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Abstract

In this paper, we present novel ridge regression (RR) and
kernel ridge regression (KRR) techniques for multivariate
labels and apply the methods to the problem of face recog-
nition. Motivated by the fact that the regular simplex ver-
tices are separate points with highest degree of symmetry,
we choose such vertices as the targets for the distinct in-
dividuals in recognition and apply RR or KRR to map the
training face images into a face subspace where the train-
ing images from each individual will locate near their indi-
vidual targets. We identify the new face image by mapping
it into this face subspace and comparing its distance to all
individual targets. An efficient cross-validation algorithm
is also provided for selecting the regularization and ker-
nel parameters. Experiments were conducted on two face
databases and the results demonstrate that the proposed al-
gorithm significantly outperforms the three popular linear
face recognition techniques (Eigenfaces, Fisherfaces and
Laplacianfaces) and also performs comparably with the re-
cently developed Orthogonal Laplacianfaces with the ad-
vantage of computational speed. Experimental results also
demonstrate that KRR outperforms RR as expected since
KRR can utilize the nonlinear structure of the face images.
Although we concentrate on face recognition in this paper,
the proposed method is general and may be applied for gen-
eral multi-category classification problems.

1. Introduction

Face recognition has attracted tremendous attention in
the computer vision community over the past few decades
and many new techniques have been developed. Among
them the appearance-based method is one of the most suc-
cessful and well-studied techniques. In appearance-based
methods, the image is represented by a high dimensional
vector of pixels. To overcome the difficulty incurred by
high dimensionality, a lot of subspace methods, such as
the Eigenfaces [24], the Fisherfaces [1] and its variants
[27, 25, 26, 3, 16, 28, 17, 15], the Laplacianfaces [9]

and orthogonal Laplacianfaces [2], have been developed.
Eigenfaces applies Principle Component Analysis (PCA)
to project the original n-dimensional data onto a low di-
mensional subspace which preserves the most of the data
variations. Fisherfaces uses Linear Discriminant Analysis
(LDA) to find the most discriminant eigenvectors which
maximizes the ratio of between-class and within-class vari-
ances. Unlike PCA, LDA is a supervised learning algorithm
and its eigenvectors are usually nonorthogonal. The Lapla-
cianfaces and Orthogonal Laplacianfaces are proposed by
using Locality Preserving Projections (LPP) [8]. LPP maps
each face to a low-dimensional face subspace which is char-
acterized by a set of feature images, called Laplacianfaces.
Unlike Eigenfaces which seeks projections that are efficient
for face representation and Fisherfaces which seeks pro-
jections that are efficient for discrimination, Laplacianfaces
seeks projections to preserve the local structure of the image
space [9].

Face recognition is typically a multi-category classifica-
tion problem. While LDA tries to maximize the between-
class distances (the sum of all the pairwise distances of
any two distinct classes) and minimize the within-class dis-
tances simultaneously, the pairwise distances can be sig-
nificantly unbalanced and this may result in bad perfor-
mance for classes with small pairwise between-class dis-
tances in the reduced subspace. Figure 1 illustrates an ex-
ample for face recognition involving 3 persons. By applying
Fisherfaces, one finds a two dimensional subspace wherein
the within-classes distances are approximately zero, i.e, the
training images for each individual locate near one point
(∗,×, or ◦). However, the pairwise distances may be un-
balanced as shown in Figure 1 (a). The distance between
class 1 (∗) and class 2 (×) is much smaller than the other
two pairwise between-class distances. Figure 1 (b) presents
the balanced case where all the pairwise distances are iden-
tical. If the norms of the dimension reduction matrices for
these two cases are approximately equal, one can expect
that case (b) will generalize and perform better with unla-
beled images than case (a). The three vertices of an equi-
lateral triangle, as shown in Figure 1 (b), are three separate
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Figure 1. Illustration of an irregular Simplex (a) and a Regular
Simplex (b). The hard lines denote the classification boundaries.

