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Abstract

We propose using stereo matching for 2-D face recogni-

tion across pose. We match one 2-D query image to one 2-D

gallery image without performing 3-D reconstruction. Then

the cost of this matching is used to evaluate the similarity

of the two images. We show that this cost is robust to pose

variations. To illustrate this idea we built a face recognition

system on top of a dynamic programming stereo matching

algorithm. The method works well even when the epipolar

lines we use do not exactly fit the viewpoints. We have tested

our approach on the PIE dataset. In all the experiments, our

method demonstrates effective performance compared with

other algorithms.

1. Introduction

Face recognition is a fundamental problem in computer

vision. There has been a lot of progress in the case of im-

ages taken under constant pose [15]. There are several ap-

proaches to handling pose variation [11, 7, 9]. However,

there is still a lot of room for improvement. Progress would

be important for applications in surveillance, security, the

analysis of personal photos and other domains in which we

cannot control the position of subjects relative to the cam-

era.

Correspondence seems quite important to produce mean-

ingful image comparisons. Existing systems often align the

eyes or a few other features, using translation, similarity

transformations, or perhaps affine transformations. How-

ever, when the pose varies these can still result in fairly sig-

nificant misalignments in other parts of the face, as we will

demonstrate.

In many real applications of face recognition, the epipo-

lar geometry of the cameras is approximately known even

when the distance between cameras is unknown. In par-

ticular, when we take upright pictures of people, as in per-

sonal photos, the epipolar lines are approximately horizon-

tal. Therefore,we propose using stereo matching to produce

a measure of the similarity of two faces (in unknown poses).

We show that the matching cost is robust to horizontal pose

variations. Note that we are not interested in performing

3-D reconstruction. We show that the method works well

even when the epipolar lines we use are not accurate due to

a significant difference in height in the two cameras.

The rest of the paper is organized as follows. Sec. 2

discusses related work. Sec. 3 analyzes the use of stereo

matching algorithms for recognition across pose. Sec. 4

presents the details of our face recognition method and Sec.

5 presents and analyzes all experiments. Sec. 6 concludes.

2. Related Work

Zhao et al. [15] review the vast literature on face recog-

nition. Although the bulk of this work assumes fixed pose,

there have been a number of approaches that do address

the problem of pose variations. Many of these methods use

some 3-D knowledge of faces to compensate for pose.

Blanz and Vetter [3] use laser scans of 200 subjects

to build a general morphable model of three dimensional

faces. Then, with the aid of manually selected features, they

fit this model to images. The parameters of the fit to two dif-

ferent images can be compared to perform recognition. In

their experiments they show strong results for a subset of

the poses in the PIE database.

In Romdhani et al. [11] shape and texture parameters of

a 3-D morphable model are recovered from a single image.

They present exhaustive results of experiments with pose

variations for the PIE dataset and show strong results (the

best results we’re aware of with pose variation).

Basri and Jacobs [1] use a 3D model to generate a low di-

mensional subspace containing all the images that an object

can produce under lighting variation. Pose is determined

using manually selected point features.

In Georghiades et al. [6] a 3-D head model is computed

for each person using a gallery containing a number of im-

ages per subject taken with controlled illumination. Pose

variation is handled by sampling the set of possible poses,

and building a 2-D model for each one. They evaluate their

method using the Yale Face Database B. However, it is not

clear how such a method might perform using arbitrary gal-

leries and probes.

In Gross et al. [7] two appearance-based algorithms for
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face recognition across pose and illumination are presented.

One of them is called eigen light-fields. At the core of the

method is the plenoptic function or light field. To use this

concept, all of the pixels of the various images are used to

estimate the (eigen) light-field of the object. They evaluate

their results using the CMU PIE dataset [12]. In its assump-

tions, (recognizing faces across general unknown poses),

this method is the most similar to ours. However our ap-

proach is simpler and our results are better.

The other method presented in Gross et al. [7] is called

Bayesian Face Subregions (BFS). The algorithm models the

appearance changes of the different face regions in a proba-

bilistic framework. Using probability distributions for simi-

larity values of face subregions, the method computes the

likelihood of probe and gallery images coming from the

same subject. The method is particularly useful when the

probe pose is known.

Beymer and Poggio [2] generate 2-D virtual views from

a single image per person using prior knowledge of the ob-

ject class (in particular symmetry and prototypical objects

of the same class) using optical flow. Once the virtual view

has been generated the images are compared. The method is

similar to ours in the sense that it is decidedly 2-D and that

it stresses the importance of having good correspondences

for face recognition across pose.

