
Hybrid learning of large jigsaws

Julia Lasserre

Department of Engineering

University of Cambridge, UK

jal62@cam.ac.uk

Anitha Kannan, John Winn

Microsoft Research

Cambridge, UK

{ankannan,jwinn}@microsoft.com

Abstract

A jigsaw is a recently proposed generative model that

describes an image as a composition of non-overlapping

patches of varying shape, extracted from a latent image.

By learning the latent jigsaw image which best explains a

set of images, it is possible to discover the shape, size and

appearance of repeated structures in the images. A chal-

lenge when learning this model is the very large space of

possible jigsaw pixels which can potentially be used to ex-

plain each image pixel. The previous method of inference

for this model scales linearly with the number of jigsaw

pixels, making it unusable for learning the large jigsaws

needed for many practical applications. In this paper, we

make three contributions that enable the learning of large

jigsaws - a novel sparse belief propagation algorithm, a hy-

brid method which significantly improves the sparseness of

this algorithm, and a method that uses these techniques to

make learning of large jigsaws feasible. We provide detailed

analysis of how our hybrid inference method leads to signif-

icant savings in memory and computation time. To demon-

strate the success of our method, we present experimental

results applying large jigsaws to an object recognition task.

1. Introduction

Many computer vision applications such as object recog-

nition, stereo matching and image segmentation use patch-

based representation for modelling the appearance of ob-

jects or object parts (cf. [1, 8, 5]). These patch-based

models typically use fixed shaped patches and so they suf-

fer from mismatch between the object shape and the patch

shape. For example, they must model the variability of any

background regions included in the patch. When the shape

of the patch is learned, it not only overcomes this mismatch

problem, but also improves recognition since the shape of

the patch is also informative as to the identity of the object.

In [10], a generative model was presented that describes an

image as non-overlapping composition of patches extracted

from a latent image known as a jigsaw. This jigsaw model is

capable of learning the shape of the patches so as to match

the shape of repeated structures in the image. As shown

in [10], such repeated structures are highly correlated with

object parts.

A limitation of the inference method proposed in [10]

is that the time and memory requirements scale linearly

with the number of pixels in the latent jigsaw image. This

prohibits the use of this model for learning the large jig-

saws needed for many practical applications, such as object

recognition and image segmentation. In this paper, we pro-

pose a hybrid learning method which is able to learn jig-

saws of much greater size within the same memory/time

constraints. In particular, we make three main contributions

that allow the learning of large jigsaws from sizeable col-

lections of images:

• a sparse belief propagation algorithm for inferring the

mapping from the image to the jigsaw.

• a hybrid generative/discriminative method, Hybrid BP,

that significantly increases the sparseness of messages

propagated during belief propagation, especially when

the jigsaw size is large.

• an effective method for learning large jigsaws which

exploits the memory and time savings given by Hy-

brid BP.

The paper is organized as follows: in section 2, we de-

scribe previous work on sparse and hybrid methods. Sec-

tion 3 describes the jigsaw generative model. Section 4.1

describes our sparse belief propagation method, whilst, sec-

tion 4.2 explains our hybrid belief propagation method and

details the resulting savings in memory and computation

time. In Section 5, we present a jigsaw learning method,

based on hybrid belief propagation, which is capable of

learning large jigsaws. We also present experimental re-

sults applying large jigsaws to an object recognition task

that demonstrates the suitability of the jigsaw model and

the success of our hybrid learning method.

1-4244-1180-7/07/$25.00 ©2007 IEEE

2. Related Work

The closest work to jigsaw model is the epitome model

for image patches, or an image [9]. Unlike jigsaws, epito-

mes use a set of fixed shaped and sized patches and provide

only a model of image patches rather than entire images, un-

less patch averaging is used. For a more detailed qualitative

and quantitative comparison of the two models, see [10].

Markov random fields (MRFs) are widely used as a prob-

abilistic model for capturing local interactions. For MRFs

with variables that have small state space (i.e. each vari-

able can have one of a small set of values), inference can be

performed efficiently using methods such as graph cuts and

belief propagation. However, when the state space of the

variables is large, these methods run into memory or speed

limitations. Previous approaches for overcoming these lim-

itations have involved either pruning the state space of a

variable based on local evidence [4, 11] or pruning the mes-

sages sent in belief propagation using a sparse representa-

tion [14]. In section 4.1 we will describe these previous

methods in more detail and introduce a variant of the latter

approach for performing inference in the jigsaw model.

