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Abstract

Template matching of iris images for biometric recogni-
tion typically suffers from both local deformations between
the template and query images and large occlusions from
the eyelid. In this work, we model deformation and occlu-
sion as a set of hidden variables for each iris comparison.
We use a field of directional vectors to represent deforma-
tion and a field of binary variables to represent occlusion.
We impose a probability distribution on these fields using a
lattice-type undirected graphical model, in which the graph
edges represent interdependencies between neighboring iris
regions. Gabor wavelet-based similarity scores and inten-
sity statistics are used as observations in the model. Loopy
belief propagation is applied to estimate the conditional dis-
tributions on the hidden variables, which are in turn used to
compute final match scores. We present underlying theory
as well as experimental results from both the CASIA iris
database and the database provided for the Iris Challenge
Evaluation (ICE). We show that our proposed method sig-
nificantly improves recognition accuracy on these datasets
over existing methods.

1. Introduction

The iris is the colored region of the eye bounded by the
pupil and white sclera. The intensity pattern in the iris is
believed to be detailed enough to reliably discriminate be-
tween individuals and remains stable over the human life-
time [12]. Iris recognition has recently emerged as an im-
portant component of the field of biometric recognition.
The work of Daugman [3] and others has demonstrated that
the human iris pattern, much like a fingerprint, is a useful
biometric for determining and/or verifying the identity of a
person.

In most iris recognition algorithms, an image of the iris
is first segmented by finding two approximately concentric
circles that define the inner and outer boundaries of the pat-
tern region. Once this region is determined, it is subse-
quently “unwrapped” from Cartesian to polar coordinates.
Such an unwrapping is illustrated in Fig. 1. The resulting

image is used as the basis for feature analysis and compari-
son. Because of local muscle contractions and other biolog-
ical phenomena, two iris patterns captured from the same
eye are often spatially deformed relative to one another. In
addition, there almost always exist significant portions of
the iris pattern which are occluded by the eyelid as shown
in Fig. 2, and the amount of occlusion can vary between
samples. A robust iris recognition algorithm must be able to
handle these non-linear deformations and local occlusions.

Recent work by Thornton et al. [11] has shown that iris
recognition performance can be significantly improved by
partitioning the template iris pattern into multiple regions
and individually matching these smaller regions to the query
image. The approach in [11] iteratively estimates each lo-
cal displacement vector by holding the displacements of all
other regions fixed and applying the Iterated Conditional
Modes (ICM) algorithm [6]. The resulting deformation es-
timate is then used to assign an overall match score. The au-
thors show that imposing such a probabilistic model results
in better performance than simply estimating the deforma-
tion without any constraints. Probabilistic methods for es-
timating deformation fields have been proposed in [15] and
[9], and similar methods for estimating occlusion have been
reported in [14].

We propose an approach that includes the following
modifications: (1) estimating occluded regions jointly and
probabilistically with the deformations rather than sepa-
rately and deterministically, and (2) using soft information
from the estimated distribution, rather than a single point
estimate, to compute a Bayesian score. Such an approach
avoids discarding most of the information returned by the
region matching algorithm and thus has the potential to
yield an improved comparison score. We show that our pro-
posed method results in a large reduction in error rates over
a baseline algorithm on two separate iris databases.

2. Background

2.1. Database description

We used two databases of iris images to test our method.
The first one is the CASIA (Chinese Academy of Sciences
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Figure 1. Example of fitting a polar coordinate system to an iris pattern for subsequent unwrapping.

Figure 2. Sample iris images from the CASIA database (top) and
ICE database (bottom). The larger images are representative of
difficult images within each database.

Institute of Automation) iris database ver. 1.0 [1], which
consists of 108 classes with 7 samples from each class for
a total of 756 images. Each image is 280 × 320 pixels in
size. The second and larger database is the one supplied
for the NIST Iris Challenge Evaluation (ICE) [2] (Phase I,
Experiments 1 and 2). The ICE databases consist of 124
classes (Experiment 1) and 120 classes (Experiment 2) with
between 1 and 31 images of size 480 × 640 in each class.
Experiment 1 contains a total of 1,425 images, while Ex-
periment 2 contains a total of 1,528 images. Sample images
from each database are shown in Fig. 2. The reasons for
choosing these two databases are as follows:

1. Some parameters in our model need to be learned
from training data. These are learned on the CASIA
database and then used on both CASIA and ICE, show-
ing that these parameters are not database specific.

