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Abstract

A good distance metric is crucial for unsupervised learn-
ing from high-dimensional data. To learn a metric without
any constraint or class label information, most unsuper-
vised metric learning algorithms appeal to projecting ob-
served data onto a low-dimensional manifold, where geo-
metric relationships such as local or global pairwise dis-
tances are preserved. However, the projection may not nec-
essarily improve the separability of the data, which is the
desirable outcome of clustering. In this paper, we propose
a novel unsupervised Adaptive Metric Learning algorithm,
called AML, which performs clustering and distance met-
ric learning simultaneously. AML projects the data onto
a low-dimensional manifold, where the separability of the
data is maximized. We show that the joint clustering and
distance metric learning can be formulated as a trace maxi-
mization problem, which can be solved via an iterative pro-
cedure in the EM framework. Experimental results on a
collection of benchmark data sets demonstrated the effec-
tiveness of the proposed algorithm.

1. Introduction

A good distance metric is crucial to many real-world
applications involving high-dimensional data, such as im-
age classification and clustering, microarray data analysis,
text mining, and content-based image retrieval. In dis-
tance metric learning, the goal is to learn a metric, un-
der which the relationships of the observed data are bet-
ter represented in comparison with the usual distance met-
rics, such as the Euclidian distance. With a good distance
metric, the construction of the learning models becomes
easier and the accuracy of the learning models usually im-
proves [24]. Based on the availability of the constraint in-
formation (or class label information), metric learning algo-
rithms fall into two categories: supervised distance metric
learning [19, 22, 23, 25] and unsupervised distance met-
ric learning [2, 15, 16, 18, 20]. In this paper, we focus on
the case of unsupervised distance metric learning, which is

more challenging due to the lack of any prior knowledge.
Without any constraint or class label information, most un-
supervised metric learning algorithms appeal to projecting
observed data onto a low-dimensional manifold, where ge-
ometric relationships, such as the pairwise distances are
preserved. Most approaches in this category, such as the
Principle Component Analysis (PCA) [15], Locally Lin-
ear Embedding (LLE) [18], Laplacian Eigenmap [2] and
ISOMAP [20], are also dimension reduction approaches
and are related to manifold learning. Unsupervised learn-
ing algorithms, such as K-means can then be applied in the
dimension-reduced space, thus avoiding the curse of dimen-
sionality.

In unsupervised clustering, the goal is to find a set of
clusters so that the separability between different clusters is
maximized. Applying unsupervised dimensionality reduc-
tion algorithms such as PCA and other methods as a sepa-
rate data pre-processing step before clustering may not help
improve the separability of the data, which is the desirable
outcome of clustering. In this paper, we propose AML,
which stands for Adaptive Metric Learning for simultane-
ous distance metric learning (via dimensionality reduction)
and clustering. The key idea in AML is to integrate dimen-
sionality reduction and clustering in a joint framework so
that the separability of the data is maximized in the low-
dimensional space. It has the same flavor as supervised
metric learning approaches, which try to adjust the distance
among instances to improve the separability of the data. For
example, in [19, 23], the distance metric adjusts the geome-
try of data, so that the distance between data points from the
same class under the metric is small. The metric improves
the separability of the data and enhances the performance of
classifiers, such as K-Nearest-Neighbor (KNN). The novel
aspect of the proposed approach in comparison with super-
vised metric learning approaches is that AML does not use
any class label information.

We show that the joint dimensionality reduction and
clustering can be formulated as a trace maximization prob-
lem, which can be solved by an iterative algorithm based on
the EM framework. We evaluate the proposed algorithm us-
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ing six benchmark data sets, including Soybean Large (Soy-
bean), Segment, and Letter from UCI Machine Learning
Repository [3], GCM microarry data set from [17], and two
image data sets: USPS handwritten data [14] and Yale Face
B (YaleFaceB) data [10]. We use the K-means algorithm
as the baseline for comparison. We also compare the pro-
posed algorithm with two representative unsupervised algo-
rithms: Principle Component Analysis (PCA) and Locally
Linear Embedding (LLE). Experimental results show that
AML outperforms K-means, PCA, and LLE in most cases,
which demonstrates the effectiveness of the proposed algo-
rithm in learning a good distance metric for clustering. We
also conducted a preliminary study on incorporating partial
label information into the proposed framework, known as
semi-supervised learning [4, 27]. Our preliminary results
showed that using both labeled and unlabeled data does
helps to learn a better distance metric.

