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Abstract

The Canonical Face Depth Map (CFDM) is a standard-
ized representation for storing and manipulating 3D data
from human faces. Our algorithm automates the process of
transforming a 3D face scan into its canonical representa-
tion, eliminating the need for hand-labeled anchor points.
The presented algorithm is designed to be a robust, fully
automatic preprocessor for any 3D face recognition algo-
rithm. The experimental results presented here demonstrate
that our CFDM is robust to noise and occlusion, and we
show that using such a canonical representation can im-
prove the efficiency of face recognition algorithms and re-
duce memory requirements. Producing the CFDM takes,
on average, 0.85 seconds for 320 x 240 pixel scans, and
3.8 seconds for 640 x 480 pixel scans (using a dual AMD
Opteron 275, 2.2GHz, with 2MB Cache, and 1GIG RAM).
The CFDM enables both 2D and 3D image processing
methods - such as convolution and PCA - to be readily used
for feature localization and face recognition.

1. Introduction

We have developed a robust representation for storing 3D
data gathered from human faces, which we call the Canoni-
cal Face Depth Map (CFDM). The CFDM stores registered
3D face data as a depth map and uses face symmetry and
surface model fitting to establish a face-based coordinate
system. Converting 3D face data into the CFDM allows
scans from different people and different times to be com-
pared quickly and easily, and the normalized representation
allows for large-scale data comparisons, such as creating an
“average” face that combines features from every face scan
in the database.

The work discussed in this paper considers points in 3D
space (p ∈ R

3), where p is a triple with x, y, z coordinates
(x, y, z ∈ R). Each point also has an r, g, b value, which
is included here to ease visualization but is not currently

used for calculating the canonical representation. R is the
set of all R

3 → R
3 rigid transformations. An object in R

3

can be defined by a relationship of the form f : R
3 → R,

where a point p is a part of object s if the following surface
relationship holds:

s ≡ {p|f(p) = 0} (1)

This definition could represent any set of points in R
3;

however, for this paper it will be assumed that the set of
points falls on a surface s ∈ S. Two surfaces (s1, s2 with
relationships f1, f2) are equivalent if there exists a rigid
transformation R ∈ R such that for every point in s1 the
transformed point is also in s2:

s1 ∼ s2 if ∃R1 ∈ R|∀p ∈ s1, f2(R1(p)) = 0 (2)

When applied to faces, this equivalence relationship will
break down in real world situations. For example, faces are
not rigid objects and sensors do not provide a continuous
ideal surface. 3D scanners provide a 2.5D discrete depth
map estimation of the ideal face surface and may have sam-
pling errors, noise or holes in the data.

We developed a surface alignment algorithm to deter-
mine the similarity between two 3D face scans [5]. This ap-
proach uses a two step algorithm that attempts to minimize
the differences between two face surfaces by aligning the
region of the face around the nose and eyes, which changes
very little with expression. The first step coarsely aligns the
face using estimates of key anchor points such as the inside
corners of the eyes and the nose tip. The second step refines
the coarse estimation by using the Iterative Closest Point
(ICP) algorithm [2, 3]. The ICP algorithm samples control
points on one scan and finds the closest points on the surface
of the second scan. The control points are sampled around
the nose and eyes to minimize the effects of expression, and
the highest errors are trimmed to reduce the effects of noise
and holes [4].

Once the faces are aligned, a surface alignment measure
(SAM) is used to determine the closeness of the fit. The
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SAM is a measurement of the root mean squared distance
between a set of points on one face and the surface of the
second face. The SAM score has been shown to be an ef-
fective and robust measure of face similarity [5] for face
verification. However, the SAM is not practical for recog-
nition tasks, where each face in the database needs to be
aligned to every other face in the database in order to have
an effective comparison. Even though the SAM calculation
is fast, it would take considerable time in a large database.

To address this concern, we have developed a canonical
face-based coordinate system, where the goal is to find a
function fc|S → R such that ∀s1, s2 ∈ S where s1 ∼ s2

with rigid transform R ∈ R gives:

R = fc(s1)fc(s2)−1 (3)

A surface sc ∈ S is in its canonical representation if
fc(sc) = I (see Figure 1).

Figure 1. Defining a canonical face function.