The term hybrid is used in a variety of contexts. In prob-

abilistic model learning, hybrid refers to learning by ex-

ploiting a combination of generative and discriminative ap-

proaches. One typical method is to use a convex combina-

tion of a discriminative and generative log likelihood func-

tion, where the regime for best predictive performance lie

between the two extremes [2]. In this context, [12] derives

a rigorous method for discriminatively training a generative

model. Alternatively, in [6] a combination of a carefully

constructed generative model and a general purpose feed-

forward classifier is used to rapidly infer motor programs

for digit images. In [7], a generative model is proposed that

generates both the data and their labels. In this paper, we

use a discriminative model for the sole purpose of finding

a good sparse approximation to the generative likelihood.

The bottom-up classifier is trained to mimic the behavior

of the top-down generative model. We describe our hybrid

method in more detail in section 4.2.

3. The Jigsaw Model

In this section, we describe the probabilistic model used

to learn a jigsaw from a set of training images [10]. The

aim is to learn a jigsaw image, such that pieces of the jigsaw

are similar in appearance to several regions of the training

images and are as large as possible for a particular accu-

racy of reconstruction. These regions are allowed to be of

arbitrary shape. In addition, the jigsaw is required to be ex-

haustive, so that the entirety of each training image can be

reconstructed approximately using only pieces from the jig-

saw image. Hence, the jigsaw captures repeated structures

in the training image set. For instance, applied to a set of

face images, the jigsaw captures both the appearance and

the shape of eyes, noses and mouths [10].

A jigsaw J is defined as an image such that each pixel

z in J has an intensity value µ(z) and an associated vari-

ance λ−1(z), so λ is the inverse variance, also called the

precision. A jigsaw piece is a set of spatially grouped pix-

els in J. We can combine many of these pieces to generate

images, noting that pixels in the jigsaw be used in multiple

image locations. For each image I, we have an associated

offset map L of the same size which determines the jigsaw

pieces used to make that image. This offset map defines

a position in the jigsaw for each pixel in the image, such

that more than one image pixel can map to the same jigsaw

pixel. Each entry in the offset map is a two-dimensional

offset li = (lx, ly), which maps a 2D point i in the image

to a 2D point z in the jigsaw using z = (i − li) mod |J|,
where |J| = (width, height) are the dimensions of the jig-

saw. Notice that if two adjacent pixels in the image have

the same offset label, then they map to adjacent pixels in

the jigsaw.

To explain an image using coherent pieces from the jig-

saw, a Markov random field is defined on the offset map that

encourages neighboring pixels to have the same offsets.

P (L) =
1

Z
exp

−
∑

(i,j)∈E

ψ(li, lj)

 (1)

where E is the set of edges in a 4-connected grid. The in-

teraction potential ψ defines a Pott’s model on the offsets,

ψ(li, lj) = γ δ(li 6= lj), where γ is a parameter which in-

fluences the typical size of the learned jigsaw pieces. The

choice of γ influences the granularity of segmentation of the

image. For our experiments in this paper, we fixed γ at 6.

Given the offset map and the jigsaw, the probability dis-

tribution of each image is assumed to be independent for

each pixel. Unlike [10], which used a Gaussian appearance

model, we assume that the probability distribution for each

image pixel is a mixture of a Gaussian and a uniform distri-

bution (Fig. 1),

P (I |J,L) =
∏

i

[
πN (Ii;µ(i− li), λ(i− li)

−1)

+ (1 − π)Uniform(Ii)
]

(2)

where the product is over image pixel positions and both

subtractions are modulo |J|. The use of a mixture distribu-

tion has the effect of making the model more robust, and

also allows for sparse inference methods to be used (see

section 4.1). We fixed π = 0.9 in our experiments. For

multi-channel images (e.g. RGB), separate mean and preci-

sion parameters used for each channel.

We place independent Normal-Gamma prior on µ and λ

I
i

P
(I

i |
 l

i)

0 0.2 0.4 0.6 0.8 1

Figure 1. Sparse structure of the likelihood function. Plot of the

likelihood P (Ii|li) for a particular offset li. As the likelihood is

a mixture of a Gaussian and a uniform, it is effectively constant

for a range of values of Ii, shown shaded. Hence, it can be accu-

rately represented by a sparse message, many of whose terms are

identical.

for each jigsaw pixel z:

P (J) =
∏

z

N (µ(z);µ0, (βλ(z))
−1) Gamma(λ(z); a, b).