points in the plane with highest degree of symmetry and
balance. They have equal pairwise distances and any two
equilateral triangles in the same plane are congruent, i.e.,
they are identical under translation, rotation and reflection.
The regular m-simplex [13], which is the m-dimensional
analogue of a equilateral triangle, has the same property.
Motivated by the fact that the m vertices of a regular m-
simplex is the most balanced and symmetric separate points
in the (m− 1)-dimensional space, we choose these vertices
as the targets for m distinct individuals, and apply ridge re-
gression (RR) [11, 10] to map the training face images into
the (m−1)-dimensional subspace. RR is a regularized least
square method to model the linear dependency between co-
variate variables and univariate labels. The ordinary least
square method minimizes the squared loss but the variance
on the estimate of the linear transform may be large due
to limited samples and thus not reliable. Ridge regression
can reduce the variance by penalizing the norm of the linear
transform and balance the bias and variance by adjusting the

regularization parameter. We generalize RR for multivari-
ate labels in order to apply it for face recognition. With the
regular simplex vertices as the individual targets, the gen-
eralized RR minimizes the distances of the training images
to their individual targets with a penalty on the norm of the
dimension reduction matrix. The new unlabeled face image
is identified by mapping into the reduced face subspace and
comparing its distances to the individual targets. A nonlin-
ear extension, which can exploit the nonlinear structure of
face images, is also proposed using the kernel trick [21].

There are three major contributions in this paper. First,
the original RR and kernel ridge recognition (KRR) [21]
for univariate labels are generalized for multivariate labels
so that they can be applied for face recognition; Second,
a new face recognition technique is developed by applying
the generalized RR or KRR to map the face images into a
face subspace where the face images have approximately
equal pairwise distances for any two distinct individuals.
The proposed algorithm gains in discrimination by forcing
all the training images from each individual to locate near
one of the vertices of a regular simplex. Third, an effi-
cient cross-validation algorithm is developed for selecting
the regularization parameter and the kernel parameters of
the generalized RR and KRR.

The layout of the rest in this paper is as follows. In Sec-
tion 2, we briefly review the formulation of RR and KRR
for univariate labels. Section 3 addresses the generalized
RR and KRR for multi-variate labels. In Section 4, a new
face recognition process based on generalized RR and KRR
will be proposed. Section 5 develops an efficient cross-
validation algorithm for model selection and Section 6 pro-
vides experimental results on two face databases to illustrate
the performance of the proposed algorithm with comparison
to some existing popular face recognition techniques.

2. Kernel Ridge Regression for Univariate La-
bels

In this section we briefly review RR and KRR for uni-
variate labels. Linear ridge regression is a classical statis-
tical problem that aims to find a linear function that mod-
els the dependencies between covariates {xi}n

i=1 in R
p and

response variables {yi}n
i=1 in R. The classical way is the

ordinary least square (OLS) method which minimizes the
squared loss: ∑

i

(yi − wT xi)2. (1)

Due to limited training examples, the variance of the esti-
mate w by OLS may be large and thus the estimate is not
reliable. An effective way to overcome this problem is to
penalize the norm of w as in ridge regression. Instead of
minimizing squared errors, ridge regression minimizes the



following cost:

J(w) =
∑

i

(yi − wT xi)2 + λ‖w‖2 (2)

where λ is a fixed positive number. By introducing the reg-
ularization parameter λ, the ridge regression can reduce the
estimate variance at the expense of increasing training er-
rors. The regularization parameter λ controls the trade-off
between the bias and variance of the estimate. In practice,
one can use cross-validation [19] to find the optimal regu-
larization parameter that minimizes the cross-validation er-
rors.

In [21], it is shown that the predicted label (i.e., wT x) of
a new unlabeled example x is:

yT (K + λI)−1κ (3)

where K is the matrix of dot products of the vectors {xi, i =
1, 2, · · · , n} in the training set:

Ki,j = xT
i xj , i, j = 1, 2, · · · , n,

and κ is the vector of dot products of x and the vectors in
the training set:

κi = xT
i x, i = 1, 2, · · · , n.

