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Abstract

This paper reviews the biometric dilemma, the pending
threat that may limit the long-term value of biometrics in
security applications. Unlike passwords, if a biometric
database is ever compromised or improperly shared, the
underlying biometric data cannot be changed. The
concept of revocable or cancelable biometric-based
identity tokens (biotokens), if properly implemented, can
provide significant enhancements in both privacy and
security and address the biometric dilenmma.

The key to effective revocable biotokens is the need to
support the highly accurate approximate matching needed
in any biometric system as well as protecting
privacy/security of the underlying data. We briefly review
prior work and show why it is insufficient in both accuracy
and security.

This paper adapts a recently introduced approach that
separates each datum into two fields, one of which is
encoded and ene which is left to support the approximate
matching. Previously applied to faces, this paper uses this
approach to enhance an existing fingerprint sysiem.
Unlike previous work in privacy-enhanced biometrics, our
approach improves the accuracy of the underlying system!
The security analysis of these biotokens includes
addressing the critical issue of protection of small fields.

The resulting algovithm is tested on three different
fingerprint verification challenge datasets and shows an
average decrease in the Equal Error Rate of over 30% --
providing improved security and improved privacy.

1. The Biometric Dilemma

The key properties of biometrics, those unique traits that
do not change significantly over a lifetime, are also their
Achilles heel. The biometric dilemma is that while
biometrics can initially improve security, as biometric
databases  become widespread, compromises  will
ultimately undermine biometrics’ usefulness for security.

At least 40 million “financial records” were
compromised or illegally sold in 2005, and over 50 million
more financial/identity records lost or stolen in 2006. A
database with millions of permanent “non-revocable”
biometric records will become more significant cyber-
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target. With the current trend, it is a question of when,
not if, a major biometric database will be compromised.
Of course, they don’t have to be hacked, just shared or
sold. In 2001, Colorado tried to sell their face and
fingerprint DB, and still offers it free of charge to any
government agency that wants access [Krouse-01].

While many companies say their biometric templates
cannot be used to recreate the data, [Ross-05] has shown
recovery of fingerprints from templates. Furthermore,
reconstructing the original fingerprint data is not required,
just generation of any of the infinitely many prints that
match the stored template. With techniques that allow
generation of “gummy fingers” [Matsumoto-et-al-02], the
potential loss is not “academic” and not just an issue of
privacy. While vendors claim new “liveness” detection
prevents spoofing, the authors have tested many of the
new sensors, from optical to capacitive to thermal, and
spoofed every one we have tested.

A compromised biometric cannot be “replaced” and that
permanent loss feeds the perception of invasion from any
use of biometrics — if decades later the government or a
corporation wants to play Big Brother, you cannot take
back the information they gathered or lost. With the ease
with which today’s sensors can be spoofed and with the
instructions readily available on the Internet, this is a
security time bomb!

While many people like to think of biometrics as
“unique”, operationally they are not. Even FBI examiners
have made high-profile misidentifications with latent
fingerprints, ¢.g. [Cole- 05] documents 22 examples.
Fingerpritn examiners have nearly umlimited time and
can use all level of features. The best fingerprint systems
tested by the US government have only 98% true
acceptance rates, when set to reject 99.99% of false
matches. At 99.99%, finding a false match in a database
of millions is likely, leading to what we call the
doppelganger threat, where compromised databases with
millions of ugers will allow an intrudder to find a few
“close enough™ matches they can directly impersonate.

A critical issue in the biometric area is the development
of a technology that allies the privacy concerns while
supporting the security goals. A partial solution is to
never store the original biometrics, but some cancelable
token generated from it. This concept was introduced in
[Ratha-et-al-01], and called Cancelable biometrics.
However, since the underlying biometric data is not



actually canceled or revocable, this oxymoron can cause
confusion, We introduce the term biotoken, to refer to
“the revocable identity token produced by applying a
revocable transform to biometric data, such that identity
matching is done in the encoded/revocable form”.

To address the biometric dilemma the biotokens must
support a large variety of tokens per individual so that
each database is independent and non-linkable and allow
effective revocation and reissue.  They must have
sufficiently high accuracy and must provide for
cryptographically strong protection of the underlying data.
Even with all of that, they must explicitly have some
approach to address the doppelganger threat.

