
A Variational Bayesian Approach for Classification with Corrupted Inputs

Chao Yuan and Claus Neubauer
Siemens Corporate Research, 755 College Road East, Princeton, NJ 08540

{chao.yuan,claus.neubauer}@siemens.com

Abstract

Classification of corrupted images, for example due to
occlusion or noise, is a challenging problem. Most existing
methods tackled this problem using a two-step strategy: im-
age reconstruction and classification of reconstructed im-
ages. However, their performances heavily relied on the
accuracy of reconstruction and parameter estimation. We
present a full Bayesian approach which infers the class la-
bel from the corrupted image by marginalizing the origi-
nal image and parameters. Overfitting is effectively over-
come through Bayesian integration. Our system consists
of two models. The original image model, which specifies
the original image generation process, is described by a
Gaussian mixture model. The observation model, which re-
lates the corrupted image to the original image, is depicted
by an additive deviation model. Normal pixel and corrupted
pixel values are elegantly handled by the covariance of the
Gaussian deviation. We employ variational approximation
to make the Bayesian integration tractable. The advantage
of the proposed method is demonstrated by classification
tests on the USPS digit database and PIE face database
with pose and illumination variations.

1. Introduction
Object classification has received a large amount of at-

tention over the last several decades and state-of-the-art per-

formance has been achieved by classifiers such as support

vector machines [1]. However, classification of corrupted

images remains a challenging problem. A typical cause of

image corruption is occlusion. For example, a face image

can be occluded by sun glasses. Images can also be conta-

minated by noise such as impulse noise.

The problem of classifying corrupted images is difficult

because a corrupted image can have tremendous number of

possible variations. This is due to the fact that any pixel in

an image can be corrupted and a corrupted pixel can take

any value. This problem becomes relatively easier if the

location of corrupted pixels [2] or the type of corruption is

known [3]. However, such information is often unavailable;

this paper addresses this more challenging situation.

Most prior work tackling this problem proceeded in two

steps. In the first step, the original image x was recon-

structed from the corrupted image y. In the second step,

classification was performed on the reconstructed image x.

Several studies have achieved good reconstruction results

[4-6]. However, all these methods have to solve a difficult

task: parameter estimation. Overfitting, which tends to oc-

cur either in image reconstruction or parameter estimation,

will negatively affect the performance of the classifier.

Our major contribution is to propose a full Bayesian ap-

proach: we infer the class label c from the corrupted im-

age y by marginalizing both original image x and parame-

ters. By this Bayesian integration, the inference does not

rely on particular point estimation of x and parameters, but

a weighted combination of all possible settings of them as

noted by MacKay [7] and Neal [8]. Bias, which happens in

each individual setting, is expected to cancel out with each

other and to be reduced through this integration.

Fig.1 shows the graphical model of the proposed system,

which consists of two parts: the original image model and

the observation model. The original image model employs

a Gaussian mixture model (GMM) to describe how the orig-

inal image x is generated. Each component of the GMM is

denoted by a class c and a state variable s . Class c refers to

an identity to be inferred such as a face in face recognition;

state s represents a variation mode of a class, for example

certain pose and illumination for face images. This GMM

is learned using normal training images. The observation

model describes how the corrupted image y relates to x.

We model y as the sum of x and a Gaussian deviation vec-

tor ε whose covariance matrix Θ−1 is adaptively adjusted

for each pixel. A Gamma distribution is selected as the prior

for Θ. With marginalization of state s , original image x and

parameter Θ, our inference problem is formulated as

P (c|y) =
∑

s

∫
x

∫
Θ

P (c, s,x,Θ|y)dx dΘ. (1)

Since (1) does not have an analytic form, we resort to

variational approximation [9-10] to make the integration

tractable. Variational methods have been widely used in
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Figure 1. Graphical model for the proposed algorithm. (a) the ob-

servation model, in which the observed image y is modeled as the

sum of the original image x and Gaussian deviation whose covari-

ance is Θ−1. (b) the original image model, where the original

image x is modeled by a Gaussian mixture model governed by

class c and state s . Class c is an identity to be inferred and state

s indicates different variations of a class. Squares denote discrete

variables and circles denote continuous variables. Our task is to

infer the class label c from the observed image y by marginalizing

s , x and Θ.

computer vision and have achieved great success in motion

segmentation [11], visual tracking [12] and image deblur-

ring [13].