With this formulation, it is easy to generalize RR to
KRR using the kernel trick [21]. The data is now replaced
with the feature vectors: xi → Φi = Φ(xi) induced by
a kernel where k(xi, xj) = Φ(xi)T Φ(xj). By replac-
ing K and κ with Ki,j = k(xi, xj), κi = k(x, xi) for
i = 1, 2, · · · , n, j = 1, 2, · · · , n, (3) is then the KRR pre-
dictor. Here k(·, ·) is the kernel function which is typically
linear k(xi, xj) = xT

i xj , polynomial (xT
i xj +1)d or Gaus-

sian k(xi, xj) = exp
(−‖xi − xj‖2/σ2

)
. It is important

to note that, in the KRR predictor, we do not actually need
to access the feature vectors as long as we can access the
kernel function.

3. Kernel Ridge Regression for Multivariate
Labels

In [21], KRR is investigated for univariate labels, i.e.,
the label yi is a real number. In order to apply RR and
KRR for face recognition, which is a multi-category clas-
sification problem, we need to generalize RR and KRR to
the multivariate label case, where the labels Yi are vectors
in R

r. The task of the generalized RR is to find a matrix
W ∈ R

p×r that can model the linear dependency between
xi and the label Yi. It is natural to choose the cost as:

∑
i

‖Yi − WT xi‖2. (4)

Similar to RR for univariate labels, we penalize the norm of
W to reduce the variance of the estimate and the total cost
is given by:

J(W ) =
∑

i ‖Yi − WT xi‖2 + λ‖W‖2

= tr
(
Y Y T + WT XXT W − 2WT XY T

)
+λtr

(
WT W

)
.

(5)
where X = [x1, x2, · · · , xn] and Y = [Y1, Y2, · · · , Yn]. In
the above derivation, we use the fact that tr(abT ) = aT b for
any vectors a, b with equal dimensions.

Taking derivatives and equaling them to zero, we have

W = (XXT + λI)−1XY T (6)

Now we replace the training patterns xi with their feature
vectors xi → Φi = Φ(xi) which is induced by a kernel
function k(·, ·), i.e., k(xi, xj) = ΦT

i Φj , and replace the
cost J(W ) with

J2(W ) =
∑

i

‖Yi − WT Φi‖2 + λ‖W‖2. (7)

Applying the formula (6), one has

W = (ΦΦT + λI)−1ΦY T (8)

where Φ = [Φ1, · · · ,Φn].
By using the following formula [18] on matrix manipu-

lations,

(P−1 + BT R−1B)−1BT R−1 = PBT (BPBT + R)−1,
(9)

we have

(λI + ΦΦT )−1Φ = Φ(ΦT Φ + λI)−1 (10)

and therefore

W = Φ(ΦT Φ + λI)−1Y T = Φ(K + λI)−1Y T (11)

where Ki,j = ΦT
i Φj = k(xi, xj). The predicted label for a

new example x is then

Y (x) = WT Φ(x)
= Y (K + λI)−1ΦT Φ(x)
= Y (K + λI)−1κ(x)

(12)

where κ(x) = [k(x1, x), k(x2, x), · · · , k(xn, x)]T .
Hence, we never need to access the feature vectors as

long as we can access the kernel function. The predictor

Y (x) = AT κ(x)

can be obtained by solving the following linear matrix equa-
tion:

(K + λI)A = Y T . (13)

In the next section, we apply the generalized RR and
KRR to face recognition.