A few approaches for cancelable or revocable biotokens
have been discussed in the literature, with a review and
classification of the leading prior work presented in
[Ratha- et.al.-07], only the most significant are discussed
herein. They divide the field into four catagories:
Biometric salting, Fuzzy schemes, Biometric Key
generation and non-invertible forms. Our approach does
not fit within any of these catagories.

“Biometric encryption” and biometric salting work by
mixing randomness but allowing matching via
convolution or other approach. This underlyies the work
of many groups, but has not produced systems with
demonstrated effective accuracy/privacy. For fingerprints
they require pre-aligned data, an unrealistic assumption.
Finally the security depends on “one-time” pad arguments,
but because of symmeiry of data and pad it means the
same print (even with a different pad) cannot be reused in
other databases [ Scheirer-Boult-07)]

Fuzzy schemes, the best of which we consider to be
[Tuyls-et-al-05], are making progress but still signficantly
decrease the effectivness of the underlying algoithms. The
existing work also presumes the fingerprint data has been
aligned, e.g., using core-delta alignment, which is
problematic. Even given aligned data, the best reported
results only increased the Equal Error Rate of the
underlying algorithm by factor of 2 while they embedded a
40bit key. Many fuzzy scheme’s also subject to an attack if
they same print reused multiple times [ Scheirer-Boult-07]

Non-invertible forms were first suggested in [Ratha-et-
al-01]. Non-invertibility alone does not provide significant
protection. Since fingerprint systems are tolerant of
moderate error levels, even if the ambiguities can never be
resolved, the protection may still not be sufficient. In their
more recent work [Ratha-et-al-07], define sophisticated
transforms. They present performance data on their
matcher, using an IBM internal DB of 181 pairs. The
revocable transforms reduced the system accuracy, it is
hard to interpret the performance numbers of from an
internal DB. Furthermore, these transforms, which are
formally non-invertible, have very limited ambiguity. In

their best performing “surface folding” transform, only
about 8% of the data changes its local topology, hence we
can conclude only a small fraction of the data is logically
non-invertible. Given the transform, one could invert the
non-folded regions, and then take each point in the folded
region and send it to the few (2 or 3) potential locations.
Since a fingerprint matcher would likely match a print
with 8% extra data, we would consider that to effectively
compromised and hence not cryptographically secure.

A good review of biometric key generation is given in
[Uludag et. al. 04]. The idea is a mixture of quantization
and encryption of the biometric data to produce a unique
key. However, the process of encryption will transform
the input with only one bit difference, i.e., nearly identical
biometrics, to very different numbers. Given that any
biometric has a range of expected variations for the same
individual, either the biometric key will ofien not match
the individual or the data must be degraded so that all
variations for an individual map to the same data.
However, this would significantly degrade the miss
detection rate. The results in (Uludag et. al. 04) show a
loss of two orders of magnitude in accuracy.

In [Boult 06] an approach somewhere between the non-
invertible and key-generation approach was proposed for
face-based biometrics. That approach combines the ideas
of transformation of data, robust distance measures and
encryption of biometric data. After some scaling, it
separates data into two parts, the fractional part, retained
for local distance computation, and the integer part which
is then encrypted. When applied to faces, the approach
significantly improved the performance of the PCA, LDA
and EMGB algorithms. It is the only algorithms of which
we are aware that actually improved performance while
providing privacy protection and security enhancements.

2. Cryptographically Secure Biotoken Overview

The computation of our Cryptographically Secure
Biotoken, which we call a Biotope™, uses a feature space
transform applied to an existing minutiae-based
fingerprint  system. The approach supports both
transforms that are public-key cryptographically invertible
and/or using cryptographic one-way functions such as
MD35. In either case, even if both the parameters and the
transformed data are compromised, there is no practical
way to recover the original data, thus, removing the risks
if centralized databases are compromised. (Obviously,
given access to the private key, transform parameters and
data would allow inversion, but that key is not used in the
verification process and need not be online at all.)

In short, the fundamental advances of the approach are
provided by a transformation that provides a robust,
distance-based computation for supporting confidence in
verification while supporting revocability and verification



without identification, while at the same time, permit have
thousands of simultaneous instances in use without the
ability for anyone to combine the stored data to reconstruct
the original biometric.