The proposed framework is quite general without assum-

ing any knowledge about corruption or application-specific

physical models. We test our method using the USPS hand-

written digit database [14] and the PIE face database with

pose and illumination variations [15].

This paper is organized as follows. Section 2 surveys

the related work. In Section 3, we describe the proposed

variational inference algorithm. Test results are presented

in Section 4. Section 5 summarizes this paper.

2. Related work
Most existing work focused on reconstructing the orig-

inal image from the corrupted image, where robustness is

the key. Simply speaking, robustness refers to the desir-

able property that original pixel values are recovered at cor-

rupted pixels while normal pixels stay unchanged.

Some methods made special assumptions about their

problems. For example, the location of corrupted pixels

was assumed known by Hwang and Lee [2]. The original

image was modeled as a linear combination of a set of pro-

totype images and the linear combination coefficients were

computed only from uncorrupted regions. Assuming that

occlusion was due to eye glasses, Wu et al. [3] presented

a sophisticated system to detect, localize and remove eye

glasses. Both methods achieved impressive reconstruction

results. However, their assumptions may not hold for other

applications.

More general approaches include reconstruction using

kernel PCA (KPCA) [16]. This is similar to a PCA based

reconstruction, except that the reconstruction is done in

a transformed feature space, which has a built-in ability

to handle nonlinearity. However, as a projection-based

method, the KPCA updated all pixels of a test image, which

compromised its robustness performance [5].

Robustness was also pursued via a robust error function

by Gross et al. [4]. The fitting of an active appearance

model was thus less affected by the corrupted pixel values.

Tsuda and Rätsch [5] addressed robustness using L1-norm

distance and slack variables in the framework of linear pro-

gramming. However, selection of scale parameters for the

robust error function [4] or weight for slack variables [5] re-

lied on applications and also the severity level of corruption.

How to adaptively set these parameters for a test image is

still a challenging problem.

Smet et al. [6] presented one of the best approaches for

reconstructing occluded face images. A binary visibility

map was introduced to govern the switching between nor-

mal pixel values and corrupted pixel values. The normal

pixel values were generated from the powerful 3D mor-

phable model [17] while the corrupted pixel values were

modeled by a histogram. The Expectation-Maximization

(EM) algorithm [18] was used to estimate the parameters

of the 3D morphable model. The use of visibility map was

shown to be a form of robust estimation (Fransens et al.
[19]). However, reliably estimating the histogram of the oc-

cluded pixels from a single image is still an open issue.

Martı́nez [20] did not perform image reconstruction, but

divided an image into fixed sub-regions. Matching was per-

formed on each sub-region and combined to form the final

classification result. This method can achieve excellent re-

sults as shown in our tests (Section 4.2). However, it is

sensitive to the location of occlusion and may not perform

well if occlusion happens to be present in most sub-regions.

3. Description of the proposed algorithm

Our goal is to infer the class label c given a test image

y. However, Eq.(1) does not have an analytic solution. We

thus consider variational treatment. To proceed, we first de-

scribe the dependency relation of all variables in Fig.1. This

is done for the observation model part (Section 3.1) and the

original image model part (Section 3.2), separately. Then,

the variational approximation and the actual inference are

introduced in Section 3.3. Finally, algorithm speedup pro-

cedures are given in Section 3.4.