2. Development of the CFDM

The canonical representation (CFDM) described in this
paper has two main components: a face-based coordinate
system and a normalized feature vector based on an orthog-
onal depth map. The face-based coordinate system devel-
oped here is similar to the one presented by BenAbdelkader
and Griffin [1]. However, their approach relies on seven
manually selected anchor points to properly determine the
location of the coordinate system. In contrast, we use ICP
to generate a robust bisection of the face and use high sam-
pling rates to develop a good representation of the mid-line

plane. This is similar to the approach by Malassiotis and
Strintzis [8]; however, they assumed that the nose is always
the closest point to the camera, which does not allow for
variations in pose.

The second component of the CFDM is a consistent fea-
ture vector that can be used to apply space transformation
algorithms such as PCA. The CFDM has a similar motiva-
tion to the mesh model presented by Xu et al. [11], which
uses the nose tip as the origin and then conducts a rigid,
triangular re-sampling of the data that can be done at differ-
ent resolutions. PCA is also used in the base algorithm of
the Face Recognition Grand Challenge (FRGC) [9], which
uses manually selected points to normalize the face into a
defined coordinate system.

2.1. Face-Based Coordinate System

This section explores methods for identifying a face-
based coordinate system that can account for six degrees of
freedom: roll, pitch, yaw and the origin (x0, y0, z0). Having
a well defined face-based coordinate system makes it simple
to transform data into whatever format or pose an algorithm
requires. The goal of creating a face-based coordinate sys-
tem is to establish a representation that is easily calculated
and repeatable for the same face. In addition, face-based co-
ordinate systems should be robust to noise in the data, and
it should be possible to estimate the face-based coordinates
even when some of the face is occluded or missing.

The set of all possible canonical functions is infinite. So,
our goal is to find a canonical function that is easily and
robustly found on many different faces. This canonical rep-
resentation should work in the same way for many different
faces and should be robust to expression changes, pose vari-
ations and data errors.

For 3D faces, the mid-line plane can be calculated ro-
bustly by matching a face scan with a mirror image of itself
using the face surface alignment algorithm described in [5].
This algorithm is shown to handle pose variations of up to
10 degrees in roll and pitch, and up to 30 degrees in yaw.
For this paper, a mirror image of an object is formally de-
fined as follows:

PM = M · P (4)

where P represents the original 3D points in the scan, PM

indicates the mirror points, and M is the mirror transform:

M =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




The mirror image is a left-hand projection of the original
scan. The process for aligning the original and the mirror
scans is the same as for aligning any two faces and uses the



alignment algorithm described in [5]. The resulting trans-
formation between the two scans is defined as the mirror
transform and is denoted by Tm.

With the mirror transform, the mid-line plane can be eas-
ily calculated. First, an arbitrary point p is chosen. This
point does not have to lie on either scan but must not lie on
the mid-line plane. Using this point, the surface normal �N
of the mid-line plane is calculated as:

pm = TmM · p (5)

�N =
pm − p

|pm − p| (6)

If a, b, and c are the x, y, and z components of the surface
normal and d is the distance along the surface normal from
the origin to the plane, then the following equation defines
the plane:

ax + by + cz + d = 0 (7)

Figure 2. Example of the mid-line plane relative to a face.

The mid-line plane (shown in Figure 2) can be accurately
estimated using the plane of symmetry of the face and the
surface alignment algorithm. The mid-line plane provides
two of the six degrees of freedom and the origin can be es-
timated by selecting a robust point, such as the tip of the
nose. This accounts for five of the six degrees of freedom,
yet the pitch (tilt) of the head is still problematic.

To calculate pitch, a series of experiments was conducted
on a database of 330 3D scans obtained from Michigan
State University [5]. Each scan was fit to a set of parametric
surfaces along the plane of symmetry, as shown in Figure 3.

Table 1 shows the pose variations after aligning the
canonical faces together and calculating the pose difference.
Because these measurements represent the pose variation
between scans, they should be considered conservative and
the actual results may be half the values in Table 1. Also, a
few of the scans did not correctly fit to the surfaces, causing
large outliers in the data. Figure 4 shows that these outliers
are not significant, and having outliers in the face verifica-
tion task is not a problem because a subject can always be
rescanned. However, outliers are not as easy to determine

(a) Plane (b) Parabolic Cylinder (c) Quadratic

Figure 3. Parametric surface fitting using forced symmetrical sur-
face fitting. (a) ax + by + c (b) ax2 + bx + cy + d (c) z =
ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 + hx + iy + j

Table 1. Improvement of mid-line normalization over database
roll, pitch, and yaw differences. In the first row, the original
roll, pitch, yaw and distance statistics represent the variations
between different scans of the same subjects within the original
database. Each subsequent row represents the variation after the
different normalization techniques. The Plane, Parabolic Cylin-
der, Quadratic, and Average face fitting are all applied after the
baseline symmetry is established.

Roll Pitch Yaw Distance
Original 0.36◦ 1.62◦ 1.52◦ 63.69mm
std dev ±0.49◦ ±2.25◦ ±1.99◦ ±66.08mm

Symmetry 0.01◦ 0.00◦ 0.00◦ 3.10mm
std dev ±0.53◦ ±3.44◦ ±0.56◦ ±2.14mm
Plane 0.01◦ 0.10◦ 0.02◦ 5.12mm

std dev ±0.52◦ ±3.15◦ ±0.54◦ ±2.48mm
Parabola 0.02◦ 0.10◦ 0.00◦ 2.06mm
std dev ±0.53◦ ±2.59◦ ±0.50◦ ±3.33mm
Quad 0.00◦ 0.01◦ 0.01◦ 12.67mm

std dev ±0.53◦ ±3.42◦ ±0.51◦ ±5.31mm
Average 0.01◦ 0.01◦ 0.00◦ 2.90mm
std dev ±0.58◦ ±2.01◦ ±0.79◦ ±7.81mm

in a face recognition task and should be detected before at-
tempting recognition on a large database.

The parabolic cylinder seems to be the best surface fit-
ting approach, given our goal to minimize the variance or
standard deviations in the results in Table 1 and Figure 4.
As a comparison, the results for surface fitting and pitch
normalization are also given for an average face model, gen-
erated by averaging all faces in the database. Figure 4 sug-
gests that fitting a surface to an average face is the most
reliable pitch correction method, but this approach breaks
down when it encounters a face that is significantly larger
or smaller than the average. (Note that our average face is
generated from the same data set, so it is probably biased
toward this data.) Overall, the approaches shown in Figure
4 are accurate for changes of up to ±2◦ in the pitch axis,
which is much larger than the ±0.5◦ for the other two axes.



Figure 4. Comparison of pitch over different fitting techniques.

2.2. Normalized Feature Vector

Once a face-based coordinate system is calculated, the
data are re-sampled using the orthogonal depth map, and
this re-sampling is at the same scale and dimension regard-
less of the input scan resolution. For example, the images
in Figure 5 are at different camera offsets. After normaliz-
ing the scans into the CFDM representation (Figures 5b and
5d), they can be directly compared. In contrast, 2D images
have an unknown scale and must be normalized based on
some common point distance, such as the distance between
the eyes. However, different people have different between-
eye distances, so the effect is a comparison of faces that
must be scaled up or down to match each other.

Another advantage of using a Canonical Face Depth Map
is that the depth map can be sampled at any resolution (see
Figure 6a and b). Lower resolutions can be used to speed
up some algorithms, while higher resolutions can be used
to increase accuracy. For example, improved accuracy in
the ICP-based surface alignment algorithm can be achieved
by super sampling the CFDM and creating a highly dense
target scan in which ICP can operate. Figure 6c shows two
ROCs for face depth maps sampled at different scales. A
database of 330 scans was used with the SAM as a simple
matching score. The higher sampling rate increases the ac-
curacy of the algorithm.

Because the CFDM uses an orthogonal projection, it is
possible to reduce the memory requirements for storage of
the file. One goal for the CFDM is to be able to store it on
a smart card. A standard smart card has 512 kilobytes of
memory [7]. The Minolta VIVID910 scanner has two scan-
ning modes: fine mode (640 x 480) and fast mode (320 x

(a) Original Scan (b) CFDM

(c) Original Scan (d) CFDM

Figure 5. (a) and (c) are scans with different camera offset and
resolution, (b) and (d) show how using a depth map normalizes
the resolution.

(a)
200 ×
350

(b) 400 × 700 (c) ROC Performance

Figure 6. Depth maps sampled at two different resolutions. The
higher resolution data improves ICP performace by allowing for
incremental changes during each iteration of the algorithm.

240). The database collected by MSU uses the fast mode
while the database collected for the FRGC uses the fine
mode. Both data types can be processed by the CFDM algo-
rithm. A comparison of the computation time and memory
requirements are shown in Table 2. A 320 × 240 raw scan
takes up 1.58MB of memory, while a compressed 400×700
CFDM file only requires 0.24MB of space. At this resolu-
tion it is possible to store many scans on a single memory
card, allowing for non-rigid variations, such as smiles.

3. Robustness Experiments

The experiments described in this section test the robust-
ness of the CFDM to noise and holes in the data. In the
first experiment, Gaussian noise was added to the z compo-
nent of the data set. The noise was generated in MATLAB



Table 2. Comparison of CFDM generation from both the fine mode
and fast mode of the Minolta Vivid 910 scanner.

320 x 240 640 x 480
Scan Time ≈ 2 sec ≈ 4 sec
Curvature Calculation 0.42 sec 2.48 sec
Symmetry alignment (ICP) 0.23 sec 0.83 sec
Orthogonal Projection 0.22 sec 0.47 sec
Total CFDM Generation 0.85 sec 3.8 sec

Raw File (Minolta cdm) 1.58 MB 3.61 MB
Compressed Raw File 0.88 MB 2.1 MB
400x700 CFDM file (ppm) 1.68 MB
400x700 Compressed CFDM 0.24 MB

using a normal distribution and then multiplied by one of
three noise amplitudes (0.5mm, 1.0mm and 1.5mm). This
range was chosen because the Minolta scanner accuracy is
about 0.5mm and the SAM verification threshold described
in [10] is about 1.0mm. Smaller errors would not be sig-
nificant, and any higher level of noise would result in inac-
curate matching. Figure 7 shows some examples of these
noise levels on a typical scan. The results for the noise ex-
periments in Table 3 show that the mean roll, pitch and yaw
stay about zero degrees, but as the amount of noise increases
the standard deviation of these values also increases. Fortu-
nately this increase is very small, indicating that the CFDM
is robust to Gaussian noise.

(a) Orig (b) 0.5mm noise

(c) 1.0mm noise (d) 1.5mm noise

Figure 7. Example noise on the surface of the face.

The second experiment was designed to test the CFDM
against holes in the data. These trials removed a Gaussian
hole from the scan; this hole covers a circular area of ap-
proximately 5mm radius taken from the region of the scan
used by the surface alignment algorithm. Each hole re-

Table 3. Error with respect to noise
Roll Pitch Yaw Distance

Parabola 0.02◦ 0.10◦ 0.00◦ 2.06mm
std dev ±0.53◦ ±2.59◦ ±0.50◦ ±3.33mm
0.5mm 0.01◦ 0.06◦ 0.01◦ 2.57mm
std dev ±0.56◦ ±2.37◦ ±0.89◦ ±4.84mm
1.0mm 0.00◦ 0.07◦ 0.01◦ 3.80mm
std dev ±0.62◦ ±2.49◦ ±1.00◦ ±5.99mm
1.5mm 0.00◦ 0.06◦ 0.01◦ 5.32mm
std dev ±0.67◦ ±2.32◦ ±1.03◦ ±6.24mm

moves a different number of pixels depending on the scale
of the scan and whether the holes overlap with previous
holes in the data. This process is repeated for a total of
ten iterations, with each iteration adding another hole to
the scan. Figure 8b shows an example of holes added to
the scan. Figure 8a displays the percentage of valid pix-
els removed by the holes from the fitting region (around the
eyes and nose) for 1030 scans (103 scans with 10 iterations
each). The y axis shows the difference in the roll, pitch and
yaw between the CFDM face processed without the holes
and the CFDM face processed with the holes.

(a) Rotation Errors

(b) Example Holes

Figure 8. Effect of holes on the CFDM angles.

When less than 10% of the data is removed, the angle
variation is no more than two degrees. As the number of
holes increases, there are larger errors. In most cases, the
angle difference is still well under 2 degrees of variation.
However, there are cases where the errors spike, normally



due to holes placed in key locations that interfere with an-
chor point detection or that cause large asymmetries in the
data.