(3)

This prior ensures that the behavior of the model is well

defined for unused regions. For our experiments, we fix the

hyper parametersµ to 0.5, β to 1, b to three times the inverse

data variance and a to the square of b.

4. Efficient Inference of the Offset Maps

The model defines the joint probability distribution on a

jigsaw J, a set of images I1 . . . IN , and their offset maps

L1 . . .LN to be

P (J, {In,Ln}) = P (J)

N∏

n=1

P (In|J,Ln)P (L). (4)

In [10], an iterative approach is described for maximiz-

ing this joint probability that required alternately optimiz-

ing the offset maps {Ln} and the latent jigsaw image J.

The bottleneck in their procedure is the optimization of the

offset maps, which used the alpha-expansion graph cut al-

gorithm of [3]. This method scales roughly linearly with

the number of pixels in the jigsaw and hence becomes pro-

hibitively expensive for learning jigsaws of size greater than

100× 100 pixels. To overcome this bottleneck, we propose

using a variant of belief propagation (BP) which exploits

the fact that many of the messages required during BP can

be sparsely represented.

4.1. Sparse Belief Propagation

Optimizing the offset maps is a challenging problem due

to the large state space of the offset for each pixel. A com-

mon approach to tackling this problem is to prune the state

space of a variable by disallowing states for which there is

little local support [4, 11]. However, this method is vulnera-

ble to pruning out states incorrectly when the local evidence

is insufficiently informative for accurate pruning. A promis-

ing alternative involves using a message-passing algorithm

with sparsely represented messages, such that the true mes-

sages can be well approximated by their sparse counter-

parts. For example, Pal et al. [14] use a forward-backward

algorithm and approximate each message p(l) by a mixture

of Kronecker delta functions q(l) chosen to be within a fixed

Kullback-Leibler divergence of the true message,

q(l) =
∑

s∈S

qsδ(l = s). (5)

In [14] it was shown that finding the approximate mes-

sage with K delta functions that minimizes KL(q||p) re-

quires simply retaining the largest K elements of p and re-

normalizing.

A problem with the above approach is that when mes-

sages are almost uniform, a very large number of delta func-

tions is required to achieve a sufficiently good approxima-

tion, and so efficiency is lost. We overcome this problem by

adding a uniform distribution to the mixture of delta func-

tions, so that the sparse message has the form

q(l) = q0 +
∑

s∈S

qsδ(l = s). (6)

Unfortunately, finding the sparse message that minimizes

KL(q||p) does not now have a closed-form solution. In-

stead we retain the largest K elements of p and, rather than

re-normalizing, evenly distribute the remaining probability

mass amongst the remaining states (those not in S). To test

the accuracy of this method, we generated random messages

by sampling p vectors of size 1000 from a Dirichlet distri-

bution. The ’peakiness’ of the messages was varied by vary-

ing the Dirichlet pseudo-count parameters from 0.01 to 100.

For K = 100, when using the approximation (5) the aver-

age KL divergence KL(q||p) was 1.1. However, when us-

ing our new approximation (6), the average KL divergence

dropped to 0.3, indicating a much better approximation of

the true message.

To optimize the jigsaw offset maps, we apply this ap-

proximation to max-product BP. We use sparse messages

and beliefs throughout (unlike [14] which computes a dense

belief and then finds the sparse equivalent). The messages

are represented in log form and, since max-product BP is

invariant to message normalization, each message is nor-

malized so that log q0 is zero. The message q(l) is then

represented as a sorted list of the states in S and a corre-

sponding list of the values log qs, requiringO(K) memory.

The required message operations during Sparse BP

are: multiplication of two messages, finding the point-

wise maximum (upper envelope) of two messages and find-

ing q′(lj) = maxli
q(li)ψ(li, lj). Since the messages are

sorted, all three of these operations can be achieved in

O(K) time. Interestingly, the latter operation actually leads

to greater sparseness, since many of the entries of q′ have

the same value.