3.1. The observation model

We model the corrupted d-dimensional image y as the

sum of the original image x and a deviation vector ε:

y = x + ε, (2)



where ε is independent of x. ε is assumed to be Gaussian

with zero mean and a diagonal covariance matrix: P (ε) =
N (ε|0,Θ−1), where Θ = diag(θ1, θ2, . . . , θd) is the in-

verse of the covariance matrix. This implies that pixel devi-

ation εi is independent to each other. The conditional prob-

ability of y given x and Θ (Fig.1a) can be expressed as

P (y|x,Θ) =
d∏

i=1

N (yi|xi, θ
−1
i ). (3)

With the Gaussian deviation vector ε, the observed im-

age y can now be interpreted in a generative manner. On

the one hand, if a pixel i is corrupted, the corresponding

inverse variance θi can be set to a small value such that the

observed value yi is allowed to be different from its original

value xi. On the other hand, at a normal pixel, θi is set to a

large value such that the deviation εi is almost deterministi-

cally zero and yi is forced to be close to xi.

Following Bishop [9], Ghahramani and Beal [10], we

assume that each inverse variance θi has an independent

Gamma distribution:

P (Θ) =
d∏

i=1

Γ(θi|a, b), (4)

where Γ(θi|a, b) ∝ baθa−1
i e−bθi denotes a Gamma distri-

bution with hyper-parameters a and b. P (x) ∝ f(x) de-

notes that probability density function P (x) is proportional

to f(x). Similarly to [9, 13], we prefer small a and b values

and fix a = b = 10−5 in this paper. The motivation for such

choices will be given in Section 3.3.

3.2. The original image model

The original image model (Fig.1b) describes the prior

distribution of the original image x, which is modeled by a

Gaussian mixture model (GMM). Each component is spec-

ified by a class c, a state s and has a probability of

P (c, s,x) = pcsN (x|mcs,Σcs). (5)

pcs is the class and state prior P (c, s); mcs and Σcs are the

mean and covariance of x given class c and state s , respec-

tively.

The GMM is learned from a set of normal training im-

ages X and their corresponding class labels C. The EM

algorithm has been a standard way to estimate pcs, mcs and

Σcs by maximizing log P (X,C)[18]. However, the fol-

lowing questions need to be addressed: how to cope with

the high dimension of images, how to select the number of

components and how to achieve high classification rate.

We apply the probabilistic principal component analysis

(PPCA) from Tipping and Bishop [21] for dimension reduc-

tion of images. Suppose that there are L PPCAs. The lth

PPCA is represented by a d × M eigenvector matrix Ul,

an M ×M diagonal eigenvalue matrix Λl, a d-dimensional

mean vector vl and a residue r2
l . M � d is the number

of principal components. For the USPS database, we apply

one PPCA to all training images; for the PIE face data, we

use nine PPCAs, one PPCA for all training images at each

pose. All training data are then projected onto their corre-

sponding M -dimensional eigenspaces.

The EM algorithm is applied to the projected training

images for every class in each eigenspace. There are thus

a total of C (classes) × L (eigenspaces) EM computations

and CL local GMMs. For simplicity, each mixture compo-

nent is assumed to have an isotropic Gaussian distribution

whose covariance is σ2IM . σ2 is the isotropic variance and

IM is an M × M identity matrix.

A ten-fold cross validation is adopted to determine the

number of components for each local GMM. To be spe-

cific, all projected training images of class c in eigenspace

l are randomly divided into ten folds. With certain num-

ber of components choice Kcl, we apply the EM algorithm

to nine folds of the data and compute the log likelihood of

the remaining fold. The average log likelihood of ten-fold

tests is computed. This cross-validation procedure selects

the Kcl with the highest average log likelihood. Using this

Kcl choice, we obtain qclk, μclk and σ2
clkIM , which are the

prior, mean and covariance of the k th component of class c
in the l th eigenspace, respectively.

To improve the classification performance of the GMM,

we refine all local GMMs via discriminative training. Pre-

vious studies have shown that better classification rate can

be achieved for a generative model if it is trained discrim-

inatively [22-24]. Refs.[22, 23] proposed to maximize the

following objective function

log P (X,C) − α log P (X). (6)

The first term of (6) is what we optimize so far in the above

EM algorithm. The second term considers the likelihood

of X with respect to other classes, which should be small.

