
Modeling Appearances with Low-Rank SVM

Lior Wolf

School of Computer Science

Tel-Aviv University

wolf@cs.tau.ac.il

Hueihan Jhuang

CBCL

M.I.T

hueihan@mit.edu

Tamir Hazan

School of Engineering and CS

The Hebrew University of Jerusalem

tamir@cs.huji.ac.il

Abstract

Several authors have noticed that the common represen-

tation of images as vectors is sub-optimal. The process of

vectorization eliminates spatial relations between some of

the nearby image measurements and produces a vector of

a dimension which is the product of the measurements’ di-

mensions. It seems that images may be better represented

when taking into account their structure as a 2D (or multi-

D) array.

Our work bears similarities to recent work such as

2DPCA or Coupled Subspace Analysis in that we treat im-

ages as 2D arrays. The main difference, however, is that

unlike previous work which separated representation from

the discriminative learning stage, we achieve both by the

same method.

Our framework, ”Low-Rank separators”, studies the use

of a separating hyperplane which are constrained to have

the structure of low-rank matrices. We first prove that

the low-rank constraint provides preferable generalization

properties. We then define two ”Low-rank SVM problems”

and propose algorithms to solve these. Finally, we provide

supporting experimental evidence for the framework.

1. Introduction

The most natural representation of an image is a multi-

dimensional array. The most frequently used learning al-

gorithms, however, are designed for vector representation,

that is, pixels of images are concatenated row after row into

a long vector.

Viewed as a vector, an image no longer keeps its spatial

relations between nearby pixels. Moreover, the dimension

of the vector is the product of the array’s dimensions, which

can be extremely high, while the number of training exam-

ples remains small; problems associated with the curse of

dimensionality such as overfitting are expected.

Feature selection techniques and dimensionality reduc-

tion methods (e.g. PCA) are used successfully to partly

overcome the curse of dimensionality. For example, PCA

and LDA are now common methods for face recognition

applications. These methods, however, may perform better

once domain information is incorporated.

Some recent research has incorporated the 2D structure

of images into the dimensionality reduction process, such as

2DPCA [13], CSA [12] and 2DLDA [14]. Other work uses

high order tensor decompositions to derive representations

of image ensembles [5, 8, 9]. The ensemble’s varying fac-

tors may include different faces, facial expressions, view-

points, and illuminations. All above methods provide good

performance, but learn the image representation separated

from the supervised learning stage.

In this work we apply a unique variant of feature selec-

tion. Instead of selecting variables that best distinguish be-

tween the object classes, we select a set of rank-1 matrices.

As we show below the variant method is tightly related to

the original feature selection method. Let X ∈ R
n×m be a

data point as a matrix form, and x ∈ R
nm be its vectorized

form. Let w and W be a separating hyperplane written as

a vector and a matrix, then we use a linear decision rule of

the form sign(w⊤x + b) = sign(tr(WX⊤) + b).

Consider the feature selection scenario where a set of

k variables with matrix coordinates (α1, β1)...(αk, βk) is

chosen. Each data-point X is then projected onto the linear

space of the selected features. This subspace is spanned by

matrices of the form eβi
ê
⊤

αi
, where ei is the i-th element of

the standard basis of R
n and êj is the one of R

m. Equiv-

alently, we can constrain the matrix W to be of the form:

W =
∑k

i=1 dieβi
ê
⊤

αi
, for some di ∈ R, and i = 1, ..., k.

The variant of feature selection we propose has a ma-

trix W of a more general form: W =
∑k

i=1 diuiv
⊤

i , where

ui and vi are arbitrary vectors, i.e. W is a low-rank ma-

trix. This allows for basic features that form a spatial pat-

tern rather than performing point-sampling. Note that the

rank of W is at most k, and our analysis refers to the case

where k is smaller than the matrix dimensions, otherwise,

when k ≥ min(n, m), W is not constrained. Also note that

the decomposition of W into a sum of rank-one matrices is

not unique. This ambiguity is reduced by requiring for the

set of vectors {ui} and {vi} to be each orthogonal.