As our robust likelihood P (Ii|J, li) can be represented

to machine precision by a sparse message (Fig. 1), we can

achieve the same results as belief propagation with full mes-

sages (full BP) whilst achieving significant memory and

time savings (see section 4.2.1). However, if we desire ad-

ditional improvements in efficiency, we can make the mes-

sages even more sparse, at the risk of leading to a poor ap-

proximation. Rather than following [14] and maximizing

sparseness within some KL divergence, we instead incor-

porate longer range image information to minimize the risk

of incorrectly pruning message states. This is achieved by

exploiting bottom-up information in a hybrid approach.

4.2. Hybrid Belief Propagation

As we have seen, the likelihood function P (Ii|J, li)
defines a somewhat sparse message over the jigsaw loca-

tions li by taking into account the appearance of the single

pixel i. For example, if pixel i is blue, jigsaw locations

whose colors are dissimilar to blue will have approximately

the same likelihood, given by the q0 term in the sparse mes-

sage. However, if we could take into account the appear-

ance of image pixels around the ith pixel, we would be able

to make the message significantly more sparse. For exam-

ple, if all neighboring image pixels were red, we could ef-

fectively discard jigsaw pixel locations with non-red neigh-

bors. Rather than construct a heuristic to achieve this, we

use a classifier to learn the relationship between the image

patch around a pixel and the jigsaw location that pixel gets

mapped to. We will see, such a classifier is able to use fea-

tures of the image patch around each pixel to achieve much

more efficient inference, with minimal loss in accuracy.

We wish to train a classifier T to approximate the con-

ditional probability P (li|I) in our generative model. This

is achieved by using a set of training images for which the

corresponding offset maps L have already been computed.

The classifier learns to predict the jigsaw location li for each

pixel i of the training images given the surrounding patch

of the image I. Hence, it learns a (local) approximation to

P (li|I), which we will denote P̃ (li|I,T). The classifier T

needs to be both efficient to train and to apply. Hence, we

follow [13] and use a decision tree classifier trained with

an entropy loss criterion values of pixels in particular rel-

ative locations to the pixel being classified. After learning

the structure of the decision tree, we compute P̃ (li|I,T) by

finding the histogram of jigsaw locations for those pixels

which were assigned to each leaf node.

We use this bottom-up prediction to sparsify the genera-

tive likelihood by removing delta functions at locations with

zero counts in P̃ (li|I,T) (see Figure 2). In other words,

Generative likelihood: P(Ii |li, J)

Hybrid likelihood: P(Ii|li,J,T)

Discriminative approximation: P(li|I,T)

li

li

~

li

Figure 2. Construction of the hybrid likelihood. Top: the gen-

erative likelihood P (Ii | li,J) for a particular pixel. Middle:

the discriminative probability eP (li | I, T) for the offset li given

the image and the decision tree. This is trained to approximate

P (li | I) under the generative model. Bottom: Hybrid likelihood

P (Ii | li,J,T) which is equal to P (Ii|li,J) masked by the dis-

criminative likelihood.

the discriminative prediction is used to mask the generative

likelihood function. This method has the property that it

gives the same solution as full BP on the training images.

Hence, it is reasonable to expect that it will give good solu-

tions on test images which have similar local image appear-

ance. The exact quality of the approximation will depend

on the generalization capabilities of the classifier.

4.2.1 Efficiency of Sparse BP and Hybrid BP

We are now interested in exploring the efficiency of

Sparse BP and Hybrid BP when used to infer the offset

maps for a pre-learned jigsaw. For this, we made use of

30 images of scenes containing buildings, taken from the

Microsoft Research Cambridge object recognition data set

[15]. We used 20 images for training, and kept 10 for test-

ing. Figure 3a shows examples from the test set. We learned

the 72 × 72 jigsaw shown in Figure 4a using the learning

method of [10] from the 20 training images. The jigsaw size

is relatively small as it is learned using existing method.