4. Applications

The output of the Canonical Face Depth Map algorithm
is trivially transformed into a data structure with the same
format as the original face scan. Maintaining the data for-
mat allows the Canonical Face Depth Map to be used as
a preprocessor to other algorithms. This section presents
two common image processing algorithms, correlation and
PCA, and applies the CFDM developed in this paper as a
preprocessor for these algorithms. Correlation and PCA
were chosen because they provide a good baseline, have
potential for effective identification, and perform best if the
input data are normalized and of fixed size resolution.

4.1. Correlation

For each window region, the points are normalized to
their average depth. The correlation algorithm is similar
to traditional correlation and minimizes the L2-norm, but
takes into account missing data (due to flags) and trims er-
rors in the z data to make the algorithm more robust to spike
noise. Several experiments were conducted to compare fea-
ture regions on a probe scan to those on a target scan; these
experiments used the following procedure:

1. Identify anchor points on the target scan.
2. Choose a region around each point as an independent

mask. (See Figure 9a)
3. Find the anchor points on the probe scan.
4. Choose a larger search region about each point on the

probe scan. (See Figure 9b)
5. Convolve the masked region in the search region for

each corresponding point. (See Figure 9c and d)
6. Record the minimum correlation score and the row and

column of the points.

(a) Mask Region (b) Search Region (c) Point found on
subject

(d) Point found on
different subject

Figure 9. Example of the correlation point algorithm.

The correlation algorithm was tested on the depth chan-
nel, shape index, and color channel of a data set of 330

scans from 111 subjects. All scans were normalized us-
ing the CFDM algorithm. The L2-norm (average root mean
squared error over the entire correlation window) for each
anchor point (eye corners, nose tip, mouth corners, bridge
of the nose, and chin) was used as a similarity score. The
best performance was found using a mask around the bridge
of the nose and applying it to the shape index. The shape
index is a ratio of the maximum and minimum curvature
values at each point, as defined in [6].

4.2. PCA Analysis

In addition to providing a data set, the Face Recogni-
tion Grand Challenge (FRGC) also provides a program-
ming interface called the Biometrics Experimental Environ-
ment (BEE). The BEE system gives FRGC competitors a
common interface for running independently-evaluated al-
gorithms. It also provides an implementation of the CMU
PCA matching algorithm to use for baseline comparison.
PCA is a well-established 2D color face matching method.
It is not state-of-the-art, but has been shown to perform ac-
ceptably when there are minor variations in pose and light-
ing.

Figure 10. Comparing ROC curves on 330 mostly frontal scans
using ICP (SAM), PCA and Convolution.

Figure 10 shows four different recognition algorithms for
comparison. The CFDM-corrected PCA algorithm did not
perform as well as the others, mostly because there were
some large lighting variations in the FRGC data set. The
ICP-based SAM score did not use the CFDM for alignment
yet it performed well without the need for any training data.
The normalized 3D PCA algorithm performs even better
than the SAM, which is expected because the PCA algo-
rithm is trained on the same data set.



5. Concluding Discussion

The 3D Canonical Face Depth Map automatically and
robustly removes the effects of pose and scaling variations
in 3D depth maps (see examples in Figure 11). Producing
the CFDM takes, on average, 0.85 seconds for 320 x 240
pixel scans, and 3.8 seconds for 640 x 480 pixel scans (us-
ing a dual AMD Opteron 275, 2.2GHz, with 2MB Cache,
and 1GIG RAM). The CFDM enables both 2D and 3D im-
age processing methods - such as convolution and PCA -
to be readily used for feature localization and face recog-
nition. Experiments demonstrated that the CFDM is robust
to both Guassian noise and holes in the data. The CFDM
can improve the accuracy of surface alignment algorithms
that use the iterative closest point algorithm, and signifi-
cantly reduce the memory required to store a 3D face model.
The canonical representation is also an effective preproces-
sor for both 2D and 3D face processing algorithms, and we
have shown how the fully automatic CFDM can be used
with both convolution and PCA.
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(a) Original (b) CFDM

(c) Original (d) CFDM

(e) Original (f) CFDM

(g) Original (h) CFDM

(i) Original (j) CFDM

Figure 11. Examples of applying the CFDM algorithm to scans
with different levels of difficulty.