α which takes value between 0 and 1 controls the balance

between the first term and the second term. We use α = 1,

since it was shown to be a good choice by Holub and Perona

[23]. Alternatively, one can obtain α using cross validation

as proposed by Bouchard and Triggs [22]. Discriminative

training is applied to each eigenspace to refine all μclk while

qclk and σ2
clk are kept unchanged. Conjugate gradient is

used to solve this optimization problem.

Finally, we convert all C×L local GMMs into one global

GMM described by (5). The eigenspace label l and lo-

cal GMM component label k are now combined and corre-

spond to one state label s . The prior for the sth component

of class c is

pcs =
1

CL
qclk. (7)



Note that we assume the equal prior for all classes and

all eigenspaces. The mean mcs for each component in

the original d -dimensional pixel space is reconstructed

from the corresponding mean μclk in the M -dimensional

eigenspace:

mcs = Ulμclk + vl. (8)

The covariance Σcs for each component in the original pixel

space is also reconstructed from the corresponding covari-

ance σ2
clkIM in the eigenspace:

Σcs = Ul(σ2
clkIM − r2

l IM )UT
l + r2

l Id. (9)

Notice that if σ2
clkIM is replaced with the eigenvalue matrix

Λl, Eq.(9) becomes the covariance for the single Gaussian

distribution modeled by the PPCA [21].

3.3. Variational Bayesian inference

Given a test image y, the objective is to infer its class

label c using (1). Since Eq.(1) does not have an analytic

solution, we consider variational treatment [9-13]. Specif-

ically, the posterior distribution P (c, s,x,Θ|y) (or P ) is

approximated by a factorized distribution Q(c, s,x,Θ) (or

Q):

Q(c, s,x,Θ) = Q(c, s,x)Q(Θ). (10)

To ensure a good approximation, we require the Kullback-

Leibler divergence KL(Q||P ) between Q and original P to

be minimized. The great advantage of using Q instead of P
is that P (c|y) now has an analytic form.

The minimization of KL(Q||P ) with respect to Q in-

volves iterations for estimation of two factorial distribu-

tions: Q(c, s,x) and Q(Θ). It can be shown that Q(c, s,x)
describes a Gaussian mixture model. Each component has

a probability of

Q(c, s,x) = p̃csN (x|m̃cs, Σ̃cs). (11)

This GMM is similar to the GMM described by (5) except

that new set of prior p̃cs, mean m̃cs and covariance Σ̃cs is

needed for each component. Q(Θ) can be shown to depict

a Gamma distribution:

Q(Θ) =
d∏

i=1

Q(θi) =
d∏

i=1

Γ(θi|ãi, b̃i), (12)

which is similar to the Gamma distribution in (4). How-

ever, different pixels now require different sets of hyper-

parameters ãi and b̃i.

Each iteration involves two steps. In the first step, we

estimate p̃cs, m̃cs and Σ̃cs, the parameters of (11). They all

have analytic forms consisting of pcs, mcs, Σcs and 〈Θ〉,
where 〈Θ〉 denotes the expectation of Θ with respect to the

current estimate of Q(Θ). In the second step, ãi and b̃i, the

parameters of Q(Θ) are estimated. Both ãi and b̃i are ready

to compute from a, b, 〈xi〉 and 〈x2
i 〉, where 〈xi〉 and 〈x2

i 〉 are

expectation of xi and x2
i with respect to Q(c, s,x), respec-

tively. The detailed forms of these parameters are provided

in the appendix.

We now give insights to justify our choice of small a
and b (vs. typically much larger values). Recall that the

mean and variance of a Gamma distribution Γ(θi|a, b) ∝
θa−1

i e−bθi is a/b and a/b2, respectively. The posterior

mean and variance of θi with respect to Q(θi) can be shown

to be

〈θi〉 =
ãi

b̃i

=
1
2 + a

1
2 〈(xi − yi)2〉 + b

, (13)

〈(θi − 〈θi〉)2〉 =
ãi

b̃2
i

=
1
2 + a(

1
2 〈(xi − yi)2〉 + b

)2 . (14)

For a corrupted pixel whose expected square of deviation

〈ε2i 〉 = 〈(xi − yi)2〉 is large, the posterior mean in (13) will

be small, together with a small posterior variance in (14).

