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Abstract

This paper presents a new algorithm for the problem of
robust subspace learning (RSL), i.e., the estimation of lin-
ear subspace parameters from a set of data points in the
presence of outliers (and missing data). The algorithm is
derived on the basis of the variational Bayes (VB) method,
which is a Bayesian generalization of the EM algorithm.
For the purpose of the derivation of the algorithm as well
as the comparison with existing algorithms, we present two
formulations of the EM algorithm for RSL. One yields a
variant of the IRLS algorithm, which is the standard algo-
rithm for RSL. The other is an extension of Roweis’s for-
mulation of an EM algorithm for PCA, which yields a ro-
bust version of the alternated least squares (ALS) algorithm.
This ALS-based algorithm can only deal with a certain type
of outliers (termed vector-wise outliers). The VB method
is used to resolve this limitation, which results in the pro-
posed algorithm. Experimental results using synthetic data
show that the proposed algorithm outperforms the IRLS al-
gorithm in terms of the convergence property and the com-
putational time.

1. Introduction

The estimation of linear subspace parameters from a set
of data points in the presence of outliers is a fundamen-
tal problem in computer vision and many other fields. Its
applications include the structure from motion (SFM) prob-
lem under the assumption of affine cameras, and the image
based rendering (IBR) using images of a scene taken under
different illumination conditions. In this paper, this prob-
lem is termed robust subspace learning (RSL) on the ba-
sis of [4]. A formal statement of the non-robust version of
the problem is as follows. Assume that an observation yi j
(i = 1, . . . ,m and j = 1, . . . , n) follows a model given by

yi j = u�i v j + µ j + εi j, (1)

where ui and v j are r-vectors and εi j is observation noise.
We estimate ui, v j, and µ j. Defining Y to be an m × n
matrix {yi j}, U = [u1, . . . ,um]�, V = [v1, . . . , vn]�, and
µ = [µ1, . . . , µn]�, Eq.(1) can be rewritten as follows:

Y = UV� + 1mµ
� + E, (2)

where 1m is an m-vector [1, . . . , 1]�, and E is an m×n matrix
{εi j} of noise. Then, the problem is to estimate U, V, and µ,
given the data Y.

Assuming that εi j is an iid Gaussian noise with a zero
mean, a maximum likelihood estimation of the parameters
is performed as follows:

‖Y − UV� − 1mµ
�‖2F → min, (3)

where ‖·‖2F represents the Frobenius norm. This minimiza-
tion is reduced to a basic eigenvalue problem of a matrix,
and its computation is easy.

The problem becomes difficult (1) when some of the data
are missing and increases in difficulty (2) when there are
outliers in the data. The missing components are dealt with
as follows. We define hi j such that hi j = 1 if yi j exists and
hi j = 0 if it is missing. Instead of (3), we then consider a
minimization of the sum over only the non-missing compo-
nents:

‖H � (Y − UV� − 1mµ
�)‖2F → min. (4)

where H is an m × n matrix {hi j} and � represents the
component-wise product. Unlike (3), the minimization is
essentially nonlinear and a direct nonlinear computation is
necessary. There are several algorithms for this nonlinear
computation, such as ALS and the Wiberg algorithm [10];
also see [7, 3].

In this paper, we consider the case in which there exist
outliers in the data in addition to the missing components;
we refer to the corresponding problem as RSL. In this prob-
lem, some of the non-missing components are inliers (da-
tum following Eq.(1)), whereas some are outliers (datum
not following Eq.(1)); however which of these are inliers
and which are outliers is not known in advance.

A standard numerical algorithm for the problem is the
iterative reweighted least squares (IRLS) algorithm [4]. In
this algorithm, the problem is converted to a weighted least
squares problem, in which a weight is defined for each da-
tum. This weight represents the probability of each da-
tum being an inlier (or outlier). The weights are first de-
termined using the current estimates of the subspace pa-
rameters, and then the linear subspace parameters are up-
dated by solving the weighted linear least squares problem.
This two steps are performed alternately until convergence
is achieved. Recently, Torre et al. provided a rigorous in-
terpretation of this algorithm within the framework of the
M-estimators [4].
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In this paper, we present a new algorithm for RSL. It is
derived on the basis of the variational Bayes (VB) method
[1]. The VB method can be regarded as a Bayesian gener-
alization of the expectation maximization (EM) algorithms,
and it is used especially for problems in which the expec-
tations are mathematically intractable (and thus, no feasible
EM algorithm is available).