Given this jigsaw, we applied Hybrid BP with decision

tree sizes from 1 to around 1800 nodes to learn the offset

maps for the test images. Bear in mind that Hybrid BP is

equivalent to Sparse BP when the tree size is 1. In Fig-

ure 4b we show the memory requirements of Hybrid BP as

a percentage of the memory needed for full BP, for different

decision tree sizes. Sparse BP is able to infer the offset maps

using only 46% of the memory of a full BP implementation

whilst guaranteeing the same solution. Hybrid BP is able to

achieve almost arbitrary memory savings, however it is no

longer guaranteed to find the same solution as full BP for

(a)

(b)

Figure 3. (a) Example building images from the MSR Cambridge data set (b). Corresponding inferred segmentations

0 200 400 600 800 1000 1200 1400 1600 1800
0

5

10

15

20

25

30

35

40

45

50

tree size (number of nodes)

%
 m

e
m

o
ry

 u
s
e

sparse BP

hybrid BP

0 5 10 15 20 25 30 35 40
1.14

1.16

1.18

1.2

1.22

1.24

1.26

1.28

1.3

1.32
x 10

6

% memory use

lo
g
 p

ro
b
a
b
ili

ty
 o

f
te

s
t
im

a
g
e
s

sparse BP

hybrid BP - 20 training images
hybrid BP - 15 training images

hybrid BP - 10 training images

hybrid BP - 7 training images

hybrid BP - 5 training images

hybrid BP - 3 training images
hybrid BP - 2 training images

hybrid BP - 1 training image

(a) (b) (c)

(d)

building

grass
tree

sky

road water

unknown

Figure 4. (a) The 72×72 jigsaw used to test Hybrid BP. (b) Memory usage of Sparse BP and of Hybrid BP for varying sizes of decision tree.

Sparse BP can achieve equivalent to standard BP using only 46% of the memory. Hybrid BP can further reduce the memory requirements

at the cost of a reduction in accuracy. (c) Accuracy of inference for Hybrid BP against memory use for different sizes of training set. High

accuracy can be achieved on a set of test images with as little as 10 − 15% of the memory needed for standard BP. (d) Class map showing

the most likely object class at each jigsaw location.

test images. In general, as the decision tree is made larger

to reduce memory use, the generalization performance re-

duces and so we expect lower accuracy on test images.

We also investigated the time requirements for applying

30 iterations of Hybrid BP. As expected, we found that the

time varied linearly with the memory use, ranging from 36

seconds for 40%, down to two seconds for 2%. From now

on, we will report results in terms of memory use, but it is

safe to assume that similar percentage savings are made in

terms of computation time.

We investigated this generalization performance by ap-

plying Hybrid BP to infer the offset maps for ten test im-

ages and using the joint probability (4) as a measure of the

quality of this inference, since Hybrid BP should be maxi-

mizing this quantity. The joint probability is found normal-

ized by an unknown but constant factor as the normalization

term Z in P (L) is intractable to compute. In Figure 4c, we

present the joint probability of the test images as a function

of the memory usage obtained by training decision trees

using varying numbers of training images. Every plot in

the figure is averaged across six experiments. This figure

illustrates that for a fixed memory size, the generalization

performance improves with training set size, but eventually

saturates (in this case when around 10 training images are

used). As expected, in all cases, when the memory used

by Hybrid BP approaches that of Sparse BP, we recover the

latter’s performance.

Figure 4c shows that there is a trade-off between the ac-

curacy (as measured by the joint probability) and the mem-

ory usage. We can significantly decrease the memory re-

quirements if we are willing to accept the corresponding

reduction in accuracy. The degree of accuracy required will

depend on the application the jigsaw is being used for. In

this paper, we select the accuracy of inference by using the

task of segmenting an image into regions corresponding to

the different object classes present in the image.

To use the jigsaw for this object recognition task, we first

need a class map: a distribution over the class label for each

jigsaw pixel. We learn this map from training images which

are partially labeled with ground truth pixel-wise labels of

the following eight classes: sky, building, water, people,

road, mountain, grass and tree. Note that, in this small train-

ing set, there are only two or three examples of several of

these classes. The resultant class map is shown in Fig. 4d.

To label a test image, we first infer the offset map for that

image, then assign to each pixel the most probable class of

the corresponding jigsaw location.