This naturally restricts θi to a small value. On the other

hand, for a normal pixel whose 〈(xi − yi)2〉 is small, the

posterior mean in (13) and posterior variance in (14) will

both be large. This suggests that a broad range of large

values be suitable for θi. Therefore, with small a and b,

the observation model behaves just in the way as we have

desired in Section 3.1. For the above reasons, we fix a =
b = 10−5 in our tests. Note that with these choices, a is

negligible in the numerator of (13). Other small values can

be used and they do not appreciably affect our results.

Our original inference problem (1) can now be analyt-

ically solved with P (c, s,x,Θ|y) replaced by its approxi-

mation Q(c, s,x,Θ):

P (c|y) =
∑

s

∫
x

∫
Θ

Q(c, s,x,Θ)dx dΘ

=
∑

s

∫
x

Q(c, s,x)dx
∫
Θ

Q(Θ)dΘ

=
∑

s

∫
x

p̃csN (x|m̃cs, Σ̃cs)dx

=
∑

s

p̃cs. (15)

For every test image y, we compute the approximate pos-

terior probability of a class c given y or the last equation

of (15). This is done for all classes and our algorithm out-

puts the class label with the highest posterior probability.

The only quantities required in (15) are p̃cs which are avail-

able after the KL(Q||P ) is minimized (see Appendix for

details).

3.4. Algorithm complexity and speedup

The variational inference involves iterative estimation of

the factorized distribution Q, which is a very time con-



suming process. In each iteration, to estimate Q(c, s,x)
we must calculate the inverse of Σcs + 〈Θ〉−1 for the sth

component of class c. This requires time of O(d3); for im-

ages, this can be very costly. In addition, such calculation

must be done for every component. Thus, assuming a fixed

number of iterations, the total time required is O(Kd3),
where K is the number of components in the GMM. This

complexity is well illustrated by the PIE face test where

d = 40 × 32 = 1, 280 and K = 65 × 9 × 8 = 4, 680.

We propose the following two ways to reduce the computa-

tional cost.

First, since Σcs + 〈Θ〉−1 can be expressed as a form of

ABAT + W where A is a d×M matrix, B is an M ×M
diagonal matrix and W is a d × d diagonal matrix, we use

the matrix inverse formula [25]:

(ABAT + W)−1 = W−1

− W−1A(B−1 + AT W−1A)−1AT W−1. (16)

Recall that M , the number of eigenvectors, is usually much

smaller than d. Therefore, the complexity for updating each

component is reduced from O(d3) to O(Md2). This is

another advantage of using PPCA and assuming isotropic

Gaussian for each component in the eigenspace. Note that

we also ignore the determinant of Σcs + 〈Θ〉−1 in evalu-

ating p̃cs, which is inspired by the success of widely used

Mahalanobis distance [26].

Secondly, we perform component selection. The moti-

vation is that usually a small portion of the K components

contributes to each update. In other words, the probabilities

p̃cs of many components are very small and those compo-

nents can be removed without much loss of precision.

Component selection is performed differently in differ-

ent stages. During the initialization stage, we select κ com-

ponents out of K components based on L1-norm distance

from y to each component center mcs. Only the κ closest

components to the input image y are kept for the following

iterations. κ is empirically chosen to be 50 in this paper

and this choice works well. A larger κ may achieve better

precision but also increase complexity.

During the iteration stage, we rank the estimated prob-

ability p̃cs for each component in a descending order after

each iteration. We select components, starting with the one

with the highest p̃cs until the sum of p̃cs of the selected com-

ponents is larger than 95%. Only the selected components

are used in the following iterations. In our experience, usu-

ally after several iterations, the number of remaining com-

ponents is less than ten.