11-4244-1180-7/07/$25.00 ©2007 IEEE

In order to optimize for the low-rank matrix basis we

define the Low-Rank SVM problem. Similar to SVM, our

optimization criterion seeks a hyperplane which maximizes

the margin from the decision boundary. In addition, we add

the requirement that the separating hyperplane has to be a

low-rank matrix. This results in a non-convex optimization

problem, for which we offer iterative solutions. We pro-

vide two variants of the low-rank SVM problem. One is

solved via cyclic optimization of one vector of parameters

at a time. The other is an extension of a feature selection

technique called AROM.

1.1. Related Work

Yang et al. [13] propose an algorithm called 2DPCA

for face representation. As opposed to PCA, which treats

images as vectors and finds their principal components,

2DPCA represents each image as a matrix, and maximizes

the covariance of the projections of each row of measure-

ments.

Xu et al. [12] propose an image reconstruction criterion

to reconstruct the original image matrices using two low

dimensional coupled subspaces, which encode the row and

column subspaces of the image. They propose an iterative

method, CSA (couples subspaces analysis) to optimize the

criterion. They also prove that PCA and 2DPCA are special

cases of the CSA.

Ye et al. [14] in the 2DLDA algorithm propose to use the

2D structure as a preprocess, to overcome the singularity

problem of LDA which occurs when all the scatter matrices

are singular.

The zero-norm linear-separation problem couples fea-

ture selection and separating hyperplane determination in

one criterion. Let w be the separating hyperplane, the zero-

norm of it is the number of non-zero elements in w. Given

a set of training examples {xi} with corresponding labels

{yi}, the zero-norm SVM finds a hyperplane w and an off-

set b which optimize the following criterion:

min ‖w‖0, subject to: yi(w · xi + b) ≥ 1 (1)

Weston [11] shows that the problem can be solved by a sim-

ple procedure called AROM:

1. Train a linear SVM using the conventional ℓ2 norm.

2. Weigh each data point by magnitude of the hyperplane

w, i.e. xi ← D(w)xi, where D(w) is the diagonal

matrix of the elements of the hyperplane w.

3. Iterate the first 2 steps until convergence of w.

In each round, by re-weighting the data, important fea-

tures gain more and more weighting, while the weights of

less important features gradually decrease to zero. The al-

gorithm works well for vector data, but not for matrix data,

as we will demonstrate experimentally.

2. VC dim of a low-rank matrix separator

The overfitting caused by the curse of dimensionality can

be quantified. Most naturally, one can estimate the expected

generalization error, i.e. the difference between the testing

error and training error. Bounds on the generalization error

relate it to the capacity of the class of all possible classifica-

tion rules. The VC-dimension [6] measures this capacity.

A classification model fθ with some parameter vector

θ is said to shatter a set of data points {x1, x2, . . . , xd}
if, for all possible assignments of labels to those points

{y1, y2, . . . , yd}, there exists a θ such that fθ(xi) = yi.

The VC dimension of a model fθ is the maximum d such

that there exists a set of data points of cardinality d which

can be shattered by fθ. For a p-dimensional linear model

fw,b(x) = sign(w⊤x + b), the VC dimension equals p + 1.

For linear models over vectorized n × m images, the VC-

dimension is therefore nm + 1. We will show that low rank

matrix separators have a much lower VC dimension.

We first investigate the hypothesis set H1 that corre-

sponds to rank 1 matrices uv⊤ ∈ R
n×m and scalars b ∈ R.

Let {Xk} be a set of data matrices with elements Xk(i, j) ∈
R and recall that the set X1, ..., Xd is shattered if there are

2d pairs of hyperplanes and scalars in H1 which generate

all the labels in {−1, 1}d. The matrix uv⊤, the offset b
and data Xk produce a label that equals sign(fk(u, v, b))
whereas fk(u, v, b) =

∑
i,j Xk(i, j)uivj + b is a degree

2 polynomial with m + n + 1 variables. The sequence

(sign(f1(u, v, b)), . . . , sign(fd(u, v, b))) ∈ {−1, 1}d is

called a sign pattern of the polynomials f1, ..., fd. If the

set X1, ..., Xd is shattered then all possible 2d sign patterns

are possible. We therefore have the following connection

between sign patterns and VC-dimension:

Claim 1. If for all d-tuple of polynomials f1, ..., fd the

number of sign patterns is less than 2d then the VC-

dimension is less than d.

