fiber structures, and having
varying fiber tract lengths. The original synthetic data with
complicated fiber tract structures is displayed in Figure 2(a).
Segments of varying size fiber tracts are removed to arrive
at the data set shown in Figure 2(b). Gaussian noise with
zero mean and standard deviation of 1 is added to generate
the input noisy test data set shown in Figure 2(c). Based on
this test data set, our algorithm generated the color labeled
clusters as shown in Figure 2(d).

The intent of the third synthetic example shown in Fig-
ure 3 is to explicitly demonstrate the added capabilities of
our proposed distance measure over the more conventional
chamfer and Hausdorff distance measures. The input data
shown in Figure 3(a) contains two interlacing “U” shaped
data sets. Specifically, the data sets are facing each other
with each data set consisting of 3D parallel fiber tracts. By
design, a tail of each data set is sandwiched between the
wings of the other data set. As a result, the parallel fiber
tracts near these tail regions are in close proximity to the
parallel fiber tracts from the other data set. When only the
Hausdorff (Figure 3(b)) or the chamfer (Figure 3(c)) dis-
tance is used as the similarity measure within a LLE man-
ifold clustering algorithm, erroneous clustering results oc-
cur. However, our proposed similarity measure successfully
clustered the input data as shown in Figure 3(d). This ex-
ample illustrates the effectiveness of our proposed distance
measure in capturing not only the local but also the global
structure of the data set.

4.2. Fiber Traces from DT-MRI

The corpus callosum is a white matter structure located
just ventral to the cortex that connects the left and right
cerebral hemispheres to allow communication between the
two halves of the brain. Subdividing the corpus callosum
into anatomically defined portions is not well defined but
of much importance, especially in study normal develop-
ment and in understanding mental and neurodegenerative
disorders. We apply our method in partitioning the fiber
tracts of the corpus callosum into anatomical bundles. Fig-
ure 4 demonstrates the results of our fiber tract clustering
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(c) (d)
Figure 2. Synthetic fiber tract clustering example in a hostile environment. (a) Original data consisting of 126 synthetic fiber tracts each
described by 50 data points. (b) Random removal of varying size segments to generate a data set with fiber tracts lengths varying between
4–50 data points. (c) Corruption of the data by additive Gaussian noise (μ = 0 and σ = 1) to generate the input data set. (d) Correct
partitioning of fiber tracts into 6 bundles with K = 8 and d = 5 in less than 23 seconds on a 3.1 GHz Intel Xenon processor.
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Figure 3. Synthetic example consisting of two interweaving “U” shaped data sets. (a) Input data consisting of 246 parallel fiber tracts. (b)
Clustering result based on the Hausdorff distance. (c) Clustering result based on the chamfer distance. (d) Clustering result based on the
proposed distance measure. (K = 4 and d = 1 for all these simulations.)
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Figure 4. Clustering of 1665 corpus callosum fiber tracts obtained from diffusion tensor imaging with K = 20 and d = 11. (a) Sagittal
view. (b) Coronal view.

algorithm in dividing a patient’s 1665 corpus callosum fiber
tracts into 12 clusters.

5. Conclusions and Future Work

We have outlined a manifold clustering algorithm uti-
lizing Local Linear Embedding and a new similarity mea-
sure between fiber tracts built on the concept of dual rooted-
graphs to yield a more robust and principled clustering algo-
rithm that accounts for both the local and global geometry
of the input data for effective partitioning. The preliminary
results demonstrate improved visualization of the connec-
tivity of the fiber tracts for clinical use. A natural extension
of this work is to incorporate our proposed distance metric
within other spectral clustering techniques. Much needed
improvement is needed in speeding up the construction of
the MSTs to reduce the calculation of the distances between
the fiber tracts. We are actively investigating the clinical
utility of our algorithm for disease understanding and treat-
ment.
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