Through the matrix inverse formula (16) and component

selection, we have managed to reduce the complexity from

O(Kd3) to a more tractable O(κMd2), where κ and M are

typically much smaller than K and d, respectively. It takes

10 seconds to process a 40×32 pixel image using MATLAB

7 on a PC with a 2.16 GHz CPU.

Figure 2. Sample test images corrupted by impulse noise in the

USPS data classification test. From left to right, each column rep-

resents digits 0, 1, . . . , 9. Three samples are shown for each digit.

4. Test results
4.1. Classification tests on the USPS database

We used the USPS database consisting of 9, 298 hand-

written digits, 7, 291 of which were preset as the training

set and the other 2, 007 were for testing [14]. Each image

has 16 × 16 pixels, with each pixel taking value between

−1 and 1. We used the original training images to train

classifiers but corrupted all test images with impulse noise.

Specifically, impulse noise was added to each pixel with

probability T ; for a corrupted pixel, its value was randomly

set to −1 or 1. Fig.2 shows three test images for each of

the ten digits with T = 0.4. This forms a very difficult

classification task even for human.

The number of principal components M needs to be set

for our method, PCA and kernel PCA. A good choice ap-

peared to be between 20 and 40 for this database. We set

this number to 30 for all methods.

For our variational Bayesian method, we applied a PPCA

to all training images. Cross-validation in Section 3.2 auto-

matically determined the number of components for each

class. This number ranges from 14 to 55 with an average of

29 for all ten digits. The GMM was trained using the EM

algorithm followed by discriminative training as in Section

3.2. The final GMM achieved a classification rate of 92.2%
using original test images.

The proposed method (abbreviated as VB) was com-

pared to the above GMM classifier and a SVM using

Gaussian kernels, both directly applied to the corrupted test

images. This SVM achieved a classification rate of 95.6%
on the original test images, which is close to 95.8% [27]

and 95.7% [28], reported by other SVM work. In addition,

we applied the PCA and KPCA methods to reconstruct the

original test image from the corrupted test image and then

applied the same SVM to the reconstructed image. These

methods are denoted by “PCA SVM” and “KPCA SVM”,

respectively.

Table 1 shows the classification rate of different meth-

ods with three T values (the probability of impulse noise).

Our variational Bayesian method achieved the best results

for all tests. The SVM’s score was the lowest and can be

significantly improved if it was applied to the reconstructed

image either from the PCA or the KPCA. This implies that

both PCA and KPCA can handle the impulse noise on this

database reasonably well especially when noise level is low.



PCA KPCA

Pc GMM SVM SVM SVM VB

T = 0.3 71.2% 69.2% 84.5% 82.5% 86.2%
T = 0.4 61.2% 53.8% 72.4% 72.7% 80.7%
T = 0.5 45.2% 41.0% 60.8% 60.1% 70.0%

Table 1. Classification rate Pc of different methods on the USPS

test images corrupted by impulse noise. T is the probability of

adding impulse noise to each image pixel. Our proposed varia-

tional Bayesian (VB) method achieved the highest classification

rate.

For example, at T = 0.3, the “PCA SVM” achieved 84.5%
which is just 1.7% lower than our score. However, as T in-

creased, the advantage of our method became clearer. For

example, at T = 0.5, the variational Bayesian outperformed

“PCA SVM” by 9.2%.

4.2. Classification tests on the PIE face database

We used a subset of the PIE face database with both pose

and illumination variations [15]. This subset consists of

65 (subjects) × 9 (poses without elevation) × 21 (illumi-

nations) = 12, 285 images. Each face image was roughly

cropped into a dimension of 40 × 32 = 1, 280 based on the

annotated locations of eyes and mouth. We linearly trans-

formed each pixel value to the range between −1 and 1.

For each subject at each pose, eight images with illumina-

tion number 2, 4, 6, 13, 15, 18, 19, 20 were used in training;

the other images were for testing. The 12, 285 images were

thus split into a training set of 65 (subjects) × 9 (poses) ×
8 (illuminations) = 4, 680 images and a test set of 65 (sub-

jects) × 9 (poses) × 13 (illuminations) = 7, 605 images.