2. The two databases have, among other properties, dif-
ferent image resolutions and imaging artifacts. Our al-
gorithm is shown to work well on both, demonstrating
its general applicability.

2.2. Data preprocessing

The iris pattern in each image is first segmented by de-
tecting two circular boundaries, a larger circle separating
the outer iris from the sclera, and a smaller circle separat-
ing the inner iris from the pupil. We use the segmentation

algorithm described in [11]. Once these boundaries are de-
termined, a polar coordinate system is fit to the iris region,
as shown in Fig. 1. The image resulting from unwrapping
this polar coordinate system into an M ×N grid is referred
to as the iris plane. The dimensions M and N are fixed for
a given set of comparisons. Let f (x) denote the iris plane,
where x = [x y]T ∈ {1 . . . M} × {1 . . . N} denotes the
pixel location.

Iris code images c (x) are created from each iris plane
by extracting a set of features at every point. We use the
feature extraction method described in [3], wherein the iris
pattern is projected onto a set of complex-valued 2D Ga-
bor wavelets {gi (x)}N

i=1. Specifically, each gi (x) is of the
form

gi (x) = g0 (Rθi
x;σxi, σyi,Ωi) (1)

where the unrotated wavelet function g0 is defined as

g0 (x;σx, σy,Ω) = exp
[
−1

2

(
x2

σ2
x

+
y2

σ2
y

)
+ j2πΩx

]
(2)

In (1), σxi, σyi, θi, and Ωi are the wavelet parameters of the
i-th wavelet, and Rθ is a 2-D rotation matrix of angle θ. An
array of binary-valued (1 and −1) feature vectors c (x) is
then computed as

c (x) =




sgn {Re [f ∗ g1 (x)]}
sgn {Im [f ∗ g1 (x)]}

...
sgn {Re [f ∗ gN (x)]}
sgn {Im [f ∗ gN (x)]}


 (3)

where the ∗ operator denotes a 2-D discrete convolution.
The feature array c (x) may be downsampled to a lower
spatial resolution (i.e., c′ (x) = c (Lx)) in order to decrease
the number of features and reduce redundancy.

The iris code generation is a shift-invariant process; i.e.,
if the input iris plane undergoes a certain shift (in polar co-
ordinates), the resulting iris code will be shifted in exactly
the same way. The particular Gabor wavelets used (i.e., the
scale and rotation parameters plus the values of σx and σy)



and the resolution (downsampling factor L) of the resulting
iris code are chosen to maximize the accuracy of the base-
line method proposed in [3] (described in Section 4).

2.3. Match score array generation

A match score between any template and query image
pair is computed as a function of the total Hamming dis-
tance between the resulting iris codes. In both the base-
line and proposed matching algorithms, we allow for the
possibility that the images may be shifted relative to one
another in the polar domain; therefore, we compute match
scores between the two images at all plausible shifts. Let
ct (x) and cq (x) denote the unshifted template and query
iris codes, respectively. The match score array m (x) at
each shift vector x is then given by the following equation:

m (x) =
1

|St|
∑
y∈St

cT
t (y) cq (y − x), (4)

where St is the support of the template iris code and |St|
is the size of the template. It can be shown that each com-
puted score in the array in (4) is a function of the Hamming
distance between the two codes at that particular shift.

3. Iris comparison approach

3.1. Deformation model

As a result of pupil dilation, the iris image (and thus
the iris code) can undergo a nonlinear deformation between
two images from the same class. We approximate this non-
linear deformation as a coarse vector field. Specifically, we
first divide the template iris code image into Ns regions, as
shown in Fig. 3. We then assume that when a query image
from the same class is compared to the template, each tem-
plate region will be closely matched to a nearby region in
the query image, but that the relative displacement between
a pair of corresponding regions may be different from that
of the other pairs in the images. For our experiments, we
found Ns = 36 to work well.