Before we introduce the transform, we discuss a helper
function. As we split the encoded data, we will be using a
modulus-like operation. Such an operation can take
nearby elements and separate them by significant
distances. Thus, we developed what we call a reflected
modulus, or cmod, such that nearby elements are mapped
to nearby elements after applying cmod. We implement
this with a folding technique to map items near each other
afier mapping, e.g, if we want a window of size E, we let
x=d % (E*2),

rmod(d,E) = x if x< E, and

rmod(d,E) =(E*2)-x otherwise.
It is easy to show that if x and y are such that [x-y|<¢ then
|rmod(x,z)-rmod(y,z)| < t. Since cmod does not increase
distances between points, as a traditional modulus can do,
it is better suited to many of the transforms needed in
public key biotokens.

A key insight into the approach following our work in
[Boult-06], is that a robust distance measure is, by
definition, not strongly impacted by outliers. Logically,
outside a window, non-matching data has constant, or
zero, impact. Many fingerprint systems use a robust
distance in matching, e.g., in [Ratha-et-al-07] they use a
matcher which ignores any match outside a fixed size box.

In [Boult-06] we used this observation to define a
transform that scales the data then separated them into the
fraction () and integer (g). The integer, g, is considered
stable and matchs exactly so then when these fields are
encrypted it will still match. We presented a theorem that
if the scaling is correct, then the robust distance measure
on the raw data and the induced distance measure after
encoding can only improve the matching performance.

While floating point and fraction/integers may be
appropriate for face-based representations, for fingerprints
the data is inherently small integers. We still transform
each datum via v'=(v-t)*s, with scale (s) and translation
(t). However, we then separate each datum into 2 parts,
one, g (quotient), that must match exactly, basically
defining the “window” for the robust computation, and the
second, r (reflected modulus), which is not encoded and
which supports the local distance computation. Given a
parameter E, which depends on the expected range of
variations in v, we define residual » = rmod(v'E), and
quotient ¢ = inf(v/E).  Then we can apply one-way or
cryptographic transform of g to produce w, which we
require to match exactly. As the data is separated in to »
and g, the result leaves an unencrypted value, », within
the “window™ in which local distance can be computed,
and then encrypts/encodes the larger (and hence very

stable) part of the position information, thus effectively
hiding the original positional data.

To ensure that the biometric data is protected even if the
“transformation” parameters are compromised, we need to
ensure that the ¢ values are cryptographically secured. For
large data items, e.g., doubles, encryption of g may be
effective. For small data items, as we have in
fingerprints, additional work must be done to protect the
data. For a single small field there is little that can be
done. As we will see later, for a collection of fields, there
is a mix of both public-key and hashing that can protect
many small fields and improve the overall performace
while making reissue straightforward.

We can also add a user passcode. This passcoded
biotoken inherently provides two-factor security mixed
such that only a single biotoken is stored. The inclusion of
the passcode provides strong revocation, and makes the
resulting biotoken “‘verificaition only”, providing increase
privacy protection and the best protection from a
doppleganger  threat. Applications  that require
“duplication detection™ during enrollment, e.g., passports,
can use regular biotokens during enrollment and
verification-only biotokens during operation. The
enrollment testing DB, which is going to be infrequently
used, can be more tightly controlled and keep the keys
needed for generation of the revocable tokens in a different
server. Then the verification only biotokens can then be
used for the day-to-day operation. We call this approach
a operationally-verification system, which is still
considerable better for both privacy and security than a
traditional verification system or even a revocable
biotoken-based  verification. We  consider this
“verifivation only” biotokens the only real protection
against a doppleganger threat since the use of a revocable
technology does not stop someone from searching a DB to
find a victim that is a natural match. If two people’s
biometrics approximately match afier a revocable
transform they almost assuredly likely match in raw form.
So a operationally-verification, technology is the only real
defense against a doppleganger threat, and tbe best
defence against the biometric dilemma.

3. Background on the Bozorth Matcher
The description of the original matcher is based on the
source code and on [Watson-et-al-04]. The natural form
of the Bozorth matcher takes as input a minutiae file with
X,y,8,q, where x,y is the location, 8 the angle and q the
quality, with such files produced by mindct from the NIST
toolset. Matching comprises three major steps:
1. Construct intra-fingerprint minutia pair comparison
tables for the probe fingerprint and one table for each
gallery fingerprint to be matched.



2. Construet an inter-fingerprint pair-pair sompatibility
table, whersan the system comparss a probs print’s
minutia par comparison tabls t0 a gallsry print’s
minutia pair Gomparisen tabls and constrosts a new
pair-pair compatbility tabls,

3. Stan the inter-fingsrprint par-par tabls

i, Trawerse and link tabe entries into a weldforast of
clusters that havs sonastent onsntation and
consistent sndpoints when hnked per cluster,

b Combine sompatible clusters and asenmulate soore.

To tonstrnet an mtra-fingsprint mimitia pair tals, the
gistem takes sach pair of manutias that are suficisntly
closs and menerates a pair tabls entry for them, Each padr
talle entry stores seven plecss of infwmation {d M) O
k. B}, These are, respectively, the distancss between the
pair, the anglss of sach minutia with respect to the line
comnscting them, the owrall onsntabon of the lhns
connsctin g them and the indsess of the point in the par,

To somstrost an inter-fingerprint pair-pair capabality
tale, wes must determins which par-lines matsh betwesn
the probe and gallery. The distance between minutas
pairs 15 independent of rotaion and translatom of the
aymndl prnt and thos can be matched direotly betsesn a
probs pair and a gallery pair. The differences ino pair
distances ars within a relatse threshod. In parhonlar the
Bozarth algonthm considers a pair to mateh if {F,-4)° <
(P%d,+d ), where d, (d,) is the distance betwesn the
probs {pallery} pair being omadered. (Do sou ses the
robust distancs measurs thers? Lomoally, rotation 15 mors
complsx, snes the rotation angls nesdsd to bring ons pair
of minutias into aignment will not be the same as the
ingls nesded for another pair of pairs, Mots that sach par
table esntry storss ths anglss betwesn ths end point
minuba’s wisntaton and the intervening ling betwesn
both minnbias, Therefors, the sndpoint angles meman
relabwely comstant with respsct to ths intervening hins
ragardless of fingerpnnt rotatiom. Thos, the anpgles are
conadersd matclung if the probe and gallery angls Gelds
are within 11 degress. Thos stags can match the distance
and thes tweo angles felds, to determins compatibality, and if
thew ire compatible, snters the relabes rotabion {somputsd
from the difference in 8kj between the probe and gallery)
and the indexes of the minubas in sach pair as the next
antryin the inter-fin gerprint pair-pair compatibality tabls,

The final stage is to raverss the intsr-fingerprint pair-
pilr compatibility tabls feming olosters and computing
the scors. The agonthm sorts the par list on rotation
angls and then doss & complex traversal boilding forest
clumps that have approzimately somastent rotations and
such that sach slsment of the oluster has a common
minnbas vertex, in some compatibls pair, with another
slement of the sluster, The soors 15 the sum of the number
of mimntas in the best matshin g web.

4. Bozorth-based Biotoken

This sechon bosdy desribes the implamentation of the
Bozmth-bassd Cryptographically Ssours Biotoksn and its
parformands, To conwert the Bozorth representation to a
public: key botoken, wes transfornm the pair-tabls, requring
orly minor changes to steps 1 and 2 and 3k The owverall
steps ars show in Figurs 1.

An important aspsit of the ransfom 1s bang abls to
apply the transfem conastently, We could just chooss a
angls wansfm fr all data for oan indiadnal, but as
discusssd n ths next sscton this detrsasss the sffort
nesded fir 4 bruts forcs attack. In the tests pressnted
heran, sach person has 64 ssparate transforms 15, with the
choiss of wioch transform to apply bang detsmminsd by
the imtial parsdss distance & Each tansfoom T
determanes 1ts trandation by generating a random nombsr,
The scals 15 determimiste such that sach “REn™ is then
mapped inte an mterval that 15 at lzast as largs as the fill
rangs of mput data, to ensurs owerlap and aliasing, but
g0 diffirent for sach transfoem, The stals depends on the
gkpected rangs of minnbas valnss and ssnsor resolution,
For wach field, wes apply the trandabon fitst, then the
scaling, then separats it inte e and g:.

The mdex for the ransfem T, 15 computsd a5 2 function
of both the input distanss and the angles. Betause a small
perturbation in the input could result in a diffsrent indsx,
wi: tast if the indsx 15 near a boundary, and if 50, sxpand
the mput par mte twoe soooedsd pars, ons foo sach of
mdexes to which it is close. Similarly, if »1s close te zero
o1t E, then g may be o by 1 srror and 2 secondary ow
gan be gensrated with the next indesz to mmpross matehing
aklity,  When a secondany row 15 wsed, it 15 possible for
both rows to matoh,

When matching rows, we first check if the assosated g
fields match exactly, and only then do we cheok the

Set 1D for werificaticomn
*
| Acauire Primnt | | Lcckul:I{eys
[
| Compute blimiatia=s |
¥
| Compute Pair Table |
*
| Aquire Pazzcode |
*
| Transforra Pair Table [+——
*

| Split/Brcode fields | P{“.l‘;t‘:’;‘l‘;;
¥

| Find Matching Pair Rows |‘—|
*
| Build Web & Compute Score |

L

Figurs 1 Steps in Botoken creation and matching



distances for each field Once the “row matching” is done,
the rest of the Bozorth algorithm continues with no
change. However, since we introduced duplication of
rows, we also define a normalization that adjusts for the
fraction of rows actally used in row matching,.

5. Finite Field Effects and Security

The entire process of converting back from the Bozorth
pair-table to the initial minutia is not obvious, but security
requires stronger design and analysis, which we briefly
review. While the general concept of biotoken generation
is straightforward, there are two important issues when
working with small fields. One is a question of “bloat™.
The second is a security concern.

While [Boult-06] described the process by discussing
“encryption” of an encoded field, using Public Key
Infrastracture (PKI), the size of the encrypted data must be
at least as long as the key. Thus, a 64bit “lenpth” double
field, when encrypted with RSA256, would need to be
padded and end up being 250bits long. The added bloat
can be eliminated if, say 4 of these fields are combined
before encryption, but then the fields are coupled and a
failure to match in one impacts the ability to match all.
For face, the feature “ordering” allows a consistent
“grouping” of fields. For fingerprints, this cannot be
done without alignment and some level of bloating seems
inherent for fingerprints.

The second, and more important, issue is the security
against a brute force attack. While PKI encryption may be
computational intractable to invert, if the data encoded is a
small finite field, say a 10, 16 or even 32 bit number, it is
quite practical to try encoding all possible inputs and see if
they match. When addressing this issue with traditional
encryption, the data is padded with random data, before
encoding, the pad data ignored after decoding. However,
in our case, we don’t decode the data for matching and
there is no way to separate the encoded data from the pad.
The encrypted padded field cannot be matched unless the
same pad is used for the probe and the gallery, which
would then mean, if it was compromised, it could be used
for a brute force attack, e.g [Scheirer-Boult-07]

One solution to these two issues for fingerprints is a
mixed approach allowing both PKI invertability and
multiple encoding. For a given “row” in the Bozorth
maicher, see Figure 2, there are three §-bit fields we leave
alone (k, j, 8} and 3 primary fields that we need to
encode: di (a 16 bit integer distance} and two angles By, B2
(formally represented as 16 bits, but practically 9 bits).
To protect these fields, we transform them as described
earlier. In summary, after transform, we have 3 control
bytes that were not protected (or transformed), 4 bytes of
residuals, i.e., r values, and 4 bytes of g values.

_ distance angle angle
[ 18 bits [ 9 bits| 7 bits| | 9 bits| 7 bits
v ¥ 4
Transform | 16 bits | 16 bits | | 8 bits| 8 bits| | 8 bits| 8 bite
control W
‘row” | 3bytes | | 4 bytes | | 4 bytes
CRC AES l

2 "columns” of
encrypted data

(B ] [E ]

“hash” | 2byles |

v

Data (CRC + Encrypted reorder rows to

Data) + Chaff “random positions”
a s | e |l L“ c chart] [erc | fenu [ E,2)
R | 2 TRt G ir:h:sﬂ'l |'::.. ekl

“columns”

Figure 2. Data mapping to provide for protection of the
small bit fields in the “row pair” table representation.

Since all three “g” fields must match, we could covert
the four protected g bytes into a single number to protect
without changing the matching. The data to be protected
would only be 32 bits, too small to properly protect on its
own. The process by which a “row” is transformed uses
64 different potential transforms, with the transform index
chosen based on the original data, hence unknown to brute
force attackers. Even with that 64 fold ambiguity, we
must do something more.