The number of principal components M was set to 150.

Face images are often corrupted by occlusion, for exam-

ple caused by sun glasses, hands and other objects. How-

ever, the original PIE face images do not have occlusion.

We thus consider simulated occlusion. Two types of occlu-

sion were used. In the block occlusion test, three candidate

corrupted regions were pre-defined, each with a fixed size

of 10 × 32 (25% of the whole image) and covering either

the eye, nose or mouth part. For a test image, we randomly

selected one of the above three regions, and set all pixel val-

ues within this region to a randomly picked constant. This

constant choice is due to the fact that similar pixel values

are often observed in real occlusion. Our algorithm will

not be adversely affected if corrupted pixels take different

values since we assume that pixel deviations are indepen-

dent to each other as noted in Section 3.1. Fig.3 top shows

the corrupted test images of one subject under one pose. In

the mesh occlusion (Fig.3 bottom) test, a mesh-like occlu-

sion was similarly added to cover about 25% of the original

image, but the position of the occlusion was fixed for all

images.

We used normal training images to train all classifiers.

Figure 3. Sample test images corrupted by simulated block occlu-

sion (top row) and mesh occlusion (bottom row) for one subject at

one pose in the PIE face database.

For our original image model, nine PPCAs were used, one

for each pose. At each pose, all 65 (persons) × 8 (illumina-

tions) = 520 training images were projected onto the corre-

sponding eigenspace. Since there were only eight training

images for each local GMM, we employed a kernel density

estimator with a Gaussian kernel instead of the EM-based

training. Leave-one-out procedure was used to determine

the Gaussian kernel width for each local GMM. Discrimi-

native training was then applied to these 65 local GMMs to

refine the means of all 520 components. Combining all lo-

cal GMMs from all nine poses, we obtained a global GMM

with 4, 680 components.

The proposed variational Bayesian method was com-

pared to a GMM classifier and a linear discriminant analy-

sis (LDA) classifier ([29]). Using the LDA, a test image

was projected onto a Fisherface subspace and classified by a

nearest neighbor classifier. We also considered reconstruct-

ing an occluded image via a robust KPCA (RKPCA) ([30])

which employed robust estimation to downplay the effects

of occluded pixels. Then the LDA was applied to the recon-

structed image. We refer to this method as “RKPCA LDA”.

In addition, following [20], we divided an image into six

sub-regions and applied an local LDA to each sub-region;

the scores from all six local LDAs were fused through a

naive Bayes classifier. This method is denoted by SLDA.

Note that our algorithm and the GMM classifier do

not need pose estimation as each test image was matched

against all 4, 680 mixture components. However, the LDA,

RKPCA and SLDA do need pose estimation. For simplic-

ity, we assumed that the pose of a test image was known

only for these methods, which is expected to enhance their

results. By using the original uncorrupted test image, the

GMM achieved a classification rate of 94.8%. The LDA

produced a nearly perfect 99.9%, which justified that the

LDA is a top method to handle illumination variations

([29]).

Table 2 shows the classification rate Pc of different clas-

sifiers on the test images corrupted by two types of occlu-

sion. The original GMM and LDA performed poorly on

both tests. In the block occlusion test, the SLDA achieved

a very impressive 98.2%, much higher than that of our VB

method. This can be attributed to the fact that at least two

of the six sub-regions were not affected by occlusion and

faces can be classified based on uncorrupted partial images

in this PIE data set. However, in the mesh occlusion test, the

SLDA performed much worse because all six sub-regions



RKPCA

Tests GMM LDA LDA SLDA VB

Block 48.9% 64.8% 28.2% 98.2% 84.4%
Mesh 56.0% 56.2% 30.4% 63.8% 87.5%

Table 2. Classification rate Pc of different methods on the PIE

face images corrupted by block occlusion (second row) and mesh

occlusion (third row). Our proposed variational Bayesian (VB)

method achieved good and consistent scores in both tests.

were occupted by occlusion and none of the local LDAs

could produce a reliable score. This shows that the SLDA

is sensitive to the location of occlusion as we noted in Sec-

tion 2. In comparison, our VB method produced more con-

sistent scores regardless of the occlusion location, because

our observation model (Section 3.1) was able to locate oc-

clusion by the adaptive deviation covariance. The RKPCA

appeared to fail in image reconstruction because they did

not help improving the LDA’s performance. A possible rea-

son is that RKPCA was confused between occlusion and

normal pixel variations (due to illumination).