Many other approaches compensate for some 2-D de-

formations in matching, which may partially compensate

for the effects of pose. A notable example is the work of

Wiskott et al [14]. They developed a method called Elastic

Bunch Graph Matching (EBGM) that is a simplified imple-

mentation of dynamic link architecture methods based on a

neural network and a geometric measure.

3. Analysis of Stereo Matching for Face Recog-

nition

Most work in image-based recognition aligns regions to

be matched with a low-dimensional transformation, such as

translation, or a similarity or affine transformation. Instead,

we use stereo matching. When we enforce the ordering

constraint, this allows for arbitrary, one-to-one continuous

transformations between images, along with possible occlu-

sions, while maintaining an epipolar constraint. In this sec-

tion we show that the greater generality afforded by stereo

matching may be necessary for face recognition, and that

stereo matching will not be too sensitive to noise in deter-

mining the epipolar lines.

We illustrate this using a very simplified model of faces,

in which we calculate the disparity maps that will correctly

match two images.

1. We model the face as a cylinder. Perturbations to this

model, such as adding a nose, can be handled fairly

easily.

θθ

frfl

(0, i, z)

(x, 0, 0)(−x, 0, 0)

We assume this
angle is small

Figure 1. Our very simplified model of faces.

2. We assume the face is viewed by two cameras with

image planes that are rectified to be perpendicular to

the z axis and that the cylinder axis is the y axis. This

is roughly the situation when an upright person pho-

tographs another upright person. For simplicity, we

will assume that the cylinder lies on the z axis, that the

camera focal points lie on the x axis at points symmet-

ric about the z axis (see Figure 1). We call the left and

right focal points fl and fr respectively.

3. We assume that the distance from the camera to the

person is much bigger than the radius of the cylinder

that represents the person. Specifically, we assume that

vectors from the camera focal point to any location on

a horizontal cross section of the cylinder have the same

direction. If we imagine that the cylinder (face) has a

radius of three inches, and the distance from the cam-

era to the face is 8 feet, we can calculate that a vector

from the focal point to the center of a cross-section of

the cylinder will be within 5.5 degrees of a vector to

any point on the cylinder cross section, so this approx-

imation is not too bad.

These assumptions simplify our presentation, which could

be readily extended to other settings.

We will analyze disparities on the y = 0 plane. Given

these assumptions, each camera will see half of a circu-

lar cross-section. They will not see exactly the same half-

circle, however, as there will be some occlusion. Without

loss of generality assume the radius of the circle is 1. We

will denote the angle between the z axis and a vector from fl

to the cylinder by θ. The corresponding angle for the right

camera will then be −θ. Define l1 and l2 to be two points on

the circle, such that the tangent lines to the circle at l1 and l2
pass through fl. That is, l1 and l2 are the first and last points

on the circle that are visible in the left image. Define L to

be the line connecting l1 and l2. We can similarly define r1

and r2 for the right image. So, for example, the region of

the circle between r1 and l2 is visible in both images.
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Figure 2. The circle paramerized by the angle φ.

Note that every line connecting fl to L intersects the cir-

cle in a single point that will be visible in the left camera.

So one way to determine the image of the circle in the left

camera is to project the visible half-circle onto L using these

lines, and then to consider how L is projected onto the left

camera. Because we assume the cylinder is small relative

to its distance to the camera, we can approximate the pro-

jection of L into the left camera using scaled-orthographic

projection. Without loss of generality we can normalize the

left image so that the width of the circle’s projection is 1

(this is in image units, which may differ from 3D units), and

the x coordinate of the image of l1 is 0. This is illustrated in

Figure 2.

We can parameterize points on the circle by the angle φ,

which we take relative to l2 (see Figure 2). Consider some

such point p. We can determine the location of p in the left

image, by considering the line through p and fl. The point

where this line intersects L, call it Pl, will appear in the

same image location as p. Define the distance from Pl to l1
to be d(l1, Pl). Then the x coordinate of p in the left image

is d(l1, Pl)/2 = (1+cosφ)/2. Similarly, its position in the

right image will be (1 − cos(π − 2θ − φ))/2. If we define

the disparity, d, in a matched point to be its x coordinate in

the left image minus the x coordinate in the right; we get:

d = (cosφ + cos(π − 2θ − φ))/2 (1)

It is straightforward to show that disparity is minimized by

φ = 0 or φ = π − 2θ, which are the furthest points visible

in both cameras, and maximized by φ = (π− 2θ)/2, which

corresponds to the point closest to the cameras.