The remainder of the paper is organized as follows. In
Section 2, we present the idea behind our approach and for-
mulate the adaptive metric learning problem. We propose
an EM based algorithm, AML, to solve the problem in Sec-
tion 3. We also investigate the properties of the proposed
algorithm in this section. In Section 4, we present an empir-
ical study to evaluate the effectiveness of the proposed algo-
rithm in comparison with the representative algorithms and
conduct a sensitivity study to evaluate various components
of the algorithm. We conclude in Section 5 with discussions
and future work.

2. Adaptive Metric Learning: Problem Formu-
lation

Let X denote a data set with n instances, {xj}n
j=1 ∈

R
m. Let G ∈ R

m×l be a linear transformation that maps
each xi in the m-dimensional space to a vector x̂i in the
l-dimensional space:

G : xi ∈ R
m → x̂i = GT xi ∈ R

l(l < m). (1)

We focus on orthogonal transformations in this paper, that
is, GT G = Il, where Il is the identity matrix of size l.
It has been shown [7, 11] that for most high-dimensional
data sets, almost all low dimensional projections are nearly
normal. That is, for large m, we expect the projected data
{x̂i}n

i=1 to be nearly normal. In this case, a good distance
measure is the well-known Mahalanobis distance measure
defined as follows:

dM (x̂i, x̂j) =
√

(x̂i − x̂j)T Σ̂−1(x̂i − x̂j), (2)

where Σ̂ is the covariance matrix defined as follows:

Σ̂ =
1
n

n∑
i=1

(x̂i − µ̂)(x̂i − µ̂)T , (3)

and µ̂ = 1
n

∑n
i=1 x̂i is the mean of {x̂i}n

i=1. It follows that

Σ̂ =
1
n

n∑
i=1

GT (xi − µ)(xi − µ)T G = GT ΣG, (4)

where µ = 1
n

∑n
i=1 xi is the mean of {xi}n

i=1, and

Σ =
1
n

n∑
i=1

(xi − µ)(xi − µ)T (5)

is the class covariance matrix of the original data in X . For
high-dimensional data, the estimation of the covariance ma-
trix in Equation (5) is often not reliable. We apply the reg-
ularization technique [9] to improve the estimation as fol-
lows:

Σ =
1
n

n∑
i=1

(xi − µ)(xi − µ)T + λIm, (6)

where Im is the identity matrix of size m and λ > 0 is a
regularization parameter.

Under this new distance measure, K-means clustering
can be applied to assign {x̂i}n

i=1 into K disjoint clusters,
{Cj}K

j=1, which minimize the following Sum of Squared
Error (SSE):

SSE({Cj}K
j=1) =

K∑
j=1

∑
x̂i∈Cj

dM (x̂i, µj)2, (7)

where the Manalanobis distance dM (·, ·) is defined as in
Equation (2), and µj is the mean of the j-th cluster Cj .

As the summation of all pair-wise distances is a constant
for a fixed G. The minimization of the SSE is equivalent
to the maximization of Sum of Squared Intra-cluster Error
(SSIE) defined as follows:

SSIE
(
{Cj}K

j=1

)
=

∑K

j=1
nj dM (µj , µ̂)2, (8)

where nj is the sample size of the j-th cluster Cj , µj is the
mean of the j-th cluster Cj , and µ̂ is the global mean as
defined above. SSIE can be expressed in a compact matrix
form as follows. Let F ∈ R

n×K be the cluster indicator
matrix defined as follows:

F = {fi,j}n×K , where fi,j = 1, iff xi ∈ Cj . (9)

We can define the weighted cluster indicator matrix

L = [L1, L2, · · · , LK ]

as follows [8]:

L = F (FT F )−
1
2 . (10)



It follows that the i-th column of L is given by

Li = (0, . . . , 0,

ni︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0)T /n

1
2
i . (11)

With the weighted cluster indicator matrix L, the Sum of
Squared Intra-cluster Error (SSIE) can be expressed as [8]:

1
n

trace

(
LT XT G

(
Σ̂

)−1

GT XL

)

=
1
n

trace
(
LT XT G(GT ΣG)−1GT XL

)
. (12)

The adaptive metric learning problem can be formulated as
follows:

max
G: GT G=Il,L

1
n

trace
(
LT XT G(GT ΣG)−1GT XL

)
. (13)

The optimization problem in Equation (13) maximizes
the squared intra-cluster distance under the Mahalanobis
distance measure determined by the transformation G.
Thus, it simultaneously computes the distance metric and
the clustering. However, the optimization problem is highly
nonlinear and difficult to solve. In the following, we pro-
pose to develop an iterative algorithm to compute the trans-
formation matrix G and the clustering captured in L.

3. Adaptive Metric Learning: The Main Algo-
rithm

The objective function in Equation (13) is not convex.
However, if one of the two components (G and L) is fixed,
the objective function is convex in terms of the other com-
ponent and the optimization problem is easy to solve. This
enables us to solve the problem in the EM framework, in
which we update G and L iteratively to find a (local) opti-
mal solution for the adaptive metric learning problem.

3.1. Calculation of L for a given G

For a given transformation matrix G, the maximization
problem specified in Equation (13) reduces to the maxi-
mization of

trace
(
LT K̃L

)
,

where K̃ is defined as

K̃ =
1
n

XT G
(
GT ΣG

)−1
GT X.

This is equivalent to a kernel K-means problem with K̃ as
the kernel, as summarized below [6]:

THEOREM 1 Give the transformation matrix G and the
cluster number k, the computation of L that solves the op-
timization problem specified in Equation (13) is equivalent

to a kernel K-means problem, where the kernel matrix K̃ is
given by

K̃ =
1
n

XT G
(
GT ΣG

)−1
GT X. (14)

3.2. Calculation of G for a given L

Since trace(AB) = trace(BA), for any two matrices A
and B, we have

SSIE
({Cj}K

j=1

)
=

1
n

trace
(
LT XT G(GT ΣG)−1GT XL

)
=

1
n

trace
(
(GT ΣG)−1GT XLLT XT G

)
.

For a given L, the optimal G∗ can be computed by solving
an eigenvalue problem associated with Σ and XLLT XT as
summarized below:

THEOREM 2 Let A = XLLT XT and B = Σ. Let
M = [v1, · · · , vl] be the matrix consisting of the first l
eigenvectors corresponding to the largest l nonzero eigen-
values of B−1A. Let M = QR be the QR decomposition
of M , where Q has orthonormal columns and R is upper
triangular. Then G∗ = Q.

PROOF: For a given L, the optimal G is given by solving
the following optimization problem:

max
G: GT G=I

f(G), (15)

where f(G) = trace
(
(GT BG)−1GT AG

)
.

Since f(G) = f(GM), for any nonsingular matrix M ,
the optimal G∗ is given by first maximizing f(G) without
the orthogonality constraint and then computing the QR de-
composition. The result follows, since the optimal G maxi-
mizing f(G) is given by the top eigenvectors of B−1A. �

Note that the computation of G is closely related to the
well-known linear discriminant analysis [12]. The opti-
mization problem in Equation (13) is similar to the one
in [16], however the algorithm in [16] is based on gradi-
ent descent and is computationally more expensive. Since
the rank of the matrix XLLT XT is no larger than K − 1,
the number of columns of G is no larger than K − 1, i.e.,
l ≤ K − 1. We set l = K − 1 in the following discussion.

3.3. The Main Algorithm

Based on the analysis above, we propose to develop an
iterative algorithm for the adaptive metric learning prob-
lem defined in Equation (13). The corresponding algorithm,
called AML is presented in Algorithm 1.

The convergence of the AML algorithm is guaranteed, as
summarized in the following theorem below:

THEOREM 3 Algorithm AML always converges.



PROOF: It is easy to see that in steps 4 and 5 of AML,
the objective value defined in Equation (13) always in-
creases. As the objective value is bounded from above by a
finite number, the algorithm always converges. �

Algorithm 1: AML
Input: X, k, ε
Output: G, L
Using K-means to obtain the initial weighted cluster1

indication matrix L; Compute Σ as in Equation (6);
Compute the optimal G, by computing the QR2

decomposition of the matrix, which consists of the
first K − 1 eigenvectors of the matrix Σ−1XLLT XT ;
while trace incensement ≥ ε do3

For a given G, update L by running kernel4

K-means as in Section 3.1 with the initial set of
centroids given by the current L;
For a given L, update G by computing the QR5

decomposition of the matrix, which consists of the
first K − 1 eigenvectors of Σ−1XLLT XT ;

end6

return G and L;7

4. Experimental Result

In this section, we present an empirical study to eval-
uate the AML algorithm in comparison with several other
representative algorithms and conduct a sensitivity study to
evaluate various components of the algorithm.