Claim 1 also applies for rank k hyperplanes. The im-

portant difference is that in this case the degree two poly-

nomials f1, ..., fd have k(m + n) + 1 variables. We state

a general theorem due to Warren [10] that bounds the sign

patterns of a set of polynomials. From this theorem and the

above claim we derive a bound on the VC-dimension onHk

the set of all linear separators of rank at most k.

Theorem 1 (Warren ’68). Let f1, ..., fd be a sequence of

d polynomials of degree at most h in q variables over the

reals. Assume d ≥ q and h ≥ 1, and let e = exp(1), then

the number of sign patterns is less than

(
4edh

q

)q

(2)

Theorem 2 (VC-dim of Hk). Let Hk be the hypothesis

class of functions g : R
n×m → {−1, 1} of the form

g(X) = sign(tr(WX⊤) + b), where W ∈ R
n×m is a rank

k matrix and b ∈ R. The VC-dim of the class Hk is less

than k(n + m) log(k(n + m)).

Proof: To show that the VC-dimension of Hk is less

than k(n + m) log(k(n + m)) we need to show that for

every k(m+n)+1 variate polynomials f1, ..., fd of degree

at most 2 the log(number of sign patterns) is at most d =
k(m + n) log(k(m + n)), as:

log

(
4ed · 2

k(m + n)

)k(m+n)+1

≤

≤ (k(n + m) + 1) log (8e · log(k(n + m)))

≤ k(n + m) log(k(n + m))

whereas the last inequality holds for k(m + n) ≥ 100.

Theorem 2 proves that with respect to generalization er-

ror, the class Hk behaves, up to a logarithmic factor, simi-

larly to hyperplanes of dimension k(n + m). This is much

lower than the mn + 1 VC-dimension of separators which

can be reshaped to general rank matrices.

3. Rank-k SVM

The VC-dimension result above holds for any linear sep-

aration obtained with a low rank matrix. If such a sep-

arator exists it may not be unique. On the other hand,

an error free separator may not exist for a given data-set.

We therefore suggest choosing a separator from the class

of low-rank separators based on the SVM maximum mar-

gin principle [7]. The SVM optimization scheme is re-

duced to minimizing the sum of squares of the low rank

separating hyperplane W , denoted be the Frobenius Norm

‖W‖2F =
∑

i,j W 2
i,j , with respect to linear constraints of

the type tr
(
W⊤Xi

)
− b ≥ 1− ξi:

Problem 1 (Rank k SVM). Given a set of data points
X1, X2, . . . , XN , and a set of corresponding labels
y1, y2, . . . , yN , find W, b, ξi that optimize the following con-
strained minimization problem:

min
W,b,ξi

1

2
‖W‖2

F + C

l
∑

k=1

ξi

subject to: rank(W) ≤ k

yi

(

tr(W⊤
Xi) − b

)

≥ 1 − ξi, i = 1, ..., N

ξi ≥ 0

The constraint rank(W) ≤ k is non-convex and the

standard convex optimization techniques applied in vector

SVM cannot be implemented. Below we describe an algo-

rithm for solving problem 1.

3.1. Cyclic optimization algorithm

We constrain the rank of W to be k by representing W
uniquely as the sum of k rank-1 orthogonal matrices urv⊤r .
Problem 1 can be equivalently formulated as:

min
uj ,vj ,b,ξi

1

2

k
∑

j=1

‖uj‖
2

2 · ‖vj‖
2

2 + C

l
∑

k=1

ξi

subject to uj1⊥uj2 , vj1⊥vj2 1 ≤ j1 < j2 ≤ m

yi

(

k
∑

j=1

u
⊤

j Xivj − b

)

≥ 1 − ξi, i = 1, ..., N

ξi ≥ 0

Although the orthogonality constraints are non-convex

they give rise to an alternating optimization scheme. We

optimize in a cyclic manner over u1, v1, u2, v2, ..., uk, vk.