In Section 2, we show two different formulations to de-
rive the EM algorithms for RSL. In the first formulation, an
EM algorithm that coincides with the traditional IRLS al-
gorithm is derived. The second formulation is an extension
of Roweis’s formulation for deriving an EM algorithm for
principal component analysis (PCA) [8]. In this formula-
tion, a feasible EM algorithm is derived only in the case in
which the outliers emerge as entire row vectors of Y (we
will term these vector-wise outliers). In Section 3, by em-
ploying the VB method, we show that it is possible to derive
a promising algorithm on the basis of the second formula-
tion that can deal with the general case in which each com-
ponent of Y can be an outlier (we term these component-
wise outliers). We observe through experiments that this
algorithm provides a better performance than the existing
algorithms in terms of the convergence property as well as
the computational time. In Section 4, we report this obser-
vation along with experimental results.

2. EM Algorithms for Robust Subspace Learn-
ing

2.1. The IRLS algorithm

First, we present the standard formulation of an EM al-
gorithm for RSL. The resulting algorithm is similar to the
IRLS algorithm, as shown below. Although Torre et al. used
the M-estimators to provide a rigorous interpretation of the
IRLS algorithm [4], we would like to argue that the EM
framework enables a more rigorous discussion and yields
a more flexible algorithm, although the details are omitted
here due to the lack of space.

Let zi j represent an indicator variable for the inliers; zi j =
1 indicates that yi j is an inlier, whereas zi j = 0 indicates yi j
is an outlier. The variable zi j is a hidden variable that is not
observed. The joint density of yi j and zi j can be formally
represented as

p(yi j, zi j) =
{
p(yi j|zi j = 1) p(zi j = 1)

}zi j

×
{
p(yi j|zi j = 0) p(zi j = 0)

}1−zi j
. (5)

We denote the proportion of the mixture of inliers (i.e. how
frequently inliers will appear in the data) by α ≡ p(zi j = 1).
Then, the proportion of the mixture of outliers is expressed
as 1 − α = p(zi j = 0). α is treated as an unknown parameter
and is estimated along with the other parameters. Assuming
a normal density N(0, σ2) for the noise that contaminate the
inliers, the density of an inlier is denoted by p(yi j | zi j =

1) = N(u�i v j + µ j, σ
2). In the case of that for the outliers,

we assume a uniform density p(yi j | zi j = 0) = γ, where γ is
a fixed constant that is specified beforehand. We denote all
the parameters by Θ = {U,V,µ, α, σ2}.

The goal is to estimate Θ from the given data Y. A stan-
dard solution is to maximize the marginal likelihood, which
is obtained by the marginalization of the above-mentioned
joint density with respect to the hidden variable zi j. How-
ever, in this case, thecalculation of the marginal likelihood
is intractable, and an EM algorithm is used. In the EM al-
gorithm, the following conditional expectation of the log-
likelihood of the joint density is maximized:

Q(Θ′;Θ) ≡ E
[
log p(y, z;Θ′) | y;Θ

]
. (6)

The maximization is followed by updating Θ′ → Θ, and
these two steps are repeated alternately until convergence is
achieved.

When the joint density (5) is substituted into Q, the
conditional expectation E[·] affects only zi j. We denote
wi j ≡ E[zi j | y,Θ]. (We set wi j = 0 for (i, j) of hi j = 0.)
Note that wi j can take a continuous value from 0 to 1. In
the E-step, merely the evaluation of wi j is performed. In the
subsequent M-step, Q is maximized w.r.t. Θ. The values of
U, V, and µ are determined such that the following function
is maximized:

φ(U,V,µ) =
∑
i, j

wi j(yi j − u�i v j − µ j)
2. (7)

In the case of the remaining parameters α and σ2, explicit
solutions are available. Thus, the resulting algorithm shown
in Algorithm 1 is obtained. This algorithm includes a non-
linear minimization of Eq.(7), which can be performed by
several algorithms, such as the weighted ALS (W-ALS), the
weighted Wiberg (W-Wiberg), as well as general Newton-
based methods. Note that Algorithm 1 is almost equivalent
to that derived on the basis of the M-estimators [4], except
for a few (minor) differences. We will use Algorithm 1 in
Section 4 for performance comparisons.

Algorithm 1 EM algorithm for RSL (EM-IRLS)

1: Initialize U, V, µ, α, and σ2.
2: For i = 1, . . . ,m and j = 1, . . . , n, set wi j = 0 if hi j = 0;

otherwise update wi j as

wi j =
α(2πσ2)−

1
2 exp{−e2

i j/(2σ
2)}

α(2πσ2)− 1
2 exp{−e2

i j/(2σ
2)} + (1 − α)γ

(8)

where ei j ≡ yi j − u�i v j − µ j.
3: Minimize Eq.(7) with respect to U, V, and µ. Update
α and σ2 by using the minimization solution for U, V,
and µ as

α =

∑
i, j wi j∑
i, j hi j

, σ2 =

∑
i, j wi j(yi j − u�i v j − µ j)2∑

i, j wi j
. (9)

4: Go to 2 until convergence is achieved.