5. Summary

This paper presents a Bayesian approach for classifica-

tion of corrupted images. We infer the class label from the

corrupted test image by integrating over the original im-

age and parameters. Our results do not depend on point

estimation of the reconstructed image or parameters, but

a weighted combination of them. This effectively reduces

overfitting. Variational approximation is employed to carry

out the Bayesian integration.

Our work can be extended in the following directions.

First, despite of discriminative training, the Gaussian mix-

ture model is still found inferior to the SVM or LDA in

terms of classification performance. Possible improvements

include another Bayesian treatment by combining multiple

GMMs. Secondly, the proposed framework can be adapted

to tackle multivariate regression problems. This requires the

design of a new original image model suitable for regression

problems.
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Appendix

We show how to estimate Q(c, s,x) and Q(Θ) which

minimizes the KL divergence. The log likelihood of the

joint probability of all variables is

log P (c, s,x,y,Θ)
= log P (y|x,Θ) + log P (x|c, s) + log P (c, s) + log P (Θ)

= − 1
2

∑
i

(xi − yi)2θi +
1
2

∑
i

log θi

− 1
2
(x − mcs)T Σ−1

cs (x − mcs) − 1
2

log |Σcs| + log pcs

+ (a − 1)
∑

i

log θi − b
∑

i

θi + Constant. (A-1)

Step 1. Update Q(c, s,x) with Q(Θ) fixed.

Using standard variational minimization, Q(c, s,x) which

minimizes the KL divergence has the following form

Q(c, s,x) ∝ e log P (c,s,x,y,Θ)Q(Θ)dΘ. (A-2)

After some matrix manipulation, Q(c, s,x) can be shown to

describe a Gaussian mixture model

Q(c, s,x) = p̃csN (x|m̃cs, Σ̃cs), (A-3)

whose parameters are

p̃cs ∝ pcs
e−

1
2 (y−mcs)T (Σcs+〈Θ〉−1)−1(y−mcs)

|Σcs + 〈Θ〉−1|1/2
, (A-4)

m̃cs =
(
Id − 〈Θ〉−1 (Σcs + 〈Θ〉)−1

)
(y − mcs) + mcs,

(A-5)

Σ̃cs = 〈Θ〉−1
(
Id − (Σcs + 〈Θ〉)−1 〈Θ〉−1

)
. (A-6)

We additionally compute the following quantities which

will be used in updating Q(Θ) in Step 2:

〈x〉 =
∑

c

∑
s

p̃csm̃cs, (A-7)

〈xxT 〉 =
∑

c

∑
s

p̃cs(Σ̃cs + m̃csm̃T
cs). (A-8)

Step 2. Update Q(Θ) with Q(c, s,x) fixed.

Q(Θ) which minimizes the KL divergence has the follow-

ing form

Q(Θ) ∝ e c s log P (c,s,x,y,Θ)Q(c,s,x)dx. (A-9)

Q(Θ) can be shown to be a Gamma distribution

Q(Θ) =
d∏

i=1

Q(θi) =
d∏

i=1

Γ(θi|ãi, b̃i), (A-10)

whose parameters are determined by

ãi =
1
2

+ a, (A-11)

b̃i =
1
2
〈(xi − yi)2〉 + b. (A-12)



The expectation of Θ is computed to be used in Step 1:

〈θi〉 =
ãi

b̃i

=
1
2 + a

1
2 〈(xi − yi)2〉 + b

. (A-13)

The above Step 1 and Step 2 are repeated. Upon conver-

gence, we obtain the final forms of Q(c, s,x) and Q(Θ).
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