We are interested in the variation between the minimum

and maximum disparity values, ∆d. We have:

∆d = cos
(π

2
− θ

)

−
1

2
−

cos(π − 2θ)

2
(2)

Figure 3. Change in disparity relative to the size of the face as a

function of θ.

This is maximized for θ = π/6, when ∆d = 1/4. Figure 3

shows how the maximum change in disparity varies with θ.

In Figure 3, we can see that for a large range of θ, disparity

changes quite a bit within the image.

From this analysis, we can see that for a cylinder, dis-

parity in an image can vary by as much as 1/4 of the ap-

parent width of the cylinder, and frequently varies substan-

tially. These variations in disparity cannot be accounted for

by aligning the images with a linear transformation, since

linear transformations can only create linear disparity maps.

In scenarios such as the one described here, because of the

symmetry of the viewing conditions, we can demonstrate

that the optimal linear transformation to align the two im-

ages will simply be the identity transformation, which does

not account for any of these variations in disparity. Note

that the amount of disparity is independent of the distance

from the cameras to the face, because we measure disparity

relative to the apparent size of the face.

Ideally, one should determine the epipolar geometry

prior to matching two faces. However, in many cases, im-

ages result from an upright photographer taking a picture

of an upright subject. This results in epipolar lines that are

approximately horizontal. If we align the eyes in two pho-

tographs, this will align corresponding horizontal epipolar

lines. However, error will result when epipolar lines are not

purely horizontal. To get a sense of the possible magnitude

of this error, we analyze a simple example.

Consider the case in which we take two pictures of a

face that is five feet high, at a distance of eight feet. But

suppose that the disparity is vertical instead of horizontal,

because one photograph is taken from a height of five feet,

and the second is taken from a height of six feet. Vertical

disparity will be zero at the eyes, which are aligned, and

will be maximized at the point that is closest to the cameras,



the tip of the nose. If we assume that the nose is about

one inch long, then using similar triangles we can determine

that it appears at the same image location as a point 1/8 of

an inch below the nose, in the second image. For a face

that is six inches long, the vertical disparity will therefore

be about 2% of the height of the face in the image. This

error is small compared to the variations of up to 25% in

horizontal disparity that can arise in the situation we analyze

above. Of course, this is just an illustrative example; the

error introduced by mis-estimation of the epipolar lines will

depend in practice on the viewing conditions typical in a

specific application. Our example simply makes the point

that in some common settings, this error will be quite small,

while stereo matching can compensate for correspondence

errors that will be large.

4. Stereo Matching and Face Recognition

We require an efficient stereo algorithm appropriate for

wide baseline matching of faces. A number of methods

might be suitable. We have used Criminisi et al. [5]1 which

has been developed for video conferencing applications and

so seems to fit our needs. It is not obvious that it will work

for the large changes in viewpoint that can occur in face

recognition, but we will show that it does.

It is important to stress that we are relatively unaffected

by some of the difficulties that make it hard to avoid artifacts

in stereo reconstruction. For example, when many matches

have similar costs, matching is ambiguous. Selecting the

right match is difficult, but important for good reconstruc-

tions. However, since we only use the cost of a matching,

selecting the right matching is unimportant to us in this case.

Also, errors in small regions, such as at occluding bound-

aries, can produce bad artifacts in reconstructions, but that

is not a problem for our method as long as they don’t affect

the cost too much.

The core of the stereo method calculates a matching be-

tween two scanlines (rows of each face). We use the 4

planes, 4 transitions stereo matching algorithm described in

[5]. This is a dynamic programming stereo matching algo-

rithm that is fast and performs well when compared to other

methods. The benefit of this formulation is having more

control than traditional one plane models [4].

The method defines 4 planes (or matrices) called CLo,

CLm, CRo and CRm, which capture matching and occlu-

sions in the left and right images. The planes naturally de-

fine the persistence of states. By setting the state transition

costs adequately many state transitions can be favored or

biased against, for example long runs of occlusions can be

favored over many short runs by setting a high cost for en-

tering or leaving an occluded state.

1We also tried the method described in Cox et al. [4] and found the

method to be a bit faster but less accurate than the method described in

Criminisi et al. [5].

The elements of the cost matrix are initialized to +∞
everywhere except in the right occluded plane where:

CRo[i, 0] = iα ∀i = 0 . . .W − 1 (3)

The forward step of the 4-state DP computes the four cu-

mulative cost matrices according to the following recursion:

CLo[l, r] = min











CLo[l, r − 1] + α

CLm[l, r − 1] + β

CRm[l, r − 1] + β

(4)

CLm[l, r] = M(l, r) + min



















CLo[l, r − 1] + β′

CLm]l, r − 1] + γ

CRm[l, r − 1]

CRo[l, r − 1] + β′

(5)

where M(l, r) is the cost of matching the lth pixel in the

left scanline with the rth pixel in the right scanline. α, β,

β′ and γ are parameters that can be set experimentally. CRo

and CRm are symmetric. Our experiments show that the

method is rather insensitive to these parameters and all ex-

periments shown here are run with α = 0.5, β = β′ = 1.0
and γ = 0.25 as recommended in [5]. M(l, r) is a fast ap-

proximation to the normalized cross correlation of a 3 × 7
window around the points (l, s) and (r, s) of the images,

where s is the current scanline.

The cost of matching the two scan lines l1 and l2, de-

noted cost(l1, l2), is: CRo[l−1, r−1]. The optimal match-

ing solution will be a sequence of symbols in the alphabet:

{CLo, CLm, CRo, CRm} which can be obtained by follow-

ing a backward step. But we have no use for the optimal

matching, we only use its cost.

Let cost(I1, I2) define the cost of matching the rows of

I1 with the rows of I2, as defined above:

cost(I1, I2) =

n
∑

i=1

cost(I1,i, I2,i) (6)

where I1,i is the i-th scan line (row) of image 1. Given

two images with unknown pose, I1 and I2, we define the

similarity of the two images as:

similarity(I1, I2) = min



















cost(I1, I2)

cost(I2, I1)

cost(flip(I1), I2)

cost(I2, flip(I1))

(7)

since we do not know which image is left and which image

is right we have to try both options, one of them will be the

true cost, the other cost will be noise and should be ignored.

Additionally, flip produces a left-right reflection of the im-

age. flip is helpful when two views see mainly different



sides of the face. In this case, a truly correct correspon-

dence would mark most of the face as occluded. However,

since faces are approximately vertically symmetric, flip ap-

proximates a rotation about the y axis that creates a virtual

view so that the same side of the face is visible in both im-

ages. For example, if we viewed a face in left and right

profile, there would be no points on the face visible in both

images, but flipping one image would still allow us to pro-

duce a good match.

Finally, we perform recognition simply by matching a

probe image to the most similar image in the gallery. For

the method to work well all the images in the gallery have

to be in the same pose.

5. Experiments

The experimental evaluation is separated into four parts.

All the experiments were run with the CMU PIE database

[12]. The CMU PIE database consists of 13 poses of which

9 have approximately the same camera altitude (poses:

c34, c14, c11, c29, c27, c05, c37, c25 and c22). Three

other poses that have a significantly higher camera altitude

(poses: c31, c09 and c02) and there is one last pose that has

a significantly lower camera altitude (pose c07). We say

that two poses have aligned epipolar lines if they are both

from the set: {c34, c14, c11, c29, c27, c05, c37, c25, c22}.

And we say that two poses have misaligned epipolar lines if

one comes from the set {c34, c14, c11, c29, c27, c05, c37,

c25, c22} and the other comes from the set {c31, c09, c07,

c02}.

The faces were cropped to a size of 40x48 pixels show-

ing only the face. The images were aligned using manually

selected feature points with a similarity transformation.

To be able to compare results with [7, 9] we needed to

use a subset of 34 people because they use 34 people for

training and the remaining 34 for testing. We don’t require

training, but we’re interested in comparing the methods in

equal conditions so we tested on individuals 35-68 from the

PIE database. To compare with [11] we used the whole set

of 68 people.

First, we evaluate our method with pose variation but

fixed lighting. This is done in two separate experiments,

one to compare with [7, 9] and the other to compare with

[11]. Then to illustrate that our method works in more real-

istic situations we evaluated simultaneous variation in pose

and illumination. This too is done in two separate experi-

ments, one to compare with [7, 9] and one to compare with

[11].

5.1. Pose Variation: Comparison with Gross et al.

We conducted an experiment to compare our method

with four others. We compared with two variants of eigen

light-fields[7], eigenfaces[13] and FaceIt as described in

Table 1. A comparison of our stereo matching distance with other

methods accross pose.

34 Faces

Method Accuracy

Eigenfaces [7, 9] 16.6%

FaceIt [7, 9] 24.3%

Eigen light-fields (3-point norm.) [7, 9] 52.5%

Eigen light-fields (Multi-point norm.) [7, 9] 66.3%

Stereo Matching Distance 82.0%

68 Faces

Method Accuracy

Stereo Matching Distance 73.5%

LiST (Romdhani et al. [11]) 74.3%

[7, 9]. FaceIt2 is a commercial face recognition system from

Identix which finished top overall in the Face Recognition

Vendor Test 2000. Eigenfaces is a common benchmark al-

gorithm for face recognition. Finally, eigen light-fields is

a state of the art method for face recognition across pose

variation.

In this experiment we selected each gallery pose as one

of the 13 PIE poses and the probe pose as one of the remain-

ing 12 poses, for a total of 156 gallery-probe pairs. We eval-

uated the accuracy of our method in this setting and com-

pared to the results in [7, 9]. Table 1 summarizes the aver-

age recognition rates. Figure 4 shows several cross-sections

of the results with different fixed gallery poses.

The fact that the method performs solidly both when the

epipolar lines fit (with an average of 87.4%) and when they

don’t (with an average of 79.0% ) and overall (with an av-

erage of 82.0% as reported in Table 1) shows the generality

of our method.

In this experiment we observe that in all gallery poses

our method especially outperforms all the other methods for

the extreme probe poses (c34, c31, c14, c02, c25 and c22).

5.2. Pose Variation: Comparison with Romdhani et
al.

We also compared our results with the ones presented in

Romdhani et al[11]. These results are, to our knowledge,

the best reported on the whole PIE database for pose varia-

tion. In this work all 68 images were used, so for this part

we report our results using all 68 faces. Table 1 summarizes

the results of this experiment.

The global average for their method is 74.3%, the global

average for our method is 73.5%. For the subset of poses

in which the epipolar lines fit perfectly our average perfor-

mance is 80.3%, while theirs is 71.6%. We consider the case

where all epipolar lines fit to be our best possible scenario.

2Version 2.5.0.17 of the FaceIt recognition engine was used.



(a) Gallery Pose c27 (b) Gallery Pose c22

(c) Gallery Pose c37 (d) Gallery Pose c31

Figure 4. Cross-sections with fixed gallery pose for the results presented in Table 1. Probe poses marked with * have a vertical misalignment

of about 10 degrees with the corresponding gallery pose.

Our method runs about 40 times faster than the method pre-

sented in [11], and is much simpler. Detailed results are

presented in Table 2.

5.3. Variation in Pose and Illumination: Compari­
son with Gross et al.

We then evaluated the performance of the method across

pose and illumination. One of the objectives of this experi-

ment is to verify that the good performance obtained when

there is variation in pose (the previous experiments) are not

an artifact of the (constant) illumination condition.

In this section we compare our method to Bayesian Face

Subregions (BFS) [7] in the case of simultaneous variation

of pose and illumination. For this experiment, the gallery

is frontal pose and illumination. For each probe pose, the

accuracy is determined by averaging the results for all 21

different illumination conditions. The results of this com-

parison are presented in Figure 5. We observe that our al-

gorithm strictly dominates BFS over all probe poses.

For lighting invariance they use [8] which computes the

reflectance and illumination fields from real images using

some simplifications, while we simply use an approxima-

tion to normalized correlation.

5.4. Variation in Pose and Illumination: Compari­
son with Romdhani et al.

We performed our experiments in such a way that we can

compare with [3] and [11]. For this experiment we used

images of the faces of 68 individuals viewed from 3 poses

(front: c27, side: c5 and profile: c22) and illuminated from

21 different directions. We used light number 12 for the

gallery illumination to be able to compare our results with

[11]. They select that lighting because “...the fitting is gen-

erally fair at that condition”. Our results are presented in



Table 2. Confusion matrix for pose variation. The diagonals are not included in any average. The table layout is the same as [11] and [10].

azimuth -66 -47 -46 -32 -17 0 0 0 16 31 44 44 62

altitude 3 13 2 2 2 15 2 1.9 2 2 2 13 3

Probe Pose c34 c31 c14 c11 c29 c09 c27 c07 c05 c37 c25 c02 c22 avg

Gallery Pose

c34 - 91 88 66 59 62 47 16 47 57 65 60 90 62

c31 96 - 94 78 62 82 46 19 56 65 90 66 76 69

c14 85 85 - 100 99 66 90 60 85 82 57 81 47 78

c11 71 75 100 - 100 72 96 81 82 88 47 84 49 79

c29 60 68 100 100 - 94 100 84 97 93 46 84 43 81

c09 66 91 71 85 94 - 99 54 97 90 90 82 68 82

c27 57 56 97 100 100 100 - 90 100 99 50 93 49 83

c07 10 18 60 74 82 56 81 - 79 62 16 47 13 50

c05 43 47 91 93 97 93 100 85 - 100 69 100 62 82

c37 71 63 87 90 90 88 97 65 100 - 87 100 76 85

c25 75 91 57 44 49 91 51 19 72 82 - 93 94 68

c02 68 60 87 85 87 71 96 53 99 100 82 - 85 81

c22 85 65 50 38 40 57 38 16 53 69 88 85 - 57

Figure 5. A comparison of out method with BFS. Gallery pose is

frontal (c27) probe poses are as indicated in the x axis, we report

the average over the 21 illuminations.

Table 3. We do not expect our results to be as good as those

of [11], because our algorithm only accounts for lighting

variation by using a fast approximation to normalized cross

correlation as described in Criminisi et al. [5], while [11]

has a 3-D model and performs an optimization to solve for

the lighting that best matches the model to the image.

Our stereo matching method degenerates into an approx-

imation to normalized correlation over small windows when

there is no change in pose. Our method performs better

than Romdhani et al. [11] when there is no pose change

(gallery probe combinations: F-F, S-S and P-P). It is sur-

prising that our method works better than theirs in this case

because we’re using a simple illumination insensitive image

comparison technique and they perform an optimization to

Table 3. Accuracy percentage with pose and illumination variation.

Three galleries and three probes were used. F: Frontal, S: Side, P:

Profile. Light 0 is ambient lighting. The table layout is the same

as [11].

F Gallery S Gallery P Gallery

light F S P F S P F S P

0 100 100 54 99 100 65 38 41 100

1 67 69 38 61 88 15 28 25 75

2 79 76 34 76 87 25 29 19 76

3 84 82 32 85 94 16 34 28 66

4 93 96 34 93 97 26 34 24 75

5 100 97 35 96 100 46 35 19 99

6 99 92 36 83 99 41 22 19 99

7 100 100 39 100 100 71 29 31 100

8 100 100 41 100 100 71 35 46 100

9 91 91 42 99 90 31 32 16 75

10 100 100 43 100 100 65 38 41 100

11 100 100 43 100 100 65 40 50 100

12 - 100 43 100 - 57 38 44 -

13 100 99 43 100 100 50 43 56 100

14 100 94 42 100 100 38 46 54 100

15 100 78 40 97 99 32 32 35 100

16 99 66 39 91 96 24 37 37 99

17 90 88 38 91 96 16 35 22 60

18 96 97 38 96 99 31 35 21 91

19 100 100 38 97 100 59 35 38 100

20 100 100 39 100 100 57 35 51 100

21 100 97 39 100 100 44 36 54 100

avg 95 92 38 94 98 43 35 35 92

solve for lighting.

For this experiment our global average is 74% while the

global average of Romdhani et al. [11] is 81%, which

is considerably better. When there is pose change but no

epipolar misalignment and no light change, we perform bet-



ter. When there is light change and no pose change we per-

form better. This leads us to think that the difference is

in the interaction between pose variation and illumination

variation.

6. Conclusion

We proposed a method to recognize faces across pose.

Compared to existing methods ours is very simple and per-

forms very well. There still is room for improvement in our

method, in the sense that a rich variety of more sophisti-

cated strategies can be pursued at each step. As it is, our

method illustrates a general, simple, viable alternative to 3-

D methods for face recognition across pose [11, 3].

Our method has several interesting properties: (1) it is

robust to vertical disparities even when we don’t account for

them, (2) it degrades gracefully with changes of light and

(3) provided that good correspondences are obtained, the

method degenerates into normalized correlation over small

windows when there is no variation in pose.

While evaluation with the PIE dataset shows that our

method performs very well, evaluation of the method in a

larger, less controlled database remains to be done.

For the case of only pose variation our results are better

than the results of Gross et al. [7, 9]. In the case of only

pose variation, our results are comparable to the results of

Romdhani et al. [11] but our method has the benefit of being

simpler and faster.

For the case of simultaneous pose and illumination vari-

ation, our results are better than the results of [7] but worse

than the results of [11]. This is not surprising since we don’t

do anything special to account for variation in illumination.

Finally, we have presented a general method that has a

simple, well studied way to account for pose variation and a

simple, well studied way to account for light variation and

our experiments show that the method works well.
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