In order to evaluate the possible alignments, we compute
similarity measures between each region in the template and
the query image across all plausible shifts. We use the tech-
nique of Section 2.3 to generate Ns separate match score ar-
rays {mi (x)}Ns

i=1, where each mi (x) is computed per Eq.
(4) but with ct (x) replaced by cit (x), the i-th region of the
template iris code. Only match scores corresponding to a
shift of 10 pixels or less in either direction (vertical or hor-
izontal) are retained. Thus for an iris plane partitioned into
Ns regions, this matching scheme generates Ns different
score arrays of size 21 × 21.

3.2. Occlusion metric

For each pixel of the iris plane x, we compute an occlu-
sion metric π (x) that measures the likelihood that the pixel
belongs to eyelid rather than to the iris pattern. This met-
ric is computed from four local statistics: (1) the mean in-
tensity value in a small neighborhood around the pixel, (2)
the standard deviation of the intensity values in the same
neighborhood, (3) the percentage of pixels whose intensity
is greater than one standard deviation above the mean of the
entire iris plane, and (4) the shortest Euclidean distance to
the centers of the upper and lower eyelids. A Fisher lin-
ear discriminant [4] is then used to generate a single scalar
quantity π (x) from this set of four statistics at each pixel.
Finally, an overall occlusion metric πi is computed for each
region i as the mean of all π (x) in that region. The Fisher
linear discriminant was trained using 30 iris plane images
whose eyelid regions were labeled manually. We used a
neighborhood size of 7 × 7 pixels.

3.3. Graphical model for deformations and occlu-
sions

If a certain segment in the image has a particular defor-
mation or occlusion state, neighboring segments are more
likely to have similar states rather than different ones. Also,
images that require large deformations to obtain a good
match are less likely to belong to the same class than images
that obtain high scores with small deformations. In this sec-
tion we investigate a method to use such information in the
matching process.

We use an undirected lattice-type graphical model, de-
picted in Fig. 4, to model the interactions between the defor-
mations and occlusions of neighboring regions in the parti-
tioned iris code. Each node di in the model, i = 1, . . . , Ns,
represents a 2-D discrete-valued shift vector, the true value
of which is hidden. The components of di are the verti-
cal and horizontal shifts (in pixels) of the template region
relative to the corresponding query region. The nodes ωi,

Figure 3. Partitioning of the template iris plane into Ns = 36
subregions (top), and an example of local shifts between template
and query images (bottom).



Figure 4. Undirected graphical model used to model the deforma-
tion distribution (3 × 12 configuration shown).

i = 1, . . . , Ns, are hidden binary-valued occlusion vari-
ables, where ωi = 0 and ωi = 1 denote that the region is
occluded and unoccluded by the eyelid, respectively. Nodes
Oi represent the observations, which include the match
score arrays mi (x) and the occlusion statistic πi computed
for each template region.

In specifying the model, we need to specify potential
functions between each pair of connected nodes in the
graphical model. The output of any potential function for a
given input should correspond to the “goodness” of the in-
put, i.e., some measure of likelihood of that particular con-
figuration. Thus, the potential between two neighboring de-
formation vectors di and dj should be higher if both vectors
are closer in direction and lower if they are more opposite
in direction. Similarly, the potential between neighboring
occlusion indicators ωi and ωj should be higher if their val-
ues are the same and lower if they are different. In order to
simplify understanding and notation of the model, we col-
lapse each pair of quantities (di, ωi) into a single 3-D vector
quantity hi = [di, ωi]

T . We chose to use the following sep-
arable potential function between any pair of neighboring
vectors hi and hj :

Ψi,j (hi,hj) = Ψd,i,j (di,dj) · Ψω,i,j (ωi, ωj) (5)

where the component potential functions for neighboring

deformations and occlusions are given as follows:

Ψd,i,j (di,dj) = exp
{
− 1

2

(
a ‖di‖ + a ‖dj‖

+ b ‖di − dj‖
)}

(6)

Ψω,i,j (ωi, ωj) =




α0, ωi = ωj = 0
α1, ωi = ωj = 1
α2, ωi �= ωj

(7)

Parameters a and b represent penalties on absolute and rela-
tive deformations, respectively, while parameters αi corre-
spond to priors on their corresponding occlusion configura-
tion (ωi, ωj). We used a = 0.05, b = 0.1, α0 = 0.7, α1 =
0.14, and α2 = 0.08. These parameters were learned from
training data using the expectation-maximization (EM) al-
gorithm [7] to maximize performance on a small subset of
the CASIA database.

The potential Ψi (hi,Oi) over each group di, ωi, and
the corresponding observation Oi should be higher when
the values of di and ωi agree more closely with the obser-
vation at that region. Thus, it should be a function of both
the occlusion statistic πi and the match score mi (di) at the
given value of the shift vector di. Furthermore, it should
depend only on the occlusion statistic πi if ωi = 1 (i.e.,
the region is thought to be occluded) and only on the match
score mi (di) if ωi = 0 (i.e., the region is thought to be
unoccluded).

Let the random variable s be drawn from the distribu-
tion of “true” match scores, i.e., match scores observed at
the (unknown) true shifts for given unoccluded iris regions.
Similarly, let the random variable π denote the distribution
of “true” occlusion metrics. The distributions P ( s ) and
P (π ) are assumed to be normally distributed with mean
and variance parameters µs, σ2

s , µπ , and σ2
π, and we define

Fs (S) � P ( s < S ) =
∫ S

−∞
N (

s;µs, σ
2
s

)
ds

Fπ (Π) � P (π < Π) =
∫ Π

−∞
N (

π;µπ, σ2
π

)
dπ(8)

to be the cumulative distribution functions (cdfs) of s and
π. The parameters of these distributions are learned from
training data. We compute the probabilities Fs (m (di)) and
Fπ (πi) of having observed at least the true match score and
occlusion metric for each pixel or region, respectively. We
then achieve monotonic potential functions Ψi (hi,Oi) by
setting them equal to the corresponding probability for the
believed state of ωi as follows:

Ψi (hi,Oi) =

{
Fs (m (di)) , ωi = 0
Fπ (πi) , ωi = 1

. (9)



We used as parameter values µs = 0.4, σs = 0.1, µπ = 0,
and σπ = 0.14. These values were estimated by using only
the first three images of each class in the CASIA database as
training data. Some of the regions in this training set were
manually labeled with occlusion state and/or true deforma-
tion, and only these regions were used in the estimation.

3.4. Belief propagation

Given a particular set of observations for nodes Oi,
the structure in Fig. 4 reduces to a Markov random field
(MRF) [10] with potential functions specified in Section
3.3. In order to compute an overall match score, we want
to first estimate the conditional distributions P (hi | O) for
i = 1, . . . , Ns, where O denotes the set of all observations
O1, . . . ,ONs

. One way to do this is to use loopy belief
propagation (LBP) [5],[6]. LBP is a form of iterative opti-
mization over the joint distribution represented by a graph-
ical model. While LBP is not guaranteed to converge, we
have observed in our experiments that the algorithm typi-
cally converges in 3 iterations or fewer.

We used code from Kevin Murphy’s MATLAB toolbox
[8] to run LBP on this MRF for each query-template com-
parison. In each iteration of this LBP implementation, each
unobserved node “passes” a message to each of its unob-
served neighbors. The message δi

j→k from node j to neigh-
boring node k at iteration i is computed according to the
following equation:

δi
j→k (hk) =

∑
hj

Ψj (hj ,Oj) Ψj,k (hj ,hk)

×
∏

l∈N (j)−k

δi−1
l→j (hj), (10)

where Ψj and Ψj,k are defined in (9) and (7), respectively,
and N (j) denotes the set of all neighbors of node j in the
graph (Fig. 4).

The belief P̂ (hj | O) of quantity hj after iteration i can
be computed via the following equation:

P̂ (hj | O) =
1
Zj

Ψj (hj ,Oj)
∏

k∈N (j)

δi
k→j (hj) (11)

where the normalizing constant Zj is given by

Zj =
∑
hj

Ψj (hj ,Oj)
∏

k∈N (j)

δi
k→j (hj). (12)

We can then compute the marginal beliefs for each region
as follows:

P̂ (dj | O) =
∑
ωj

P̂ (hj | O);

P̂ (ωj | O) =
∑
dj

P̂ (hj | O). (13)

We allowed a maximum of 3 iterations for each run of LBP.

CASIA

FAR = 1% 0.1% 0.01% 0.001%

Baseline 1.0% 2.3% 4.8% 9.6%

Proposed 0% 0.1% 0.7% 1.9%

ICE Experiment 1

FAR = 1% 0.1% 0.01% 0.001%

Baseline 2.35% 3.45% 4.82% 6.26%

Proposed 0.17% 0.33% 0.82% 1.56%

ICE Experiment 2

FAR = 1% 0.1% 0.01% 0.001%

Baseline 2.16% 3.02% 3.92% 5.25%

Proposed 0.64% 0.94% 1.26% 1.91%

Table 1. FRR achieved at four values of FAR on CASIA and ICE

databases.

3.5. Score computation

Once the conditional distributions P (di | O) have been
estimated, we compute a single match score Mi for each
subregion i. Specifically, for each subregion we compute
the expected match score with respect to the estimated dis-
tribution as follows:

Mi =
∑
d

mi (d) P̂ (di = d | O). (14)

Note that in computing each subregion match score Mi,
we want to measure only the similarity and not the occlu-
sion, i.e., we do not want a high probability of occlusion
to cause a low match score. For this reason, we use the
marginal distribution P̂ (di | O) rather than the joint dis-
tribution P̂ (hj | O). We compute the overall comparison
score M from the Ns individual subregion scores Mi as a
normalized weighted sum of the subregion match scores:

M =
∑Ns

i=1 βiMi∑Ns

i=1 βi

(15)

where the weights

βi = P̂ (ωi = 0 | O) (16)

are equal to the beliefs of non-occlusion for each region.

4. Experimental setup and results

We implemented a baseline method to which to compare
our proposed method. The baseline method does not use
the deformation model described in Section 3.1; rather, it
assumes that the deformation between template and query
iris codes is a rigid shift of the entire iris code. The over-
all match score for each iris comparison is then computed



using (4); no belief propagation is done, and the equations
in Section 3.5 are not used since we essentially have only
one subregion. This method is close to that of Daugman
reported in [3], which is considered to be a standard iris
matching approach [13]; the difference is that the param-
eter values used for the Gabor wavelets may be different.
Because the values used by Daugman were not specified,
we chose values to optimize performance of the baseline
method.

Verification experiments were carried out on both the
CASIA and ICE databases. For each database, we com-
puted a match score between every pair of images in the
database, resulting in 1,014,600 total comparisons for ICE
Experiment 1 (right-eye), 1,166,628 for ICE Experiment 2
(left-eye), and 285,390 for CASIA. For a potential match
threshold, we can compute the percentage of within-class
match scores below the threshold (called the false reject
rate) and the percentage of between-class match scores ex-
ceeding the threshold (called the false accept rate). We
then found the thresholds that resulted in false-accept rates
(FARs) of 1%, 0.1%, 0.01%, and 0.001% and reported the
false reject rates (FRRs) at these thresholds in Table 1.

Fig. 5 contains normalized histograms showing the sepa-
ration of match scores between authentic and impostor com-
parisons on the ICE Experiment 1 database. At FAR = 0.1%
(a typical ICE performance standard), we observe a reduc-
tion in FRR by a factor of more than 17 for CASIA and
more than 10 for ICE Experiment 1. ICE Experiment 2 was
known to have at least one mislabeled image, which likely
caused an increased error rate.

Because the proposed algorithm is significantly more
complex than the baseline algorithm, we observed that the
computational load per comparison increased by a factor of
approximately 4 in our implementation. On average, each
baseline comparison took ∼60 ms. This value increased
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Figure 5. Histograms of match score distributions for both algo-
rithms on the ICE Experiment 1 database.

to ∼250 ms in the proposed algorithm, of which ∼150 ms
was devoted to computing the observed data in the graphi-
cal model and the remainder to running LBP and computing
the final match score.

5. Conclusions

We have explained and demonstrated the use of an undi-
rected lattice-type graphical model for modeling non-linear
deformations and local occlusions in iris images. The
main advantage of this model is the ability to compute dis-
tributions over local deformations rather than point esti-
mates, thereby preserving information in the match score ar-
rays. Also, by estimating occlusion and deformation jointly
rather than separately, the observations of each can be com-
bined probabilistically to yield better estimates of both. We
showed that, by using this model, verification error rates on
two iris databases can be reduced by more than an order of
magnitude compared to a standard method.
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