To support full PK inversion, we use PK to encrypt an
AES key, a random index, plus padding. Then we use
AES 1o encrypt the concatenated 4N bytes data, 4 bytes
from each row. This produces two “columns” of data.
However, becanse of mixing, this data cannot be used to
test the window location for any row. To address this, we
take the raw data to be protected for a row, and compute a
CRC of a company specific key followed by any user
passphrase, if any, followed by the 4-byte data to be
protected (We use the term CRC, or cyclic redundancy
check as a general concept. Any ‘“checksum”, including
cryptographic checksums such as MDS or SHAI, could be
used} The CRC folds the data in such a way that in a
brute force attack there will be many inpuis, say p, which
all produce the same encoded result as the correct data. It
also ensures that with any change in key or passphrase the
results are unlikely to be the same. In our case, we take
the 32 bits of real data, plus the keys and passphrase,
down to an 8 or 16 bit hash. Because the keys are used in
the process and may be known by the company, we cannot
count them in the projection gain (and the passphrase is



optional), so going from 32 unknown bits down to 8 or 16
yields p=2"' or p=2'°. Thus, to recover the original high-
order bit data for the row, a brute-force attack will need to
resolve the p-fold ambiguity. We can further increase the
ambiguity by having multiple columns in the encoded
data, one for the CRC-result of protected data, 2 for the
AES encrypted data (or 4 if we use 8 bit CRCs) and, if
desired, additional columns of chaff (random data). In the
“enrollment template”, we randomize the columns
(separately for each row) so there is no apparent ordering,
but using the key that was in the encrypted block, we can
define the “random positions” for the AES encrypted-
invertability data within each row. (Obviously, the PKI
encrypted AES key and index must be determinable).

With a total of ¢ possible match positions for the data in
the columns of data+chaff, this produces a (64*pc)-fold
ambiguity a would-be attacker must resolve to recover the
data on that row. (The factor of 64 is from the number of
transforms that might have been applied to a row).
Importantly, we don’t have to resolve this ambiguity when
matching, because we consider a match of any field
against any field (without replacement), plus require the
three residuals fields to match. For a true positive, the
process will match the encoded result. The chance of an
imposter matching the CRC, even given the potential
ordering and chaff is less than 1 in 20,000 and when one
adds the requirement of simultaneously matching the 3
residuals, it is small enough to not significantly impact the
overall matching performance. It is important to note that
accidentally matching a few rows (even a few dozen) does
not have a significant impact in a Bozorth-like matcher,
because a spurious row can only impact the final answer if
it can form a part of a larger “web” of results with a
consistent overall rotation/translation. The formation of a
web makes it very unlikely random matches could produce
a significant false match score.

In terms of the security analysis, however, it is critical to
note that to recover the original data requires much more
than just resolving the pc-fold ambiguity per row. There is
no test, per row, that can help decide which is correct.
While we don’t know if it can be done, it seems plausible
that by combining different rows simultaneously one
might construct a consistent “web” of underlying minutiae
that may provide a test for constancy. It is unknown if this
would be unique, and hence identify the true data, or if it
would still result in a2 many-fold or infinite ambiguity. If
it is possible to develop such a test it would require
simultaneously resolving the pe-fold ambiguity for # rows,
each of which is independent. Thus, a brute force search
would require #°#° attempts. In the worst case, one might
generate m” rows from m minutiae, though in practice we
limit to 512 rows independent of the number of original
minutiae, deleting less significant rows. It is clear that to

recover something that might be an acceptable subset of a
print would require at least 1 row per desired minutiae and
more likely 2 rows per minutiae.  To get a relatively
minimal “16 point™ print would require recovering at least
16 rows, and a more realistic estimate is that one would
have to recover at least 32 rows to even have a small
chance of forming a web that properly interrelates 16-
minutiae points, and n=64 to have a decent chance to
recover a larger point match. (Again we don’t know how
to go from rows back to minutiae so the numbers needed
are somewhat uncertain.)

In our current implementation 64pe = 2°%2'%%27=2% 5o
for a brute force attack to recover 16 minutiae would
requirea minimum n=2', #* = 2479 = 2! and more
realistically it would be n=2" 1= 272 = 2'7* prute force
attempts to recover 16 original minutiae. Again, all of this
analysis is presuming that after generating hypotheses for
each of the unknown items in a row there is a testable
hypothesis to confirm the collection of rows as correct. No
such algorithm is known, but since we have no analysis to
suggest it is computationally infeasible, we do not include
its difficulty in our security analysis.