4.1. Experimental Setup

We use the K-means algorithm as the baseline for com-
parison. We also compare the proposed algorithm with two
representative unsupervised learning algorithms including
Principal Component Analysis (PCA) and Locally Linear
Embedding (LLE).We implemented AML in the MATLAB
environment. All experiments were conducted on a PEN-
TIUM IV 2.4G PC with 1.5GB RAM. We compared all
algorithms on six benchmark data sets, including Soybean
Large (Soybean), Segment, and Letter (Letter (a-d)) from
UCI Machine Learning Repository, GCM microarray data
set, and two image data sets: USPS handwritten data and
Yale Face B (YaleFaceB)1. The statistics of all data sets are
summarized in Table 1. All data have been normalized so
that each feature has mean 0 and standard deviation 1.

For each data set, we ran different algorithms for 20
times and the comparison was based on the average per-

1For YaleFaceB data, image size is reduced from 648*480 to 40*30.
For Soybean Large data, instances with unknown value are removed, which
results in a data set with 562 instances and 15 classes. For Letter data, the
first 4 letters “a, b, c, d” were selected.

Data set Dimension Instance Class
GCM 11485 190 14
Soybean 35 562 15
Segment 19 2309 7
Letter (a-d) 16 3096 4
USPS 256 9298 10
YaleFaceB 1200 5850 10

Table 1. Summary of the test data sets used in our experiment.

formance. We used the existing label information for all
six benchmark data sets to evaluate the performance of dif-
ferent algorithms. Two standard measurements are used:
the accuracy (ACC) and the normalized mutual information
metric (MI) [13]. In all experiments, the dimensionality, l,
of the subspace produced by PCA is selected so that at least
95% information of the original data is kept. The dimen-
sionality of AML is set to K − 1.

4.2. Experimental Results

Table 2 presents the accuracy (ACC) and normalized mu-
tual information (MI) results of various algorithms on all six
data sets. We include the results of AML using 3 different λ
values: 0, 1, and 100. We can observe from the table that in
terms of accuracy, AML with λ = 100 performs the best on
5 data sets. Considering all six benchmark data sets, AML
with λ = 100 performs the best with an average accuracy
of 0.685, which is followed by AML with λ = 1 with an
average accuracy of 0.681, and then AML with λ = 0 with
an average accuracy of 0.677. We can also observe that
AML improves K-means on all six data sets. On Segment
data, AML with λ = 1 improves its accuracy from 0.552
to 0.756, an 37% improvement. Similar trends can also be
observed for the MI measure.

4.2.1 Sensitivity Study

The Effect of Regularization. As mentioned in Section 2,
the regularization parameter λ is introduced to improve the
estimation of the covariance matrix. From Table 2, we can
see that in general the regularization helps to improve the
performance of AML. For example, on most data sets, the
performance of AML with λ = 100 is significantly better
than that with no regularization (i.e., λ = 0). To obtain
a better understanding of the effect of the regularization
parameter, we tried a series of different λ values from 0 to
105. The results are plotted in Figure 1. We can observe
that a λ value of about hundreds is usually helpful. On
segment data, however, with λ ≤ 1, the performance of
AML is the best. Once the λ value becomes higher, the
performance degrades sharply. This may be related to
characteristics of the Segment data, which has a small
dimensionality, but a large number of instances. In this



Table 2. Accuracy (ACC) and Mutual information (MI) comparison on six benchmark data sets. AML with different λ values are included.
For each data set, the first row and the second row stand for ACC (or MI) and p-value respectively. (The p-value is obtained by pairwise
student t-test.) The p-value of each algorithm is generated by comparing its ACC (or MI) value with the highest one. ACCs (or MIs) with
bold face are the highest ones, or the second highest if it has no significant difference with the highest one. AMLEU is for sensitivity study
(see Section 4.2.1 for detail).