4. Face Recognition Using Ridge Regression or
Kernel Ridge Regression

Suppose we have m individuals for recognition. We
choose the regular simplex vertices as the individual tar-
gets and use the individual targets as the multivariate labels
of the training images. It can be proved that all regular
m-simplexes in R

m−1 with pairwise distance 1 are con-
gruent [13]. That is, all regular m-simplexes with pair-
wise distance 1 are identical under translation, rotation
and reflection. Let Ti (∈ R

m−1), i = 1, 2, · · · ,m, be
the vertices of one regular m-simplex and denote T =
[T1, T2, · · · , Tm]. One can construct T as follows. First,
let T1 = [1, 0, · · · , 0]T and let Ti,1 = −1/(m − 1) for
i = 2, · · · ,m. Hereafter, we use Ti,j to denote the element
of T in the ith row and jth column. Then, we have the first
row and the first column. Now suppose we have got the first
k(≥ 1) rows and k columns, we compute the next row as

Tk+1,k+1 =
√

1 − ∑k
i=1 T 2

i,k

Tk+1,j = −Tk+1,k+1
m−k−1 , j = k + 2, · · · ,m,

(14)

and let Ti,k+1 = 0 for (m− 1) ≥ i > k + 1.This procedure
is repeated until k = m − 2 and will give all the vertices
Ti. It is easy to check that

∑
i Ti = 0, TT

i Ti = 1, i =
1, 2, · · · ,m, and

‖Ti − Tj‖ = 2 − 2TT
i Tj = 2 + 2

m−1 (15)

i.e., these targets have zero mean, unit norm and have equal
pairwise distances. When m = 3, T1 = [1, 0]T , T2 =
[− 1

2 ,
√

3
2 ]T and T3 = [− 1

2 ,−
√

3
2 ]T . T1, T2, T3 are three ver-

tices of an equilateral triangle as shown in Figure 1 (b).
Using these targets as multivariate labels of the training

images {xi, i = 1, 2, · · · , n}, we apply RR to find the di-
mensional reduction matrix W

W = (XXT + λI)−1XY T (16)

which minimizes the cost J(W ) in (5). Here X =
[x1, x2, · · · , xn] and the ith column of Y equals Tj if the
ith image is from individual j. The regularization param-
eter λ is usually a small number and then XT W ≈ Y T .
Therefore, the training images are mapped into a (m − 1)-
dimensional subspace where the images from each individ-
ual will locate near their individual targets.

Let x be a new image. We compare the distances be-
tween WT x and the individual targets Ti and identify x as
that with minimal distance.

In summary, the proposed face recognition algorithm us-
ing RR includes the following three steps

1. Compute the dimension reduction matrix W by (16);

2. For a new unlabeled image x, project it into the re-
duced subspace, that is, compute x̂ = WT x;

3. Compute the distances from x̂ to all the individual tar-
gets Ti, i = 1, 2, · · · ,m and identify image x as indi-
vidual j if ‖x − Tj‖ is minimal.

For KRR, the process is similar but it works in a kernel-
induced feature space. From (13), we have

A = (K + λI)−1Y T (17)

where Kij = k(xi, xj). The predictor for a new image x is

p(x) = AT [k(x, x1), k(x, x2), · · · , k(x, xn)]T

and x is identified by comparing the distances between p(x)
and the individual targets Ti.

In summary, given the kernel function, say the Gaussian
kernel

k(x, z) = e
‖x−z‖2

2σ2 ,

the proposed face recognition technique through KRR in-
cludes the following four steps:

1. Evaluate the kernel matrix K with Ki,j = k(xi, xj);

2. Compute the dimension reduction matrix A from (17);

3. For a new unlabeled image x, compute κ(x) =
[k(x, x1), k(x, x2), · · · , k(x, xn)]T and x̂ = AT κ(x);

4. Compute the distances from x̂ to all the individual tar-
gets Ti, i = 1, 2, · · · ,m and identify image x as indi-
vidual j if ‖x − Tj‖ is minimal.

5. Model Selection by Cross-Validation

In the proposed face recognition techniques using RR or
KRR, the model includes some hyper-parameters such as
the kernel parameter and the regularization parameter that
govern the generalization performance of KRR predictors.
Finding the hyper-parameters with a good generalization
performance is crucial for the successful application of RR
and KRR [7, 5]. A popular way to estimate the general-
ization performance of a model is cross-validation [19]. In
l-fold cross-validation, one divides the data into l subsets of
(approximately) equal size and trains the classifier l times,
each time leaving out one of the subsets from training, but
using the omitted subset to compute the classification er-
rors. If l equals the sample size, this is called leave-one-out
cross-validation (LOO-CV).