The important thing is that the approach has provided
sufficient ambiguity that, unlike the encoding of individual
fields or the folding approach of (Ratha et. Al. 07), it
provides a reasonable protection against a brute force
attack. Given that there are other ways to “acquire”
fingerprint biometrics, such as following a person around
and picking up a left object, the 2121 seems sufficient
protection. If it is not, adding more chaff columns (i.e.
increasing ¢) and or having additional data (e.g. minutiae
type) that is part of the “stable data™ (i.e., increasing p),
exponentially increases the protection.

Cariations on this idea allow tradeoffs between storage
size, computational cost and security. Originally, we
implemented this as described, but because the inversion
of the pair-table is not obvious, and because it is larger
than the original minutiae data, we moved to a more
efficient form wherein we encrypt a compressed form of
the raw minutiae data rather than the 32 bit fields to be
protected. (Le. EI/E2 in Figure 1 are replaced with AES
encrypted raw minutiae). We still generate the CRC-
version of the q fields and use it in matching. Since the
raw minutiae data 1s block encrypted, it is properly
protected. Of course, none of that data can be used for
approximate matching, but it does make good chaff. Since
both the encrypted minutiae and the AES encrypted “q”
data appears as random chaff to the matching algorithm,
the difference is immaterial to the performance but it
makes the PK- inversion much simpler and requires less
space.

A secondary advantage of our biotoken approach is that
it supports a simple “company” level re-issuance. When



the data is encoded, the “index™ that allows one to identify
the CRC-data among the chaff can be encoded with the
company’s master public key. If the company stores that as
an enrollment master-public key biotoken, they can then
use their private key to recover the order and issue an
operational biotoken. The operational biotoken is
generated by using an additional key as a post-pad to the
CRC-computation of the data fields, e.g., take the encoded
16 bit CRC from the user, append the new keys and
compute a new 16 bit CRC. Since this is non-invertible,
they can then PK/AES encrypt the original CRC-values,
replacing chaff columns with the results. If an operational
biotoken is compromised, or if the companies’ biotoken
policy usage limit is reached, the company can use their
key to recover the original CRC values (i.e., go back to
their original master public key biotoken) and then reissue
a new operational biotoken from their master. Still the
users data is protected, though knowledge of the order
removes ¢(2°) from the 64pc factor and reduces the brute
force effort needed by the company, but it still requires
very significant effort (of 2*) for even an insider to try to a
brute force attack. But it provides solid operational
security model with no customer inconvenience.

The post-pending of keys, or a more general multi-stage
process, can be used to support per-transaction unique
public key biotokens. For example, with the CRC model
we can take the operational public key biotoken, appended
a transaction-specific key, and produce a new encoded
field. For the transaction-level, the system does not need to
understand the order or re-encode the original CRC data
because no additional transforms will be applied afier the
transaction, so there is no need for inversion and it can
just apply the final CRC computation to all the columns,
and does not reduce the security at this level at all. For
matching, the user’s biometric is then subjected to a
similar process and the results can be matched. While the
true traditional CRC-based approach may be sufficient for
basic transactions, higher security applications could use
more advanced cryptographic hashes, which require larger
storage and more computation. They can also use a
CRC/hash such that the operational and transaction key,
though applied separately, can be combined into a single
key/transform to be applied so that the user’s machine
never receives the separate keys.

6. Performance

We implemented the fingerprint-Cryptographically
Secure Biotoken by extending the NIST/FBI Bozorth
matcher (also called NIST VBT). There are at least 2
major aspects of performance, speed and accuracy, which
are discussed separately.

During enrollment we require the generation of an RSA
key and full PK encryption, which is the most expensive
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Figure 3: ROC curves comparing Biotope™ biotokens
and the NIST/Bozorth matcher on FVC2002 data

step. On a 380x380 image, the computational aspects of
enrollment take approximately 750ms to 3000ms on a
1.6Ghz Pentium 4 processor depending on the size of the
chosen RSA key (512-2048 bits). Of this 250ms to 2500ms
for the key generation and encoding the AES key, 350ms
is for the minutiae extraction and image processing, and
other parameters and 50ms is for the AES encoding and
secure biotoken generation. Matching does not require the
PK encoding steps, greatly reducing the time to a total
average of 423ms, of which 394ms is for the image
processing and 29ms is the biotoken generation and
matching. This is only 8ms more than the time for the
standard NIST implementation of the Bozorth matcher on
which our biotoken is based.