When we optimize for a single vector of variables the rank

k SVM is reduced to a vector-SVM and is solved by the

standard SVM algorithm.

4. Low-Rank selection SVM

Similarly to the feature selection problem, where the op-

timal number of features may not be known in advance, it

may be preferable to minimize directly the rank of the sep-

arating hyperplane. We therefore define the following opti-

mization problem:

Problem 2 (Low-rank selection SVM). Given a set of data
points X1, X2, . . . , XN , and a set of corresponding labels
y1, y2, . . . , yN , find W, b, ξi that optimize the following con-
strained minimization problem:

min
W,b,ξi

rank(W) + C

l
∑

k=1

ξi

subject to

yi

(

tr(W⊤
Xi) − b

)

≥ 1 − ξi, i = 1, ..., N

ξi ≥ 0

4.1. Iterative weighting algorithm

In order to solve problem 2, we extend the AROM al-
gorithm [11] to perform basis changes on top of feature se-
lection. Let U ∈ R

n×n and V ∈ R
m×m be orthonormal

matrices that represent some column and row bases. A ma-
trix X ∈ R

n×m can be represented in the U ,V basis as

X
uv = U

⊤
XV. (3)

i.e., instead of being represented in the usual basis X =∑
i,j X(i, j)eiê

⊤

j , where ei and êj are the standard bases of

R
n and R

m, it is represented as X =
∑

i,j Xuv(i, j)uiv
⊤

j ,

ui and vj being the columns of U and V .
Our iterative weighting algorithm is based on transform-

ing the data-points by some new column and row bases U

and V , training an SVM in the new space and weighting the
new features. The relationship between the separating hy-
perplane in the new basis Wuv and the one in the original
basis is given by

W = UW
uv

V
⊤

, (4)

whereas for each X there holds,

tr(W⊤
X) = tr((UW

uv
V

⊤)⊤(UX
uv

V
⊤)

= tr(V W
uv

U
⊤

UX
uv

V
⊤)

= tr(V ⊤
V W

uv
X

uv)

= tr(W uv
X

uv)

Another way to observe Eq. 4 is to notice that the transfor-

mation X → U⊤XV is an orthogonal transformation1 of

X , and recalling that the dual transformation is the inverse

transpose of the original one.

Below we describe the steps of the algorithm. Lower

letters (e.g. xi) describe the vectorized version of the corre-

sponding upper letters (Xi).

1. Train SVM on xi, yi, i = 1, ..., N and obtain w,b.

2. Reshape w as an n×m matrix W .

3. Use SVD to decompose W as UDV T

4. Xuv
i ← UT XiV , i = 1, . . . , N .

5. D ← D + const.

6. Xuv
i (j, k) ← Xuv

i (j, k)D(j, k), for i = 1, . . . , N ,

and j = 1, . . . , n, and k = 1, . . . ,m.

7. Xi ← UXuv
i V T , i = 1, . . . , N .

8. Go back to step 1 until convergence of w.

In step 1, we apply SVM to data and get a hyperplane w
with nm dimensions. Then, in step 2, we reshape it as an

n × m matrix, the same dimensions as the input matrices.

In step 3, W is decomposed via SVD into two orthogonal

matrices U and V , and one diagonal matrix D.

We now change basis to the space of rank-one matrices

of the form {uiv
⊤

j |i = 1, . . . , n, and j = 1, . . . ,m}, where

ui is the i-th column of U , and similarly for vj and V . This

basis has the property, due to the properties of SVD, that for

every k, the closest rank-k matrix approximation of W (in

the least squares sense) is given by
∑k

i=1 D(i, i)uiv
⊤

i .

In this new basis Wuv = U⊤WV = U⊤UDV ⊤V =
D. Step 6, therefore, is equivalent to step 2 of AROM (see

section 1.1). However, since D is a diagonal matrix, fea-

tures of the form uiv
⊤

j , i 6= j would be zeroed out even

after one iteration if we use D as is. We therefore suggest

to add a small constant to D in step 5 of the algorithm to

allow the algorithm to converge more slowly to the desired

feature space. After experimenting with synthetic data we

fixed this value to be D(1, 1)/10 in all of our experiments.