For each resulting set of offset maps inferred during the

above experiments, we compute the recognition accuracy

on the test set, defined as the percentage of correctly classi-

0 5 10 15 20 25 30 35 40
50

52

54

56

58

60

62

% memory use

%
 c

a
te

g
o

ry
 r

e
c
o
g
n
it
io

n
 a

c
c
u
ra

c
y

sparse BP
hybrid BP - 20 training images

hybrid BP - 15 training images

hybrid BP - 10 training images

hybrid BP - 7 training images
hybrid BP - 5 training images

hybrid BP - 3 training images

hybrid BP - 2 training images
hybrid BP - 1 training image

Figure 5. Recognition accuracy against memory use when ap-

plying Hybrid BP with different sizes of training set for learn-

ing the tree. The jigsaw was pre-learned on all 20 images and

is the same in all cases. The number of training images refers to

the size of the image set used to train the bottom-up decision tree.

When all 20 training images are used, high recognition accuracy

can be achieved using just 10 − 15% of the memory of standard

BP. The curves converge to the solution for Sparse BP (the cross)

since, as the tree gets shallower and more memory is used, Hybrid

BP becomes equivalent to Sparse BP.

fied pixels across all test images. The results are shown in

Fig. 5, again averaged over six runs. Note that the jigsaw

and class map remain fixed throughout – only the mapping

from the test images to the jigsaw changes.

When trained on all 20 training images, there is negli-

gible loss in recognition accuracy compared to full BP un-

til the memory requirements are reduced to around 15%.

When the offset maps are inferred using even less memory,

the accuracy slowly drops off, reducing by around 1 − 2%
as the memory requirements reduce to less than 5% of full

BP. As expected, the recognition accuracy is reduced when

the decision tree is trained with fewer images, due to poorer

generalization performance.

Consider learning a very tiny jigsaw. The jigsaw pix-

els end up corresponding to the different colors found in

the training images and the inferred patches are individual

pixels. In this case, the surrounding pixels would have no

effect on where a particular pixel maps to in the jigsaw and

so Hybrid BP does no better than Sparse BP. Conversely, for

larger jigsaws, the inferred patches are larger and Hybrid BP

has an increasing efficiency advantage. The improved rela-

tive efficiency of Hybrid BP with increasing jigsaw size is

shown in Figure 6 for the region where the size< 96. In this

region the tree depth was varied to maintain the accuracy

of learning relative to full BP. As can be seen, the percent-

age of memory use drops with increasing jigsaw size. For

jigsaws of size 96 × 96 and larger, we could not apply full

BP due to memory constraints and so the tree depth was

selected so as to keep within the available memory.

20 40 60 80 100 120 140 160
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

jigsaw size

m
e

m
o

ry
 n

e
e
d
e
d

BP

hybrid BP

Figure 6. Memory needed for different jigsaw sizes. The plot

shows the memory needed for a BP message when learning differ-

ent sizes of jigsaw, where the size is the length of side of a square

jigsaw. The memory needed for full BP therefore grows with the

square of the jigsaw size. As we have constrained memory (1000),

we restrict Hybrid BP to use less than this amount at the cost of a

reduction in the accuracy of inference.

5. Hybrid Jigsaw Learning

We will now show how Hybrid BP can be used to learn

a jigsaw from a set of training images. As mentioned in

section 4, learning is accomplished in [10] by alternately

maximizing the joint probability (4) with respect to the off-

set maps {Ln} and the latent jigsaw image J. Figure 7a

gives an overview of this learning method. The jigsaw is

initialized by setting the mean to random pixel values from

the training images and setting the variance to the expected

value under the prior.

We now wish to modify this learning procedure to use

Hybrid BP when updating the offset maps. This requires

that a decision tree has been trained on a set of images and

their corresponding offset maps. Unfortunately, during the

initialization of the algorithm, we do not yet have offset

maps for the training images and so we cannot perform su-

pervised learning of the decision tree. Instead, we learn the

tree in an unsupervised manner so as to cluster the train-

ing image pixels into roughly equally sized clusters. Rather

than using an entropy criterion for tree learning, we instead

use a criterion that favors splitting the training data at each

tree node into similar amounts across the two child nodes.

This leads to a balanced tree which have the property that

pixels assigned to a particular leaf have surrounding image

patches of similar appearance. In other words, the tree ef-

fectively clusters image patches. After learning the tree, for

each leaf, we define P̃ (li|I,T) to be uniform over a ran-

domly selected proportion (50%) of the memory allocated

for sparse BP.