Meas Data set AML(0) AML(1) AML(100) K-means AMLEU PCA LLE
GCM 0.568 0.58 0.583 0.568 0.568 0.569 0.571

0 0.007 - 0 0 0 0
Soybean 0.674 0.678 0.725 0.671 0.671 0.668 0.705

0 0 - 0 0 0 0.002
Segment 0.751 0.756 0.644 0.552 0.552 0.551 0.533

0.324 - 0 0 0 0 0
ACC Letter (a-d) 0.635 0.631 0.662 0.606 0.606 0.606 0.647

0 0 - 0 0 0 0.003
USPS 0.703 0.704 0.726 0.708 0.708 0.709 0.655

0 0 - 0.001 0 0.001 0
YaleFaceB 0.733 0.735 0.771 0.733 0.733 0.733 0.746

0 0 - 0 0 0 0.002
Average 0.677 0.681 0.685 0.64 0.64 0.639 0.643

GCM 0.57 0.585 0.587 0.57 0.57 0.571 0.573
0 0.133 - 0 0 0 0.001

Soybean 0.675 0.683 0.716 0.651 0.651 0.648 0.678
0 0.004 - 0 0 0 0

Segment 0.683 0.683 0.586 0.502 0.502 0.501 0.421
- 0.929 0 0 0 0 0

MI Letter (a-d) 0.493 0.484 0.508 0.423 0.423 0.422 0.509
0.398 0.238 0.934 0 0.012 0 -

USPS 0.607 0.614 0.627 0.603 0.603 0.603 0.539
0 0 - 0 0 0 0

YaleFaceB 0.764 0.766 0.809 0.764 0.764 0.764 0.782
0 0 - 0 0 0 0.001

Average 0.632 0.636 0.639 0.586 0.586 0.585 0.584

case, the covariance matrix may well be estimated from the
given data, even without any regularization.

The Effect of Mahalanobis Distance. In AML, we em-
ploy the Mahalanobis distance in the K-means clustering
as defined in Equation (2). If instead we use the traditional
Euclidian distance, AML is reduced to the following
iterative process: for a given G, solve the kernel K-means,
in which the kernel is defined as: W = XT GGT X; and
for a given L, solve the eigenvalue problem on the matrix
A = XLLT XT to obtain the transformation matrix G.
The algorithm is called AMLEU , which stands for AML
with EUclidian distance. From Table 2, we can observe
that AMLEU has the same performance as K-means. We
further observe from the experiment that when the Euclid-
ian distance is used, the cluster affiliations are exactly kept
after the projection, therefore in the reduced space, the
initial centroids used in the algorithm will not change. This
validates the use of the Mahalanobis distance in AML.

Incorporating Partial Label Information. One nice fea-
ture of the proposed AML algorithm is that it is convenient
to incorporate the partial label information into the pro-
posed framework. This is known as the semi-supervised
learning [4, 27]. Recall that one of the key steps in AML
is the kernel K-means, which can be readily extended to
include the labeled data by applying semi-supervised K-
means clustering, such as the constrained K-means in [21].
The algorithm is called semiAML. We expect that using both
labeled and unlabeled data would help to learn a better dis-
tance metric. Figure 2 shows the accuracy results on USPS
and YaleFaceB data. (Similar trends have been observed
from other data sets and results are omitted here.) In the ex-
periment, we varied the number of labeled data points per
class and reported the corresponding accuracy. We can ob-
serve from Figure 2 that the use of partial label information
does help to improve the performance of both constrained
K-means and AML.
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Figure 1. Comparison of ACC and MI with different λ values. In each figure, the x-axis corresponds to different λ values and the y-axis
corresponds to ACC or MI value. The logarithmic (base 10) scale is used for the x-axis.

5. Conclusion

In this paper, we propose a novel unsupervised Adaptive
Metric Learning algorithm, called AML, which performs
distance metric learning and clustering simultaneously.
AML projects the data onto a low-dimensional manifold,
where the separability of the data is maximized. We show
that the joint clustering and distance metric learning can be
formulated as a trace maximization problem, which can be
solved via an iterative procedure in the EM framework. Ex-
perimental results on six benchmark data sets demonstrated
the effectiveness of the proposed algorithm.

AML is a global unsupervised distance metric learning
algorithm. Compared with global approaches, local ap-
proaches are usually more flexible and have been shown to
be effective in many applications. We plan to develop a lo-
cal unsupervised distance metric learning algorithm in the
framework of AML. Our preliminary results have shown
the promise of semiAML for semi-supervised distance met-
ric learning and dimensionality reduction. We plan to ex-
plore various existing techniques [1, 5, 26, 28] from semi-
supervised learning in the framework of AML.
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