1because tr

(

(uiv⊤j)⊤ukv⊤
l

)

= δikδjl

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

singular value index

s
in

g
u
la

r
v
a
lu

e
 m

a
g
n
it
u
d
e

Last round

First round

Figure 1. The magnitude of diagonal terms of D in step 3 of the

algorithm as they change through the iterations

Finally, we transform the weighted feature matrices back
to the original image space, and have the original data up-
dated as

Xi = UX
uv
i V

T

=

n
∑

k=1

m
∑

j=1

X
uv
i (j, k)ujv

⊤

k

=

n
∑

k=1

m
∑

j=1

[(d(j, k) + const)(u
⊤

i Xivk)]ujv
⊤

k

Fig. 1 shows the magnitude of diagonal terms of D in step

3, at the first iteration and the last iteration. The smooth

curve shows at the first iteration, the magnitude of features

slowly decrease and W has full rank. At the last iteration,

only two relevant features are retained, and thus we get a W
with rank 2.

4.2. Comparison with AROM

The feature selection algorithm AROM and our iterative

weighting algorithm (sec. 4.1) both share a similar weight-

ing scheme. The second one, however, is designed to work

with matrices, and can select features that are rank-1 ma-

trices instead of single variables. Also, while AROM is

only invariant to a permutation of the variables, the iterative

weighting low-rank SVM algorithm is invariant to orthogo-

nal permutations of the row and column spaces.

Proposition 1. Let A and B be arbitrary orthogonal ma-

trices with dimensions n1 × n, and m1 × m correspond-

ingly, whereas n1 ≥ n and m1 ≥ m. If a low-rank SVM

algorithm results in a hyperplane W for the original train-

ing data Xi, i = 1..N , it will results in a hyperplane W̃=

AWB⊤ for the transformed training data X̃i = AXiB
⊤.

Proof. The proposition follows from the fact (noted above

in the explanation for Eq. 4) that the transformation X →
AXB⊤ is an orthogonal transformation of x (the vectorized

version of X). The details are omitted for brevity.

4.3. Extensions

Given a set of images containing multiple factors like

color, viewpoint, and illumination, we can either put all the

images into a matrix, then apply the above algorithm, or

represent them as a tensor in which each dimension corre-

sponds to an image factor.

A natural extension of our algorithm to tensors is based

on existing tensor decomposition methods [2, 1]. In step 3

of the algorithm we decompose W to a tensor product of a

tensor S with orthogonal matrices U1, U2, . . . , UM , where

the input examples are given as M -dimensional arrays. We

will then transform each training example by Uj , for j =
1 . . .M , and reweigh them according to the elements of S.

5. Relation to 2D decompositions

Assume that one uses an algorithm such as CSA [12] to

learn the dominant row and the column spaces of the input

samples X1, X2, projects the data to these spaces to get

“noise-free” data and then learns. We show below that the

resulting hyperplane would be of low-rank.

Proposition 2. Assume that the columns and the rows of

the data matrices X1, X2, ... come from an m dimensional

subspaces V1, V2 respectively, then the optimal hyperplane

W ∗ is of rank m.

Proof: Omitted for brevity.

6. Experiment

In this section we provide several experiments to support

the low-rank learning framework. In our experiments the

cyclic update algorithm in Sec. 3.1 converges much slowly

than the iterative weighting algorithm in Sec. 4.1. We there-

fore did not run a full set of experiments for the cyclic up-

date algorithm. We report the results for the iterative algo-

rithm as follows.

Synthetic Data Using synthetic data, we compared the

performance of SVM, AROM [11], 2DPCA [13] followed

by AROM, and our proposed low-rank SVM iterative algo-

rithm. The synthetic data was created in increasing levels of

complexity. At first, we create vectors with dimension 100,

and then arrange them into 10×10 matrices. Then, we made

the structure of matrices more elaborate by altering the col-

umn and row space via orthogonal transformations. Lastly,

we made the problem even more challenging by multiply-

ing the data matrices from left and right by matrices of size

50× 10 with orthogonal rows.