Given this initialization of the decision tree classifier, we

now apply Hybrid BP to infer the offset maps. From then

It
e
r
a
t
e

(a) Original learning algorithm (b) Hybrid learning algorithm

• Initialize jigsaw J

• Initialize decision tree T

• Infer offset maps {Ln},
using Hybrid BP

• Update jigsaw J

• Update decision tree T

• Initialize jigsaw J

• Infer offset maps {Ln},
using graph cuts

• Update jigsaw J

It
e
r
a
t
e

Figure 7. Comparison of algorithms for learning jigsaws.

(a) Original learning algorithm of [10] (b) Hybrid algorithm us-

ing Hybrid BP, with new steps shown in red (see text for details).

on, the tree can be updated as described in section 4.2. The

overall hybrid learning algorithm is shown in Figure 7b. To

speed-up learning the tree, we do not expand a leaf whose

histogram has reached a selected sparsity threshold (typi-

cally, 65% of the memory allocated for BP). This criterion

attempts to achieve maximum generalization by making the

messages sparse enough to fit into the allocated memory,

but no more. In addition, instead of learning the structure

of the tree at each iteration, we first recompute the leaf his-

tograms for the current tree using the new offset maps, and

learn the new tree only when the memory requirements of

any leaf goes above the allocated amount. Avoiding up-

dating the tree structure in this way dramatically speeds up

learning. We also add 5% randomly chosen jigsaw loca-

tions to P̃ (li|I,T) to encourage previously unused jigsaw

locations to become used.

5.1. Analysis of hybrid learning

To test the effectiveness of our learning scheme, we com-

pared the performance of hybrid jigsaw learning with the

original ‘generative’ jigsaw learning method of [10]. We

again made use of the building images described in sec-

tion 4.2.1, using the same 20 images as the training set. We

learned 72 × 72 jigsaws using each of the two approaches.

This jigsaw size was selected because it is the largest jig-

saw that we can learn using the generative learning method

before running into memory limitations. We can control the

memory requirements of the hybrid learning by varying the

depth of the learned decision trees and so are able to learn

much larger jigsaws.

We perform hybrid jigsaw learning for a range of tree

depths by varying the convergence criterion of the decision

tree learning. Since the decision trees are being updated

during learning, their size will change over time. For these

experiments, the trees ranged in size up to 730 nodes at the

first iteration, reducing to 345 nodes at convergence. To

measure the quality of the learned jigsaws, we again use the

joint probability (see section 4.2.1) which we aim to max-

imize. The results are shown in Fig. 8, where we plot the

log joint probability and the recognition accuracy against

the memory use during the final iteration of learning (this

Figure 8. Accuracy of the hybrid learning against memory use

Learning accuracy remains high even at 20% memory use and be-

comes equivalent to generative learning at 45% memory use. The

recognition accuracy is relatively stable within a 1% variation

Figure 9. Jigsaws of various sizes learned from 100 images.

Larger jigsaws capture larger and more complex image features,

until they eventually over-fit to particular training image regions.

is representative of the memory use overall). The results

show a fall-off in log joint probability quantities for reduced

memory use with a similar form to that of Hybrid BP. Thus,

we can reduce memory usage for learning jigsaws, if we are

willing to accept a small reduction in accuracy.

5.2. Object recognition/segmentation

We applied our hybrid jigsaw learning method to the task

of object recognition and segmentation, to explore the effect

of jigsaw size on recognition performance.

For this task, we made use of the training set from sec-

tion 4.2.1 and also a larger image set of 100 images from

the Microsoft Cambridge data set, containing 14 different

classes: sky, building, water, people, road, mountain, grass,

tree, chair, car, boat, sign, bicycle and bird. Jigsaws were

learned with sizes ranging from 32 × 32 to 160 × 160 for

the small training set and from 64 × 64 to 224 × 224 for

the larger data set. Figure 9 shows the jigsaws learned us-

ing the larger dataset. While smaller jigsaws capture es-

sentially colour information, larger jigsaws capture larger

image structures, such as bench pieces, textures and so on.

Each learned jigsaws was applied to the problem of ob-

ject recognition/segmentation. For each dataset, we ran-

domly selected 75% of the images (75 and 25 images for

larger and smaller datasets, respectively). We used the

mapping of these selected images into the jigsaw and their

ground truth labels to construct a class map, as described in

section 4.2.1. Using this class map, we inferred class labels

for each pixel of the remaining images in the corresponding

data set. Both experiments were repeated for 20 different

random splits. Figure 10 shows, for both experiments, the

recognition accuracy (averaged across the random splits),

as a function of jigsaw size.