The naive implementation of l-fold cross-validation
trains a predictor for each split of the data and is thus com-
putationally expensive if l is large, especially for LOO-CV
where l = n. In [6], an efficient algorithm is developed for
computing the leave-one-out errors of KRR for univariate
labels. The algorithm computes the predicted labels directly



without training the predictors for each split and this will
reduce the computational complexity to be approximately
the same as that for one training. In this section, we will
use the same idea to develop an efficient algorithm for gen-
eral l-fold cross-validation of generalized RR and KRR with
multivariate labels.

We splits the data into l subsets {xk,i}nk
i=1 of (approx-

imately) equal size (nv), i.e., nk ≈ nv ≈ n/l, where
k = 1, 2, · · · , l and

∑l
k=1 nk = n. Correspondingly, we

split the label Y and the solution A of (13) into l sub-
matrices as follows:

Y T =




Y(1)

Y(2)

. . .
Y(l)


 , A =




A(1)

A(2)

. . .
A(l)


 (18)

where

Y(k) =




Y T
k,1

Y T
k,2

. . .
Y T

k,nk


 . (19)

In cross-validating KRR, the predictor for each training
set is not really of interest. One is only concerned with the
predicted labels of the left-out examples. Next, we will de-
rive the formula for l-fold cross-validation to directly com-
pute the predicted labels of the left-out examples. This for-
mula is based on the inverse of the system matrix of (13).

Let us exclude the kth group from the training patterns
and train KRR on the remaining patterns. Then the pre-
dicted labels, denoted by Y

(k)
cv , of the kth group patterns

can be computed as follows:

Y (k)
cv = Y(k) − C−1

kk A(k), k = 1, 2, · · · , l. (20)

where


C11 C12 · · · C1l

CT
12 C22 · · · C2l

...
...

. . .
...

CT
1l CT

2l · · · Cll


 � (K + λI)−1 (21)

and Cij ∈ R
ni×nj for i, j = 1, 2, · · · , l.

The proof is delegated to the appendix.
Once (K + λI)−1 is available, one can compute A via

(17) and obtain Ckk from (21), and then Y
(k)
cv is available

from (20).
Note that the dimension of Ckk is approximately nv

which is much smaller than (n− nv) in general. Thus, (20)
is generally more efficient than training the KRR predictor
based on (n − nk) examples.

In summary, the proposed l-fold cross-validation algo-
rithm includes the following steps.

1. Evaluate the kernel matrix K and compute (K +
λI)−1;

2. Compute A and Ckk from (17) and (21) respectively;

3. Compute the predicted response Y
(k)
cv from (20);

4. Identify the images by comparing the distances from
the predicted labels Y

(k)
cv to the individual targets

{Ti, i = 1, 2, · · · ,m};

5. Sum up all recognition errors.

In the naive implementation of l-fold cross-validation,
one trains the KRR classifiers l times, each time leaving
out one of the subsets from training, and using the omit-
ted subset to compute the classification errors. This imple-
mentation involves the inverse of l matrices of dimensions
(n−nk)×(n−nk). Note that the complexity of computing
the inverse of an m×m matrix is m3 [20] and nv ≈ n

l , the

complexity of the naive l-fold CV is l(n−nv)3 ≈ (l−1)3

l2 n3.
In the special case when nv = 1, l = n, this reduces to the
LOO-CV and the computational complexity is n(n−1)3 ≈
n4.

On the other hand, the proposed algorithm involves one
inverse of an n × n matrix and the inverse of l nv × nv

matrices and thus its complexity is n3 + ln3
v ≈ [1 + 1

l2 ]n3.