In the first synthetic data experiment, each data point is

a vector in R
100, in which the first six dimensions out of

100 are relevant. These vectors were drawn using the pro-

tocol given by Weston [11]: with a probability of 0.7, the

first three features are drawn as x(i) ∼ y ·N(i, 1), and the

second three features are drawn as x(i) ∼ N(0, 1). These

points constitute the positive examples. The negative ex-

amples, which occurs with a probability of 0.3, have the

original X AXBT AXBT

A,B: 10 × 10 A,B: 50 × 10
SVM 92.63 ± 1.69 92.63 ± 1.69 89.12 ± 3.72

AROM 99.90 ± 0.2 80.96 ± 8.01 75.54 ± 9.03
2DPCA+AROM 97.84 ± 1.11 97.84 ± 1.11 79.99 ± 8.07

LowRank 99.47 ± 0.35 99.47 ± 0.35 97.60 ± 2.48

Table 1. Synthetic experiments results (in percents). See Sec. 6.

first three variables drawn as x(i) ∼ N(0, 1) and the sec-

ond three as x(i) ∼ y · N(i − 3, 1). The remaining fea-

tures are class independent noise drawn as x(i) ∼ N(0, 20),
i = 7, . . . , 100. In order to have similar distributions to rel-

evant and to irrelevant variables, all variables are scaled to

have mean zero and standard deviation one. The order of

the variables is then permuted randomly. SVM and AROM

used the vector form of the input data, while the other al-

gorithms received a matrix form where the vectors were re-

shaped as 10× 10 matrices X .

The second and third synthetic data experiments were

using data in which the relevant part consisted of a low-

rank matrix subspace. Such matrices were generated by pre-

multiplying the 10× 10 matrices X (as above) by a random

matrix with orthogonal columns A and post-multiplying

them by a similar random matrix B⊤. A relevant feature

X(i, j) in the data is transformed into a general rank-1 ma-

trix X(i, j)aib
⊤

j , where ai and bj denote the i − th and

j − th column of the matrices A and B.

Thus, with 6 relevant features in x, the ideal low-rank

hyperplane for these experiments would be of rank-6. In

the second experiment, the A and B were 10 × 10 orthog-

onal matrices. In the third experiment they were 50 × 10
matrices with orthogonal columns. These larger matrices,

produce more input dimensions, thus potentially making the

classification problem more difficult.

Table 1 summarizes the average recognition rate, and

s.t.d (after the ± sign), for 20 repetitions, where for each

repetition 500 points were generated. 50 points were used

in the training stage and 450 points were used to evaluate

the testing error. Our observations are (1) SVM has stable

performance for all matrix transformations we used in this

experiment, as expected. (2) AROM can help for the vec-

tor case, but not for the matrix cases. (3) 2DPCA+AROM

works for some matrix transformations. (4) Low-rank SVM

works well for both the vector and for the matrix cases.

Aligned face images We performed face detection exper-

iments on 2, 429 face examples were taken from the CBCL

face data set , and 2, 500 negative examples that were diffi-

cult non-faces extracted as false positives of a simple LDA-

based face detector. Each example was represented as a

19 × 19 gray level images. We split the data-set 25%

training, 75% testing and repeated the experiment 10 times.

The average recognition rate for SVM was 92.7% ± 1.1%.

Figure 2. The configuration of the nine sub-regions is displayed

over the gradient image.

AROM gave a comparable performance of 92.8% ± 1.0%.

Low-rank SVM improves to 94.8%± 1.2%.

Pedestrian detection We examined the performance of

low-rank SVM on part-based representations dataset for

pedestrian detection [4]. Each image was divided into 9

regions where local orientation statistics were generated

with a total of 22 numbers per region (see Fig 2), thereby

making a 22 × 9 matrix representation. There were 5,000

training and 10,000 testing examples, split evenly between

positive and negative examples, and we repeated the ex-

periment 10 times. The average recognition rate for SVM

was 88.3%, whereas AROM achieved a comparable rate of

88.4%. Low-rank SVM improved this rate to 89.6%.

Action recognition We use the action data-set of [3],

which contains six types of human actions, walking, jog-

ging, running,boxing, hand waving and hand clapping, per-

formed several times by 25 subjects in four different con-

ditions: outdoors, outdoors with scale variation, outdoors

with different clothes and indoors. The sequences were

downsampled to the spatial resolution of 160x120 pixels

and have a length of four seconds in average. As used in

[16], sequences of 8 persons were used as training sets. The

rest were used as the test set.

We computed five layers of features- a temporal gradient,

It, two spatial gradient, Ix, Iy , and the two ratios between

temporal and spatial gradients, It

Ix
, It

Iy
. These ratios implic-

itly contain velocity information arising from the constant

brightness assumption.

Classification was performed at three frames at a time.

The tensor representation of each example was therefore 3

frames × 5 layers × 160 × 120. We ran a series of binary

tests, where in each case we classified one action as positive

and another as negative. The average recognition rate for

SVM was 75.8%, whereas AROM achieved a lower rate of

63.1%. Tensor Low-rank SVM improved the recognition

rate significantly to 84.3%.

7. Conclusions

We presented the low rank separators framework that re-

strict the separating hyperplane to be a low rank matrix. We

proved that the VC-dimension of this classification prob-

lem is significantly better than that of the general hyper-

plane classification problem, therefore the low-rank separat-

ing hyperplane can generalize better than a general hyper-

plane. We show that this is the case in synthetic statistical

data and in several real-world data sets. Algorithmically, we

find the low-rank separator by generalizing the zero-norm

SVM optimization scheme to the matrix case, or more gen-

erally to the tensor case. In the future we would like to study

the application of our methods to unordered variables and to

other feature selection methods, such as boosting.

Acknowledgments

LW is supported by the Israel Science Foundation (grants

No. 1440/06, 1214/06), and by the Colton Foundation.

References

[1] T.G. Kolda, Orthogonal tensor decompositions SIAM Jour-

nal on Matrix Analysis and Applications, 2001.

[2] L. De Lathauwer, B. De Moor, and J. Vandewalle, A multi-

linear singular value decomposition SIAM Journal of Matrix

Analysis and Applications, 2000.

[3] C. Schuldt, I. Laptev and B. Caputo. Recognizing Human

Actions: A Local SVM Approach, ICPR, 2004.

[4] A. Shashua et-al. Pedestrian Detection for Driving Assis-

tance Systems. IEEE Intelligent Vehicles Symposium, 2004

[5] A. Shashua and A. Levin. Linear Image Coding for Re-

gression and Classification using the Tensor-rank Principle.

CVPR, 2001

[6] V. Vapnik and A. Chervonenkis. On the uniform convergence

of relative frequencies of events to their probabilities. Theory

of Probability and its Applications, 1971.

[7] V. Vapnik. The Nature of Statistical Learning Theory.

Springer-Verlag, 1999.

[8] M.A.O. Vasilescu and D. Terzopoulos, Multilinear analysis

of image ensembles: Tensorfaces ECCV, 2002

[9] H. Wang and N. Ahuja, Facial expression decomposition

ICCV, 2003

[10] H.E. Warren, Lower bounds for approximation by non-linear

manifolds. Trans. Amer. Math. Soc., 1968.

[11] J Weston, A Elissee, B Scholkopf and M Tipping, Use of the

0-norm with linear models and kernel methods JMLR, 2003.

[12] D. Xu, S. Yan, L. Zhang, Z.Liu, H.J. Zhang, Coupled sub-

spaces analysis MSR-TR-2004-106,2004.

[13] J. Yang, D. Zhang, A. F. Frangi, and J. Yang, Two-

dimensional PCA: a new approach to appearance-based face

representation and recognition PAMI, 2004.

[14] J. Ye, R. Janardan, and Q. Li, Two-Dimensional Linear Dis-

criminant Analysis NIPS, 2004.