We are able to recognise objects in unlabelled images

because structures in the jigsaw are shared between the la-

belled and unlabelled images, and these labels are trans-

ferred across. As the jigsaw size increases, the image struc-

tures become larger and more informative as to the object

class, and so accuracy improves. Eventually, the jigsaw be-

comes so large that some jigsaw regions are only found in

one image, and so are not shared between the labelled and

unlabelled images. In this case, the jigsaw has to over-fit to

particular image regions. The size of jigsaw that gives peak

performance has both large shared structures and a high de-

gree of sharing of these structures. Hence, this optimal size

is a function of the training set size. We demonstrate this in

Figure 10, where, we find the peak in accuracy is at a larger

jigsaw size for the larger data set. The drop in accuracy in

the larger dataset is due to the larger number of categories

present (14 instead of 8) in the training set.

6. Conclusions

In this paper, we presented a novel hybrid method for

performing inference and learning in the jigsaw model, that

allows significant reduction of memory usage and computa-

tion time, for minimal loss in accuracy. To demonstrate the

effectiveness of our method, we presented results applying

large jigsaws to a small object recognition task.

Being able to learn large jigsaws efficiently will allow

this model to be used for tasks such a motion segmentation,

object recognition with large data-sets and wide-baseline

matching. We propose to investigate the performance of this

model for these varied tasks. In particular, an advantage of

this model is that it is learned unsupervised and hence will

Figure 10. Recognition accuracy against jigsaw size. Accuracy

increases with size as larger and more informative image structures

are learned, until these structures become too large and overfit to

particular training images. Note that red curve corresponds to var-

ious sized jigsaws trained using 30 images consisting of 8 classes,

while the black curve corresponds to jigsaws trained using 100

images with 14 classes in total.

discover object parts without the need for labelling. We pro-

pose to investigate how the performance improves with the

addition of large amounts of unlabelled image data for each

of these applications.

References

[1] E. Borenstein, E. Sharon, and S. Ullman. Combining top-down and bottom-up

segmentation. In Proceedings IEEE workshop on Perceptual Organization in

Computer Vision, CVPR 2004, 2004.

[2] G. Bouchard and B. Triggs. The trade-off between generative and discrim-

inative classifiers. In IASC 16th International symposium on computational

statistics, pages 721–728, 2004.

[3] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization

via graph cuts. PAMI, 23(11), 2001.

[4] J. Coughlan and S. Ferreira. Finding deformable shapes using loopy belief

propagation. In ECCV, pages 453–468, 2002.

[5] R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsuper-

vised scale-invariant learning. In CVPR, volume 2, pages 264–271, June 2003.

[6] G. Hinton and V. Nair. Inferring motor programs from images of handwritten

digits. In NIPS 18, pages 515–522. MIT Press, Cambridge, MA, 2006.

[7] G. E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep belief

nets. Neural Computation, 18:1527–1554, 2006.

[8] D. Huttenlocher, D. Crandall, and P. Felzenszwalb. Spatial priors for part-based

recognition using statistical models. In Proceedings of IEEE CVPR, 2005.

[9] N. Jojic, B. Frey, and A. Kannan. Epitomic analysis of appearance and shape.

In ICCV, 2003.

[10] A. Kannan, J. Winn, and C. Rother. Clustering appearance and shape by learn-

ing jigsaws. In NIPS 19, Cambridge, MA, 2007. MIT Press.

[11] N. Komodakis and G. Tziritas. Image completion using global optimization. In

IEEE CVPR, 2006.

[12] J. Lasserre, C. Bishop, and T. Minka. Principled hybrids of generative and

discriminative models. In IEEE CVPR, 2006.

[13] V. Lepetit, P. Lagger, and P. Fua. Randomized trees for real-time keypoint

recognition. In CVPR05, pages II: 775–781, 2005.

[14] C. Pal, C. Sutton, and A. McCallum. Sparse forward-backward using minimum

divergence beams for fast training of conditional random fields. In Proceedings

of the IEEE International Conference on Acoustics, Speech, and Signal Pro-

cessing, 2006.

[15] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost: Joint appear-

ance, shape and context modeling for mulit-class object recognition and seg-

mentation. In ECCV, 2006.