Hence, the proposed algorithm is (l−1)3

1+l2 ≈ l − 3 times as
efficient as the naive implementation. In the case that l = n,
this reduces to LOO-CV and the complexity is n3+n which
is much more efficient than the naive implementation.

6. Experimental Results

Experiments were conducted on two databases: CMU
PIE [22, 23] and The Extended Yale Face Database B
(YaleB) [4, 14] to test the performances of the proposed al-
gorithm with comparisons to the most popular face recog-
nition methods: Eigenfaces, Fisherfaces and the recently
developed methods Laplacianfaces and Orthogonal Lapla-
cianfaces. The CMU PIE face database contains 68 indi-
viduals with 41368 face images as a whole. The face im-
ages were captured by 13 synchronized cameras and 21
flashes, under varying pose, illumination and expression.
The extended Yale Face Database B [14] contains 16128
images of 28 human subjects under 9 poses and 64 illumi-
nation conditions. The data format of this database is the
same as the original Yale Face Database B [4]. Our ex-
periments adopt the same procedure as that in the study by
[2]. From CMU PIE, we choose the five near frontal poses
(C05,C07,C09,C27,C29) and use all the 11544 images un-
der different illuminations, lighting and expressions where
each individual has 170 images except for a few bad images.
From the Extended and the original Yale Face Database B,



we choose all the 2414 frontal images for 38 people. All test
image data used in the experiments are manually aligned,
cropped, and then re-sized to 32x32 images.

A random subset with l(= 5, 10, 20, 30) images per indi-
vidual was taken with labels to form the training set, and the
rest of the database was considered to be the testing set. For
each given l, we average the results over 50 random splits
and we used the same splits and the same matlab data files
1 which were used in [2]. For KRR, we used the Gaussian
kernel k(xi, xj) = exp

(−‖xi − xj‖2/σ2
)
. The kernel pa-

rameter σ and the regularization parameter λ are selected
based on Leave-one-out errors of the training images in the
first 5 splits.

Table 1. Performance (error rate ) comparison on CMU PIE face
database.

Method 5 Train 10 Train 20 Train 30 Train
Eigen 69.9%(338) 55.7%(654) 38.1%(889) 27.9%(990)
Fisher 31.5%(67) 22.4%(67) 15.4%(67) 7.77%(67)
Lap 30.8%(67) 21.1%(134) 14.1%(146) 7.13%(131)
O-Lap 21.4%(108) 11.4%(265) 6.51%(493) 4.83%(423)
RR 25.97%(67) 14.06%(67) 7.69%(67) 5.89%(67)
KRR 26.4%(67) 13.1%(67) 5.97%(67) 4.02 %(67)

Table 2. Performance (error rate ) comparison on the Extended
Yale Face Database B.

Method 5 Train 10 Train 20 Train 30 Train
Eigen 63.6%(188) 46.4%(378) 30.4%(736) 22.5%(799)
Fisher 24.5%(37) 12.5%(37) 8.7%(37) 13.3%(37)
Lap 24%(37) 11.4%(76) 7.1%(193) 7.5%(251)
O-Lap 22.1%(108) 9.7%(111) 3.8%(247) 1.9%(406)
RR 23.8%(37) 12%(37) 4.77%(37) 2.28%(37)
KRR 23.9%(37) 11.04%(37) 3.67%(37) 1.43%(37)

Table 3. Computation time (seconds) comparison on the PIE
database with 10 training images per individual.