2.2. Factor-analysis-based EM algorithm for RSL

In [8], Roweis derives an EM algorithm for PCA by
transforming an EM algorithm tailored for the factor anal-



ysis (FA). (We do not distinguish PCA from the problem
considered here.) Here, we present a robust version of the
algorithm. (It is not shown in [8].) It should be noted that
the resulting algorithm has a limitation: it can deal with only
a special type of outliers, such that the entire row vectors of
Y can be either inliers or outliers. We use the term vector-
wise outliers to represent these outliers. The algorithm is
still important, since a close examination of the algorithm
leads to the derivation of the new algorithm, which is shown
in Section 3.

The factor analysis assumes a data model in which a da-
tum yi (the row vector of Y) is generated as follows:

yi = Vui + εi, (10)

where ui is assumed to follow N(0, σ2
uI), and εi is the noise

following a normal density with a zero mean and a vari-
ance Ψ. As compared to PCA, one difference is that ui is
not considered to be a parameter but a probabilistic vari-
able whose density is specified. (We omit the mean vec-
tor µ in this model for the sake of simplicity.) The joint
density p(y,u) is given by p(y,u) = p(y |u)p(u), where
p(y |u; V) = N(Vu,Ψ) and p(u) = N(0, σ2

uI). By consid-
ering ui to be a hidden variable, an EM algorithm can be
derived as shown in Algorithm 2 [5].

Algorithm 2 EM algorithm for the factor analysis

1: [E-step] Compute E[u|yi] = Byi and E[uu�|yi] = I −
BV + Byiy

�
i B� for each yi (i = 1, . . . ,m), where B =

V�(Ψ + VV�)−1.
2: [M-step] Compute V′ and Ψ′ as

V′ =


m∑
i=1

yiE[u|yi]
�



m∑
l=1

E[uu�|yl]


−1

, (11)

Ψ′ =
1
n

diag


m∑

i=1

yiyi − V′E[u|yi]y
�
i

 , (12)

where diag(·) is an operator that forces every off-
diagonal element to be 0. Then, update V = V′ and
Ψ = Ψ′.

Now, we choose Ψ = εI and take a limit as ε → 0.
Since B = limε→0 V�(VV� + εI)−1 = (V�V)−1V�, the con-
ditional expectations are given as E[u|yi] = (V�V)−1V�yi
and E[uu�|yi] = E[u|yi]E[u|yi]

�. In the limit, Algorithm
2 is converted into a simple algorithm that performs sub-
space learning (or PCA), shown in Algorithm 3. It should
be noted that it coincides with the alternated least squares
(ALS) algorithm.

Algorithm 3 EM algorithm for PCA

1: [E-step] Update U by U = YV(V�V)−1.
2: [M-step] Update V by V = Y�U(U�U)−1.

In [9, 6], the same formulation is applied to the mix-
ture models in which each datum is assumed to be gener-

ated from one of the several different subspaces. (The for-
mulation is applied to the multi-body SFM problem [6].)
By replacing (one of) the multiple subspace models with
a model for the outliers, an algorithm for RSL can be de-
rived. Specifically, by defining an indicator variable zi such
that zi = 1 indicates that yi is an inlier and zi = 0 indicates
that yi is an outlier, the joint density can be written as

p(yi,ui, zi) =
{
p(yi |ui, zi = 1)p(ui)p(zi = 1)

}zi

× {
p(yi | zi = 0)p(zi = 0)

}1−zi . (13)

As mentioned earlier, we define α ≡ p(zi = 1) (1 − α =
p(zi = 0)) and assume a uniform density for the outliers:
γ ≡ p(yi | zi = 0). Then, by considering zi to be a hidden
variable, we can derive an EM algorithm, shown in Algo-
rithm 4.

Algorithm 4 EM algorithm for RSL with data including
only the vector-wise outliers

1: Initialize V, α, and σ2.
2: Compute U = [u1, . . . ,um]� from

ui = (V�V)−1Vyi, (14)

and compute wi (i = 1, . . . ,m) as

wi =
α(2πσ2)−

n
2 exp(−e2

i /(2σ
2))

α(2πσ2)− n
2 exp(−e2

i /(2σ
2)) + (1 − α)γ

, (15)

where ei = yi − Vui = (I − V(V�V)−1V�)yi.
3: Compute V from

V = Y�WU(U�WU)−1, (16)

where W = diag[w1, . . . ,wm], and then α and σ2 from

α =

∑
i wi∑
i 1

and σ2 =

∑
i wi{(I − V(V�V)−1V�)yi}2

n
∑

i wi
.

(17)

It should be noted that there is an important difference
between the algorithmic structures of Algorithms 1 and
4 other than the fact that the latter can deal with only
the vector-wise outliers. This difference is that the for-
mer requires an external nonlinear minimization subroutine,
whereas the latter does not and can stand by itself. Except
for the apparent fact that the computational cost per itera-
tion is significantly smaller for the latter than for the former,
we cannot assert that this is an advantage; however, this is
a remarkable property. In the next section, we will con-
sider extending the above formulation to the general type
of outliers, namely, thecomponent-wise outliers (i.e., each
component of Y can be an outlier).

3. Variational Bayes based approach to RSL

As mentioned above, Algorithm 4 can deal with only the
vector-wise outliers. Is it possible to derive an EM algo-
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Figure 1. Generative models for (a) the data with vector-wise out-
liers and (b) the data with component-wise outliers.

rithm that can deal with the component-wise outliers, based
on the same formulation. The answer to this question is neg-
ative; a feasible EM algorithm cannot be obtained. In order
to deal with the component-wise outliers, we need to intro-
duce a component-wise indicator zi j of the inlier/outlier for
yi j, as was done in the derivation of Algorithm 1. Then, the
joint density is given as

p(yi,ui, zi) =
∏

j

{
p(yi j |ui, zi j = 1)p(ui)p(zi j = 1)

}zi j

×
{
p(yi j | zi j = 0)p(zi j = 0)

}1−zi j
. (18)

Then, we need to evaluate the corresponding conditional ex-
pectation Q, as was done in the derivation of Algorithm 4.
However, it is mathematically intractable due to the follow-
ing reason. Figure 1 shows the generative models for (a)
the data with vector-wise outliers and for (b) the data with
component-wise outliers. In case (a) (Algorithm 4), the da-
tum yi depends on a single indicator, whereas in case (b), yi
(and also yi j) depends on multiple indicators [zi1, . . . , zin].
Therefore, in order to calculate Q, a sum over all the com-
binations of assigning 0 and 1 to [zi1, . . . , zin] needs to be
evaluated. The number of terms in the sum will be of the
order of 2n.

The variational Bayes (VB) method, which can be re-
garded as a generalization of the EM algorithms, has been
developed to resolve such a difficulty, i.e., the intractability
of Q. Because of the constraint of space, we will explain
only the spirit of the VB algorithm below.

We begin with a marginal density, in which the hidden
variables Z and the parameters Θ are treated as variables
and are marginalized:

L(Y) = log p(Y) = log
∫

p(Y,Z,Θ)dZdΘ, (19)

where Θ = {U,V, α, σ2}. The following holds for an arbi-
trary density q(Z,Θ |Y):

L(Y) = F [q] +D[q, p], (20)

where

F [q] ≡
〈
log

p(Y,Z,Θ)
q(Z,Θ |Y)

〉
Z,Θ

and (21a)

D[q, p] ≡
〈
log

q(Z,Θ |Y)
p(Z,Θ |Y)

〉
Z,Θ

; (21b)

here, 〈·〉Z,Θ represents an expectation w.r.t. q(Z,Θ |Y). It
should be noted that D[q, p] indicates the KL divergence
between q and p. Therefore, since L(Y) is constant, the
value of q that maximizes F [q] gives an optimal approxi-
mation to the true posterior p, in the sense that the KL in-
formation is minimized. Such an optimal q is searched for
by using the variational method, which is the main idea of
the VB method.

Usually, we need some additional assumption on q to
make the computation of the optimal q tractable. It is often
assumed that q is factorizable w.r.t. each variable, that is,

q(Z,Θ |Y) = q(Z |Y)q(Θ |Y). (22)

Since the true posterior is not necessarily factorizable in this
manner, the best density q calculated under this assump-
tion is only an approximation of the true posterior p. In
other words, we intend to find the best approximation q to
p within the class of the functions factorizable as shown
above.

When assuming that q is factorizable, the variational
method derives the following solution. For the posterior
q(Z |Y) of the hidden variable, we solve δF /δq(Z |Y) = 0,
and for the posterior q(Θ |Y) of the parameters, we solve
δF /δq(Θ |Y) = 0 [1], from which we obtain

q(Z |Y) = CZ exp〈log p(Y,Z |Θ)〉Θ and (23a)
q(Θ |Y) = CΘp(Θ) exp〈log p(Y,Z |Θ)〉Z, (23b)

where CZ and CΘ are the normalization constants and p(Θ)
is a prior of Θ, which is assumed to be of a uniform density
in our subsequent derivation.

The first equation (23a) calculates a posterior of Z given
that of Θ, while the second equation (23b) calculates a pos-
terior of Θ given that of Z. Thus, these two equations de-
pend on each other. In order to resolve this mutual depen-
dency, the VB method alternately performs the two calcu-
lations: first, q(Z |Y) is calculated using the latest estimate
q(Θ |Y) and then, q(Θ |Y) is calculated using q(Z |Y). The
two steps are sometimes referred to as VB-E and VB-M
steps. The iteration of these two steps until convergence
constitutes an algorithm for estimating the posteriors. It
should be noted that the algorithm does not estimate the pa-
rametersΘ themselves; it estimates their posterior densities.
Fortunately, as long as the elementary densities such as the
exponential family are assumed for the data models, the re-
sulting posteriors q will, in most cases, be elementary den-
sities, too. Thus, the estimation of the posteriors is reduced
to the estimation of their sufficient statistics. The resulting
algorithm iteratively updates these sufficient statistics of the
posteriors.

By applying the above-meneioned explanation to our
RSL problem, we obtain Algorithm 5; the detailed deriva-
tion is shown in Appendix A. The notation used here is the
same as that used in Section 2.1. For a version of the model
with a mean yi j ↔ u�i v j + µ j, an algorithm can similarly
be derived. However, it is omitted here due to the lack of
space.

It should be noted that as is the case with Algorithm 4,
Algorithm 5 consists only of linear computations. Its struc-



ture is similar to that of the ALS algorithm. Therefore, un-
like Algorithm 1, Algorithm 5 does not require any exter-
nal minimization subroutine. We can thus conclude that the
computational cost per iteration in this algorithm will be
significantly lower than that in the IRLS algorithm.

However, it is known [2, 7, 4] that the ALS algo-
rithm sometimes suffers from a slow convergence: the
ALS algorithm often requires a large number of itera-
tions to converge. Therefore, the total computational cost
of the ALS algorithm can be (much) larger than that of
the Newton-based algorithms (Levenberg-Marquardt and
Wiberg). Hence, we intend to examine whether Algorithm
5 exhibits the same characterstic. According to our exper-
iments, the answer to this question is fortunately negative.
In fact, the new algorithm— Algorithm 5— shows a rather
faster convergence than the existing methods. This will be
demonstrated in the next section.

Algorithm 5 VB-based algorithm for RSL
1: For i = 1, . . . ,m and j = 1, . . . , n, initialize ui, v j, α

(e.g., 0.5), and σ2. Set Ψi = uiu�i and Φ j = v jv�j .
2: [VB-E] For i = 1, . . . ,m and j = 1, . . . , n, set wi j = 0 if

hi j = 0, and if hi j = 1, set

wi j =
α(2πσ2)−

1
2 exp{−e2

i j/(2σ
2)}

α(2πσ2)− 1
2 exp{−e2

i j/(2σ
2)} + (1 − α)γ

(24)

where
e2

i j = y2
i j − 2yi ju�i v j + tr(ΨiΦ j). (25)

3: [VB-M] Update α and σ2 by

α =

∑
i, j wi j + 1∑
i, j hi j + 2

and σ2 =

∑
i, j wi je2

i j∑
i, j wi j

. (26)

Next, update ui and then Ψi for i = 1, . . . ,m by

ui =


∑

j

wi jΦ j


−1 

∑
j

wi jyi jv j

 and (27a)

Ψi = σ
2


∑

j

wi jΦ j


−1

+ uiu�i . (27b)

Note that ui on the rhs of (27b) is the latest ui computed
from (27a). Similarly, update v j and then Φ j for j =
1, . . . , n by

v j =


∑

i

wi jΨi


−1 

∑
i

wi jyi jui

 and (28a)

Φ j = σ
2


∑

i

wi jΨi


−1

+ v jv�j . (28b)

4. Experimental results

We choose 30 × 20 as the dimension of Y, i.e., m = 30
and n = 20, and r = 3 for the dimension of the linear sub-
space (the number of columns of U and V). Then, the data
are randomly generated as follows. Random values are gen-
erated according to a normal density N(0, 1), and they are
assigned to the components of U and V. Then, we compute
Y0 ≡ UV� and generate Y by adding the noise obeying
N(0, σ2) to each component of Y0. Subsequently, missing
components are randomly chosen. Let Rmiss be the sup-
posed proportion of the missing components in the size mn
of Y. We randomly choose mn×Rmiss components out of Y
and consider them to be the missing components. The out-
liers are then chosen. Let Rout be the supposed proportion
of the outliers in the number of non-missing components.
We randomly choose mn(1−Rmiss)Rout components from
the non-missing components of Y. Their values are over-
written by a uniform random value chosen from the range
[−5.0 : 5.0]. This range indicates that γ = 0.1, and it is used
in all the algorithms.

Since the missing components and the outliers are ran-
domly chosen, their distribution in Y can be nonuniform
such that the corresponding problem could be indetermi-
nate (i.e., an infinite number of solutions). Consequently, it
becomes very difficult to correctly assess the performance
of the algorithms. To avoid this, we check the follow-
ing two conditions: (1) whether the number of inliers in
each row and column of Y is greater or equal to 2r, and
(2) whether the Hessian ∂2J/∂x2 of the function J(x) =
J(U,V) ≡ ‖H′ � (Y − UV�)‖2F that is to be minimized is
numerically non-singular, where H′ is an indicator matrix
of the missing components as well as the outliers. If ei-
ther of the two conditions is not met, we regenerate the data
from the beginning. Condition (1) is for eliminating nearly
ill-conditioned data. Condition (2) is a necessary condition,
and it is reduced to whether the rank of QFG is equal to
r(n − r), where the notations are borrowed from [7]. (The
details are omitted here.)

We applied the following three algorithms to the data:
Algorithm 5 (VB); Algorithm 1, in which the minimization
is performed by the weighted ALS algorithm (EM-ALS);
and the weighted Wiberg algorithm (EM-Wiberg). Each of
the algorithms is run for 100 trials. The initial values of U
and V are chosen randomly, the initial value of the outlier
proportion α is set to 0.5, and that of the noise variance σ2

is set to 100 (in general, a large value is preferred, since
otherwise, every component will be identified as an outlier
in the first iteration). For the sake of fair comparison, a
common set of data and initial values are fed to each of the
algorithms.

We first examine the number of iterations required for
convergence. Figures 2, 3, and 4 show the iterations for
VB, EM-ALS, and EM-Wiberg algorithms. For the EM-
ALS and EM-Wiberg algorithms, the iteration counts of the
subroutines (ALS and Wiberg, respectively) are shown. In
the figures, the minimum, median, and maximum of the
number of iterations are shown; here the proportion of the
missing components and that of the outliers vary. From
these results, it is evident that VB requires the least iteration
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Figure 2. The number of iterations for VB. The upper limit is 500
iterations. The bars represents the minimum, median, and max-
imum of 100 trials. From the upper left to the lower right, the
proportion of the missing components varies as 0%, 10%, 20%,
and 30%, respectively.

counts among all the cases. Although EM-Wiberg exhibits
only slightly larger iteration counts than VB, the computa-
tional cost of a single iteration is significantly larger for EM-
Wiberg than for VB. At every iteration, EM-Wiberg solves
a linear problem whose matrix size is p× nr, where p is the
number of non-missing components, whereas VB solves a
problem whose matrix size is only r × r (equivalent to the
ALS algorithm). Thus, when comparing the computational
time, VB is drastically faster than EM-Wiberg as a result.

Next, we examine how well the algorithms converge to
the correct solution (when starting from random initial val-
ues). Figure 5 shows the proportion of successful trials out
of 100 trials. A successful trial is defined as one for which
the proportion of misidentified inliers (i.e., outliers that are
wrongly identified as inliers) to the total number of out-
liers is less than 5%. (Thus, this is a fairly tight criterion.)
From the plots, it can be seen that the three algorithms share
the same tendency, namely, their performance deteriorates
for difficult sets of data. However, the extent of the dete-
rioration is different. While the results for EM-ALS and
EM-Wiberg are almost identical, VB shows better results.
This is clearly confirmed in the fourth plot (lower right);
for 20% missing components, the number of successful tri-
als is nearly double, and for 30% missing components, it is
quadruple or more.

5. Summary

As shown previously, there are two formulations for de-
riving an EM algorithm for RSL. The difference between
the two is whether or not the subspace parameters are
treated as probabilistic variables. If not, an EM algorithm
that coincides with the standard IRLS algorithm is derived.
Otherwise, an EM algorithm that can only deal with the
vector-wise outliers is derived. We show that by apply-
ing the variational Bayes (VB) method, the component-wise
outliers can be dealt with in a similar formulation, in which
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Figure 3. The number of iterations for EM-ALS. The upper limits
of the main loop (EM) and the sub-loop (ALS) are 200 and 300
iterations, respectively.
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Figure 4. The number of iterations for EM-Wiberg. The upper
limits of the main loop (EM) and the sub-loop (ALS) are set to
200 and 300 iterations, respectively.

all the parameters are treated as probabilistic variables, as
in usual Bayesian formulation. The resulting algorithm dif-
fers from any of the existing algorithms. We have found
through experiments that this new algorithm shows a bet-
ter performance in terms of the convergence property and
the computational time, as compared to the existing algo-
rithms. The structure of the algorithm might contribute to
these good qualities, although the exact mechanisms are un-
clear. We would like to examine these features in the future.

A. Derivation of the variational-Bayes-based
algorithm

By choosing the last two parameters from Θ =
[U,V, α, σ2], we sometimes write θ = [α, σ2] below. When
U, V, and θ are specified, each component (i, j) of Y and
Z is independent of the others. Therefore, the conditional
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Figure 5. The plot of the number of successful trials out of 100.
See the text for details. Upper left: VB. Upper right: EM-ALS.
Lower left: EM-Wiberg. The four lines in each plot correspond to
different proportions of missing components. On the lower right
is a plot of the successful trials vs. the proportion of the missing
elements for the case of 20% outliers.

density is written as

p(Y,Z |U,V, θ) =
∏

i j

p(yi j, zi j |ui, v j, θ). (29)

The density of (yi j, zi j) is given by Eq.(5). We denote α =
p(zi j = 1 | θ); then, we obtain p(zi j = 0 | θ) = 1 − α. The
conditional densities of an inlier yi j and an outlier yi j are
given by

p(yi j | zi j = 1,ui, v j, θ)

=
1√

2πσ2
exp

{
− 1

2σ2
(yi j − u�i v j)

2

}
, (30a)

p(yi j | zi j = 0, θ) = γ. (30b)

The substitution of these into Eq.(29) yields

p(Y,Z |Θ) =
∏

i j

[
α√

2πσ2
exp

{
− 1

2σ2
(yi j − u�i v j)

2

}]zi j

× {(1 − α)γ}1−zi j . (31)

As described in Secion 3, we introduce the variational
posterior q(Z,Θ |Y) that is intended to approximate the true
posterior p(Z,Θ |Y). We consider a class of separable q,
i.e.,

q(Z,Θ |Y) = q(Z |Y)q(Θ |Y) (32)

We further assume that q(Θ |Y) is also separable w.r.t. each
parameter: q(Θ |Y) = q(U)q(V)q(α)q(σ2). Then, we intend
to find an optimal q within this class that is closest to the
true posterior p. An optimal q is obtained by solving the
variational equation, which is given by Eqs.(23) [1]. The
posterior q(Z |Y) of the hidden variable is given by

q(Z |Y) ∝ exp〈log p(Y,Z |Θ)〉Θ. (33)

The logarithm is expanded as

log p(Y,Z |Θ)

=
∑
i, j

[
zi j

{
log

α√
2πσ2

− 1
2σ2

(yi j − u�i v j)
2

}

+ (1 − zi j) log {(1 − α)γ}
]
, (34)

Therefore, the posterior is represented as

q(Z |Y) ∝
∏
i, j

exp{ai jzi j + bi j(1 − zi j)}, (35)

where

ai j = −1
2

log 2π+
〈
logα

〉−1
2

〈
logσ2

〉
−1

2

〈
1
σ2

〉 〈
(yi j − u�i v j)

2
〉

and
bi j =

〈
log(1 − α)

〉 〈
log γ

〉
,

where 〈·〉 represents 〈·〉Θ. All the terms in 〈·〉 will be evalu-
ated below by using the parameter posterior q(Θ |Y). Simi-
larly, when evaluating the parameter posterior, the expec-
tation 〈zi j〉 is required. It is calculated from the identity
q(zi j = 1) + q(zi j = 0) = 1 as

〈zi j〉 = 1 · q(zi j = 1) =
exp(ai j)

exp(ai j) + exp(bi j)
(36)

An optimal solution for the parameter posterior
q(Θ |Y) = q(U)q(V)q(σ2)q(α) is given by Eq.(23b). Ow-
ing to the separability, we may consider each parameter in
turn. As for U, its posterior is given by

q(U |Y) ∝ exp〈log p(Y,Z |U,V, θ)〉Z,V,θ
=

∏
i j

exp

{
−1

2

〈
1
σ2

〉
〈zi j〉(y2

i j − 2yi ju�i 〈v j〉

+ u�i 〈v jv�j 〉ui

}
.

Note that the expectation 〈·〉Z,V,θ is w.r.t. not just q(Z) but
q(matV) and q(θ). (Every 〈·〉 above represents an expec-
tation with the same significance.) Thus, U (ui) follows a
normal density, whose sufficient statistics, 〈ui〉 and 〈uiu�i 〉,
are computed as in Eqs.(27a) and (27b). (〈ui〉 and 〈uiu�i 〉
are expressed as ui and Φi, respectively.) By a similar pro-
cedure, we find that V follows a normal density and its suf-
ficient statistics are computed as in Eqs.(28a) and (28b). (
〈v j〉 and 〈v jv�j 〉 are expressed as v j and Ψ j, respectively.)

Here, we do not treat σ as a variable, but rather its
square σ2. Similarly, its posterior is given by q(σ2) ∝
exp〈log p(Y,Z |U,V, θ)〉Z,U,V,α. For simplicity, we define
ns ≡ ∑

i, j〈zi j〉 and rs ≡ ∑
i, j〈zi j(yi j − u�i v j)2〉. Then, the

posterior is given by

q(σ2) = Cσ(σ2)−
1
2 ns exp

(
− 1

2σ2
rs

)
, (37)



where Cσ is a normalization factor. From
∫ ∞

0
q(σ2)dσ2 = 1,

Cσ is given by

Cσ =
1

( 2
rs

)
1
2 ns−1Γ

(
1
2 ns − 1

) , (38)

where Γ(x) is the gamma function (Γ(x) ≡∫ ∞
0

tx−1 exp(−t)dt). Thus, we have

q(σ2) =
(σ2)−

1
2 ns exp

(
− 1

2σ2 rs

)
(

2
rs

) ns
2 −1
Γ
(

ns

2 − 1
) (39)

Using this, the expectations 〈1/σ2〉 and 〈logσ2〉 that ap-
peared on ai j can be evaluated as follows:

〈
1
σ2

〉
=

2Γ
(

ns

2

)
rsΓ

(
ns

2 − 1
) = ns − 2

rs
, (40a)

〈logσ2〉 = log
( rs

2

)
− ψ

(ns

2
− 1

)
≈ log

(
rs

ns − 2

)
, (40b)

where ψ(·) is the digamma function defined as ψ(x) ≡
d
dx logΓ(x) = Γ

′(x)
Γ(x) . The approximation ψ(x) ≈ log(x) holds

when x is large.
By a similar procedure, it is shown that the last parameter

α follows a Dirichlet distribution:

q(α) ∝ αns (1 − α)mn−ns . (41)

Using the formulae for the Dirichlet distribution
(E[logα] = ψ(r1)−ψ(r1 + r2) for p(α) ∝ (α)r1−1(1−α)r2−1),
we have

〈logα〉 = ψ(ns + 1) − ψ(mn + 2) ≈ log
ns + 1
mn + 2

,

(42a)

〈log(1 − α)〉 = ψ(mn − ns + 1) − ψ(mn + 2)

≈ log
mn − ns + 1

mn + 2
, (42b)

where ≈ holds when mn is sufficiently large.
In the VB methodology, the evaluation of the hidden

variable posterior q(Z) and that of the parameter posterior
q(Θ) are performed in an alternate manner. The computa-
tions for each of the evaluation steps are given by the above-
mentioned derivation. Although they are somewhat compli-
cated in their original form, by assuming that ns and mn are
large and by then employing the above-mentioned approx-
imations for σ2 and α, they can be reduced to a compact
form as follows. We first denote wi j ≡ 〈zi j〉 and

e2
i j ≡

〈
(yi j − u�i v j)

2
〉

= y2
i j − 2yi j(〈u�i 〉〈v j〉) + tr(〈uiu�i 〉〈v jv�j 〉).

When the approximation is valid, the expectations for σ2 in
Eqs.(40) yield an identical equation. By redefining 1/σ2 ≡

〈1/σ2〉, we may write

σ2 =

∑
i, j wi je2

i, j∑
i, j wi j

.

Similarly, Eqs.(42) are identical equations; we may write

α =

∑
i, j wi j + 1∑

i, j 1 + 2
.

Using these results, we can also rewrite ai j and bi j in
Eq.(36) as

ai j = α
1√

2πσ2
exp

−
e2

i j

2σ2

 and (43a)

bi j = (1 − α)γ. (43b)

Further, by rewriting ui = 〈ui〉, Ψi = 〈uiu�i 〉, v j = 〈v j〉, and
Φ j = 〈v jv�j 〉, we arrive at Algorithm 5.
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