More important that speed. however, is how the biotoken
process impacts matching accuracy. Accuracy is a strong
function of the number of minutiae or table size
maintained. For the Bozorth algorithm, we use the pre-
supplied defaults, which allows for 150 minutiae and
10,000 pairs. For the biotoken, we limited the table size to
keep the biotoken storage size below 24K, with an average
size of 13K. Limiting was done first using the defaults for
pruning on NIST-computed quality of the minutiac but
also trying to ensure that each minutiae was included in a
few pairs rather than letting the best minutiae take part in
all of their pairs. This was done to ensure better spatial
coverage. While a few may consider a 20K token
excessively large, we believe a little storage is a small
price to pay for the security and privacy enhancements of
biotokens. Then again, with 20K biotokens, 50 Million
tokens fit on a Gigabyte card and tokens for all of the US
fit on a laptop.

We made only minimal changes to the matcher code,
extending it to handle added columns and to test the



Biotoken Improvement
Dataset Verification Over EER of
EER NIST VBT

FVC 2000 dbl .029 30%
FVC 2000 db2 .025 37%
FVC 2002 dbl .021 34%
FVC 2002 db2 012 30%
FVC 2004 dbl .086 39%
FVC 2004 db2 075 33%
Table 1: Finger Biotope™ accuracy

encoded fields with the described “subset matching”.
Because the encoding of the tables and quality pairing can
change the number of entries, we added normalization to
the scoring based on the number of rows used.

For analysis we applied both algorithms to the well-
known Fingerprint Verification Challenge datasets, e.g.,
see (htip://bias.csr.unibo.it/fve2000). Each of the FVC2007?
verification tests has 8 prints each of 100 subject,
producing 2800 true matches and 4950 false maich
attempts. Figure 3 shows ROC curves comparing the
biotoken algorithm with the original NIST/Bozorth
matcher. The new biotokens consistently outperform the
original algorithm. (Note this is a semi-log ROC.) To
define the improvement quantitatively we use the Equal
Error Rate, shown in Table 1, and have an average of 33%
reduction in the EER. As can be seen Figure 3,
improvement general increased with decreasing FAR

Including more features during matching (e.g., ridge
counts) might improve biotoken performance but were not
included because they are not used by Bozorth3 and would
be an unfair comparison. Even without the added features,
for FVC2000, these scores would have resulted in it being
the 3rd place algorithm overall, and in the top ten in
FVC2002.  The FVC2004 data requested subjects to
mntentionally distort their prints, which may have moved
minutiae outside the window used for matching and in
building the feature-web in the Bozorth algorithm, which
negatively impacted both algorithms’ performance.

While the accuracy gains with our approach are not as
significant we reported in [Boult-06] for face, they are still
significant. In addition, prior fingerprint-based techniques
attempting to provide privacy, e.g., [Ratha-et-al-07] or
[Tuyls-et-al-05] have all had to trade accuracy for privacy.

7. Conclusions and future work

The paper introduced the use of a robust revocable
fingerprint-based biotoken. We analyzed previous work
and showed it lacks in bother accuracy and/or security.
The paper introduces a “reflective modulus™ operator with
an important local neighborhood “nearness” preservation
property, which is important to the effectiveness of the
biotoken algorithm. The transforms combined with

encryption maintain the privacy while the unencrypted
part supports a robust distance measure, something that is
critical to make biometrics effective. While the paper
presents only fingerprints, the approach applies to almost
all biometrics.

As Admiral James Loy, Head of Transportation Security
Agency, stated at the 9th Annual Privacy & American
Business Conference, 2003 "Don't be too quick to strike a
balance between privacy and security. As Americans, we
are entitled to a full measure of both". Secure biotokens
show, that at least for biometrics, we don’t have to accept
the loss of privacy to gain security. Biotopes™ and other
secure biotokens can solve the biometric dilemma. Not
only do they provide privacy and security, they actually
improve the accuracy of the underlying biometrics!
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