Method 5 Train 10 Train 20 Train 30 Train
O-Lap 27.5 364.6 2140.8 1948.3
KRR 0.31 1.16 5.75 15.99

The performance is shown in Table 1 and Table 2. The
performance for Eigenfaces (Eigen), Fisherfaces (Fisher),
Laplacianfaces (Lap) and Orthogonal Laplacianfaces (O-
Lap) are taken from [2] for CMU PIE database and from
http://ews.uiuc.edu/ dengcai2/Data/data.html. for the Ex-
tended Yale Face Database B. The numbers in the brackets

1 which were downloaded from http://ews.uiuc.edu/ deng-
cai2/Data/data.html

are the best dimensions for Eigenfaces, Laplacianfaces and
Orthogonal Laplacianfaces. The performances of RR and
KRR are significantly better than Eigenface, Fisherface and
Laplacianface. Compared with the Orthogonal Laplacian-
faces, the performance is comparable but our proposed al-
gorithm is more computationally efficient as shown in Table
3. Note that the performance of Laplacianfaces and orthog-
onal Laplacianfaces shown in Table 1 and Table 2 are the
best performances among all possible dimensions. In prac-
tice, one needs to find the best dimension in the training
stage, say, via cross-validation. The orthogonal Laplacian-
faces is computationally expensive because it requires the
dimension reduction matrix to be orthogonal. Unlike Fish-
erfaces and Laplacianfaces who can compute the dimension
reduction matrix by one generalized eigenvalue decomposi-
tion, the orthogonal Laplacianfaces computes its dimension
reduction column by column and the computation of each
column involves a generalized eigenvalue decomposition.
Thus it will involve r generalized eigenvalue decomposi-
tions if the best dimension is r. From Table 1 and Table 2,
one can see that the best dimensions for orthogonal Lapla-
cianfaces are quite high. Note that, in Table 3, the compu-
tation time for 30Train is less than that for 20Train. This
is due to the fact that the best dimension (423) for 30Train
is less than the best dimension (493) for 20Train in this ex-
periment. However, in order to find the best dimension, one
needs to try higher dimensions than the best one and the
training on 30 images per individual will be more compu-
tationally expensive than training on 20 images per individ-
ual.

7. Conclusions

We have proposed a new face recognition technique
based on the generalized RR and KRR for multivariate la-
bels. The new technique chooses the regular simplex ver-
tices as the targets for individuals in recognition and ap-
plies the generalized RR or KRR to minimize the training
images’ distances to their individual targets with a penalty
on the norm of the dimension reduction matrix. An effi-
cient cross-validation algorithm is also provided for select-
ing good regularization parameters and kernel parameters.
Experimental results demonstrate the proposed algorithms
performs well.

Although we focus on face recognition in this paper, the
proposed method is general and may be applied for other
type multi-category classification problems. One may also
apply RR or KRR on multi-category classification problems
with other type of labels, say the Error Correcting Output
Coding (ECOC) labels proposed in [12], which essentially
decomposes a multi-category classification problem into a
set of complementary two-category problems.
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Appendix: Derivation of (20)

We only prove the case k = l. For other cases k < l, one
can always permute the order of the training patterns so that
the kth group moves to be the last one. Denote

K =
[

K11 K12

KT
12 K22

]
(22)

where K11 ∈ R
(n−nl)×(n−nl),K12 ∈ R

(n−nl)×nl , K22 ∈
R

nl×nl .
To train KRR after leaving the lth group out, one needs

to solve the following linear system

(K11 + λIn−nl
)Â = Y\l (23)

where Y\l equals Y by deleting Y(l). Then, the labels of the
validation patterns are

Y (l)
cv = KT

12(K11 + λIn−nl
)−1Y\l. (24)

Applying the well-known block inverse formula of ma-
trices, one has
[

K11 + λI K12

KT
12 K22 + λI

]−1

=
[

F−1
11 −(K11 + λI)−1K12F

−1
22

−F−1
22 KT

12(K11 + λI)−1 F−1
22

]

(25)
where

F11 = (K11 + λI) − K12(K22 + λI)−1KT
12

F22 = K22 + λI − KT
12(K11 + λI)−1K12.

(26)

Substituting (25) into (17) and noticing the notations
(18,19), one has

A(l) = F−1
22

(
Y(l) − KT

12(K11 + λI)−1Y\l

)
= F−1

22

(
Y(l) − Y

(l)
cv

)
.

(27)

From (25) and (21), F−1
22 = Cll and thus (20) is true for

k = l.
�


