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Abstract

Given five motion vectors observed in a calibrated cam-
era, what is the rotational and translational velocity of the
camera? This problem is the infinitesimal motion analogue
to the five-point relative orientation problem, which has pre-
viously been solved through the derivation of a tenth-degree
polynomial and extraction of its roots.
Here, we present the first efficient solution to the in-

finitesimal version of the problem. The solution is faster
than its finite counterpart. In our experiments, we investi-
gate over which range of motions and scene distances the
infinitesimal approximation is valid and show that the in-
finitesimal approximation works well in applications such
as camera tracking.

1. Introduction
This paper presents an efficient solution to the following

problem: given five motion vectors observed in a calibrated
camera, what is the rotational and translational velocity of
the camera? This is the infinitesimal motion analogue to the
finite motion five-point relative orientation problem.
The infinitesimal problem is known, just as its finite

counterpart, to have ten solutions. However, while the fi-
nite problem has previously been solved efficiently through
the derivation of a tenth-degree polynomial and extraction
of its roots, no such solution was previously known for the
infinitesimal problem.
We present what is to our knowledge the first such solu-

tion to the infinitesimal problem and show that the solution
is more efficient than the finite counterpart.
Just like the finite motion algorithm, the infinitesimal

motion approximation can be used on image correspon-
dences extracted with any algorithm of choice. The small
motion approximation made here is a geometric approxi-
mation of small camera translation and rotation. Thus, the
approximation is very different from the one made in optical
flow, where image patches are assumed to undergo changes
that can be Taylor-approximated. Here, it is assumed that

Figure 1. This paper considers the differential five-point relative
orientation problem. One way to understand the constraint used
in relative orientation is the following. Given the observed motion
field (top left), a hypothesized rotation (top right) is subtracted
from the motion field. For the correct rotation the remaining mo-
tion field (bottom) must converge on a point.

the geometric effects of camera motion on the image points
can be Taylor-approximated. As a result, the approximation
is valid for far larger motions than optical flow is. One can
in fact use finite motion correspondences in the differential
five-point algorithm, or use motion vectors extracted with
optical flow to generate correspondences for the usual five-
point algorithm. The method for correspondence extraction
and the method for extraction of camera motion given point
correspondences are decoupled.
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In the experiments we show that the infinitesimal ap-
proximation works well for applications such as camera
tracking. We also investigate over which range of motions
and scene distances the approximation is valid.

2. Prior Art
It is known that the differential five-point problem has

ten solutions.A proof of this can be found in [9]. However,
this is to our knowledge the first solution that corresponds
directly to the intrinsic difficulty of the problem, in the sense
that we derive a tenth degree polynomial with roots corre-
sponding to the ten solutions. Moreover, it is the first time
an algorithm has been used to solve this problem in a practi-
cal context and to investigate the performance under noise.
The presented solver is similar to the finite five-point

solver [10]. The finite motion case has been extensively
studied. Kruppa showed that the finite problem has at most
22 solutions [7]. Later, this number was reduced to 20 and
it was shown that the roots could be computed in pairs by
solving for the essential matrix resulting in 10 solutions
[3, 6]. Other authors [12, 8] have recently produced ver-
sions of the solver that are easier to understand and imple-
ment. Stewénius et al. proposed a method based on comput-
ing a Gröbner basis, while Li and Hartley proposed using
hidden variable resultants to compute the solutions.
The infinitesimal case has been relatively less studied

with some important exceptions [1, 13]. Our solver rep-
resents an alternative to the finite five-point solver in appli-
cations where small motion is expected.

3. Solving the Problem
A geometrically very nice way to think of both the

finite and differential versions of the relative orientation
problem is the following: the motion of the image points is
a composition of a rotational and translational component,
see Figure 1. The rotational component is given directly
by the camera rotation or rotational velocity, while the
translational component causes the image points to move
towards or away from a single focus of expansion e (or
epipole in the finite motion case). The amount of translation
is different for each image point, and depends on the depth
of the image point, but the direction of translation is always
on the line towards e. If we ignore whether the point is in
front of or behind the camera, so that the direction of image
motion is immaterial, this is in fact the only constraint,
since any point on the line towards e can be obtained with
some depth for the point, where the depth is also unknown.
To obtain equations from which the problem can be solved,
one can therefore observe the following:

Observation A rotation is part of a valid solution for
the camera motion if and only if it is the case that when

Figure 2. The lines defined by five observed point derivatives do
not in general come together at a single point (left). The constraint
on the rotation is that when we subtract the hypothesized rotational
component from the motion, the residual velocity vectors should
define lines that come together in a single point (right). This pro-
vides exactly the three scalar constraints on the rotation required
to solve the differential five-point problem. The finite five-point
problem can be thought of in a similar way.

we subtract the motion induced by this rotation from the
observed motion field, the remaining motion field converges
to or diverges from a common point e.

This constraint is illustrated in Figure 2.
In the case of five observed image points, a hypothesis

for the rotation can thus be used to de-rotate the five points
or the five velocity vectors, yielding five lines that have to
come together at a single point. Since two distinct lines
always intersect at exactly one point (at least in projective
image space), and each of the additional three lines have to
satisfy a single scalar equation in order to go through that
point as well, we have exactly the three scalar constraints
on the rotation that are necessary to obtain a finite number
of solutions.
Let the homogeneous coordinates of an observed image

point be denoted by u. Further, let the rotational velocity be
r, inducing the image motion [r]×u at that point, where the
motion is regarded as a tangent vector on the sphere. Let
also the observed velocity vector of a point be denoted by
v, again regarded as a tangent vector on the sphere.
The de-rotated velocity vector is then

m = v − [r]×u = v + [u]×r =
[
[u]× v

] [
r
1

]
(1)

This velocity vector is on the line defined by the focus of
expansion e and the point u if and only if

e�[u]×m = e�[u]×
[
[u]× v

] [
r
1

]
= 0. (2)

Note that e and r define the motion of the camera, and are
unknown, while u and v are observations (and different for



each point). Our goal is now to eliminate r from the equa-
tions given by five point observations. It is also possible to
instead eliminate e and thereby obtain equations similar to
the ones occurring for the finite five-point problem [10], but
for the differential case we obtain a more efficient solver by
eliminating r. For this purpose, define

ai(e) = e�[ui]×
[
[ui]× vi

]
, (3)

where i is the point number. Note that for each point, a i(e)
is a 1 × 4 row vector where each entry is a linear homo-
geneous function of e. We can now rewrite Equation (2)
as

ai(e)
[
r
1

]
= 0 (4)

and by stacking a1(e), . . . ,a5(e) into the 5× 4 matrix

A(e) =

⎡
⎢⎣
a1(e)
...

a5(e)

⎤
⎥⎦ (5)

we obtain the equation system

A(e)
[
r
1

]
= 0. (6)

SinceA(e) has a nullvector, it must be of at most rank three.
Hence, all the five 4× 4 sub-determinants ofA(e) must be
zero. Each of these sub-determinants is obtained by remov-
ing a row fromA(e) and taking the determinant of what is
left. The requirement that the five sub-determinants vanish
can be written⎡

⎢⎢⎢⎢⎣

[0] [1] [2] [3] [4]
[0] [1] [2] [3] [4]
[0] [1] [2] [3] [4]
[0] [1] [2] [3] [4]
[0] [1] [2] [3] [4]

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
C(e2,e3)

⎡
⎢⎢⎢⎢⎣

e41
e31
e21
e1
1

⎤
⎥⎥⎥⎥⎦ = 0, (7)

where [n] denotes an n-th degree homogeneous polynomial
in e2 and e3. Since C has a non-trivial nullspace, its deter-
minant

p(e2, e3) = detC(e2, e3) (8)

must vanish. Note that p(e2, e3) is a tenth degree homoge-
neous polynomial in e2 and e3. We set e3 = 1, and solve
for the up to ten roots e2 of p. We can then solve linearly
for e1 using Equation (7) and for r using Equation (6).

3.1. Alternate Solver Using a Gröbner Basis
A somewhat slower but potentially more stable path is

given by computing a Gröbner basis [2] with the monomi-
als ordered in Graded Reverse Lexicographic order (Grev-
Lex). This method is slower since it requires solving an

eigen-problem instead of just iterating on the real solutions
using a Sturm-sequence based solver. When using a root
solver based on a companion matrix this way of computing
the solutions is actually just as fast as when computing a
univariate polynomial.
As mentioned above, Equation (6) implies that all 4 ×

4 sub-determinants of A vanish. These equations can be
written

BX = 0, (9)

where B is a 5 × 15 matrix of scalars and X is a vector of
monomials of degree 4 in (e1, e2, e3). We orderX in Grev-
Lex order. By performing Gauss-Jordan elimination on B
we get a Gröbner basis for the ideal defined by BX :

e41 e31e2e21e
2
2 e1e

3
2 e42 e31 e21e2 e1e

2
2 e32 e21 e1e2 e22 e1 e2 1

1 • • • • • • • • • •
1 • • • • • • • • • •
1 • • • • • • • • • •
1 • • • • • • • • • •
1 • • • • • • • • • •

Given the Gröbner basis we extract the action matrixNe1

for multiplication by e1 in the quotient ideal. The left eigen-
vectors ofNe1 encode the solutions for (e1, e2, e3). We then
solve for r in Equation (6). See Appendix A for a Matlab
implementation of these operations.

4. Efficiency Considerations
In this section we present detailed efficiency optimiza-

tions. The solver derived in Section 3 is more efficient than
the discrete five-point solver since the matrices that have to
be eliminated are smaller. However, there are several im-
provements that can be made. The goal of this section is to
point out the details that make an implementation efficient.
We start with Equation (6)

A(e)
[
r
1

]
= 0. (10)

Each row of A is represented by 12 scalar numbers, of
which only 9 are distinct. We can exploit this to save op-
erations and time when manipulating A. By applying row
operationsA can be reduced to

Ared =

⎡
⎢⎢⎢⎢⎣

e1 0 •e3 •e1+ • e2+ • e3
e2 e1 •e3 •e1+ • e2+ • e3
e3 0 e1+ • e3 •e1+ • e2+ • e3
0 e2 e2+ • e3 •e1+ • e2+ • e3
0 e3 •e3 •e1+ • e2+ • e3

⎤
⎥⎥⎥⎥⎦ , (11)

where • represents multiplication by a scalar. That is, each
row ofAred is defined by four scalar numbers.

SinceAred

[
r
1

]
= A

[
r
1

]
= 0, we have that all 4×4 sub-

matrices of Ared must have vanishing determinants. Since



Ared has a very special structure, the computation of these
sub-determinants can be implemented efficiently.
By applying row operations to Equation (7), this system

is reduced to⎡
⎢⎢⎢⎢⎣

1 [1] [2] [3] [4]
0 [1] [2] [3] [4]
0 [1] [2] [3] [4]
0 [1] [2] [3] [4]
0 [1] [2] [3] [4]

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

e41
e31
e21
e1
1

⎤
⎥⎥⎥⎥⎦ = 0 (12)

⇒⎡
⎢⎢⎣
[1] [2] [3] [4]
[1] [2] [3] [4]
[1] [2] [3] [4]
[1] [2] [3] [4]

⎤
⎥⎥⎦

︸ ︷︷ ︸
Cred(e2,e3)

⎡
⎢⎢⎣
e31
e21
e1
1

⎤
⎥⎥⎦ = 0 ⇒

p(e2, e3) = detCred(e2, e3) = 0. (13)

From p(e2, e3) we compute e2 and e3 using a Sturm-
sequence based root-solver. e1 is then computed by taking

the nullspace ofCred(e2, e3).
[
r
1

]
can then be computed as

a nullspace ofAred(e1, e2, e3).
The nullspaces needed are all of small matrices and can

be computed using Cramer’s rule. We have implemented
our root-solver along the lines given in [10].

Computing Symbolic Determinants
The sub-determinants of Ared and the determinant of

Cred have in common that the matrix entries are polyno-
mials and that the determinants that we need to compute are
of size 4× 4.
In order to derive these determinants we first compute

all sub-determinants for the two first columns and then, all
sub-determinants in the last two columns. The determinant
is computed as a sum of products of these sub-determinants.

5. Experiments
We first examine the stability and performance of the

differential five-point algorithm under various motion and
noise conditions and compare our results with those of other
solvers. In Section 5.2, we give an example of using our al-
gorithm within a structure from motion system using real
video data. Finally, we give a performance comparison be-
tween optimized versions of our algorithm and the finite
five-point solver.

5.1. Stability of Motion Estimates
To test the stability of the algorithm, we generated a syn-

thetic scene with definable camera motion and observation
error. 500 world points were created in space and projected
into the cameras; observation error was subsequently added

to the image points in the form of Gaussian noise. Unless
otherwise stated, the noise has a standard deviation equiv-
alent to one pixel in a 640 × 480 image, and the baseline
is half the depth to the closest points in the scene. Motion
derivatives are simply defined by the inter-camera point mo-
tion. Five points generated the motion solutions, and a sixth
point was used to find the real solution with minimal Samp-
son distance [5]. We also show results of the discrete five-
point [10] and eight-point [5] solvers for comparison. Error
measurements in the figures represent the median of 1000
random input point configurations.
From Figures 3 and 4, we see that the differential five-

point algorithm is resistant to error caused by noise in cases
of forward and sideways motion. Our solver also performs
well in cases where the camera is translating with little or
no rotation, as seen in Figures 5 and 6. Note that for very
small baselines–especially in the case of forward motion–
noise has a greater influence than image point motion on the
cameramotion estimate. If we look at the error as a function
of translation direction, as in Figure 7, the eight-point algo-
rithm has a clear forward bias, whereas the other solvers are
less dependent on this direction. This bias explains the dis-
parity of errors seen in the small baseline range of Figures
5 and 6 for the eight-point solver.
Figures 8 and 9 were created from a scene with sideways

camera motion and increasing rotation. Compared to the
finite motion approaches, the error in the differential algo-
rithm quickly becomes apparent in cases of strong rotation.
By using a first order derivative, we implicitly assume lin-
ear motion of feature points in the image. If this assumption
does not hold, we can expect increasing error based on the
nonlinearity of the motion. Since the finite motion meth-
ods make no such assumption, the errors in those methods
remain flat. However, for video, optical flow or any nar-
row baseline situation, rotation between consecutive frames
would rarely be sufficient for the linear assumption to fail.
In the context of wide baseline or classical photogrammetric
applications, the differential approach is less valid.

5.2. Application to Structure from Motion System
In this section, we give an example of using the differ-

ential five-point algorithm in a real world application for
structure frommotion. The system operates on an image se-
quence in a manner similar to the monocular scheme given
in [11]. We use a simplified approach, looping over the fol-
lowing:

• Track feature points over several frames in the se-
quence. Estimate relative poses between three frames
using the differential five-point algorithm within a
RANSAC framework [4]. Perform iterative refinement
over these frames.

• Triangulate world points from tracked features.
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Figure 3. Translational error relative to increasing noise from a
camera with sideways motion.
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Figure 4. Translational error relative to increasing noise from a
camera with forward motion.

• Except for the first iteration, transform the relative
pose of new frames to the global coordinate system.
Use RANSAC to estimate the scale difference between
the coordinate systems.

• (optional) Perform bundle adjustment over recent
frames.

Results of a 200 frame sequence taken from a vehicle-
mounted camera are shown in Figure 10. No outlier rejec-
tion was performed; the system relies instead on the robust-
ness of the RANSAC process to remain unaffected. The
outliers are visible by their large reprojection errors, repre-
sented as red lines in the image frames. The true motion
is approximately straight, although both the differential and
finite motion algorithms drift slightly over time. This prob-
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Figure 5. Translational error relative to increasing sideways trans-
lation.
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Figure 6. Translational error relative to increasing forward transla-
tion.

lem is readily fixed by adding the bundle adjustment step.
Figure 11 presents a more challenging turntable se-

quence. Because rotation is a factor, we expect that the
finite motion method will perform better than our method.
The differential method does misestimate the motion in a
small number of cases, viewable as kinks in the camera
path, but these are not enough to cause bundle adjustment
to fail.

5.3. Speed

We have implemented both the differential five-point and
the finite motion five-point methods using Sturm sequence
iterations to bracket the roots, followed by bisection to re-
fine the brackets for the individual roots.
Timing can be divided into two parts. The first part is the



Figure 10. Reconstructed vehicle-mounted camera sequence using the differential five-point algorithm. From top to bottom: Frames
from original sequence, with red lines representing reprojection error; Differential five-point; Finite motion five-point; Bundle adjusted
differential five-point. The color of each camera is based on reprojection error, with green indicating lower error than red.
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Figure 7. Translational error relative to angle of translation from
forward direction.

cost of running the non-iterative parts of the solvers; this
cost is on the order of 1.6μs for the differential five-point
solver and 7.5μs for the finite motion five-point. The sec-
ond part is the iterative solver used to actually find the roots
of the respective polynomials. Since the number of roots
are equal this is mainly a question of how many bisections
are permitted. For the settings used in the experiments the
needed time is 4μs giving a total of 5.6μs, which is about
twice as fast as the finite motion version.

The reason why the differential formulation is so much
faster than the finite motion formulation is that the solver in
the finite motion case has to performGauss-Jordan elimina-
tion on a 10× 20 matrix, which is quite costly.
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Figure 8. Translational error relative to increasing rotation about
the vertical axis.

6. Summary and Conclusions
An efficient algorithm for solving the differential five-

point problem was presented. We have tested the method
both in a RANSAC-based framework for structure from
motion and in synthetic tests against the finite five- and
eight-point methods. Within reasonable limits on the
image-to-image rotation the differential five-point solver
has a performance on par with the finite five-point and beats
the eight-point algorithm.
Since this type of solver is normally used in a

hypothesize-and-test framework, it is important to point out
that the differential five-point solver can be made signifi-
cantly faster than the finite five-point solver.
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Figure 9. Translational error relative to increasing rotation about
the forward axis. The large error here arises because the implicit
assumption of linear motion in the differential five-point solver
becomes invalid after sufficiently large rotation.
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Appendix A: Code for Computing a Gröbner
Basis
The easiest way to explain the simplicity of the Gröbner

basis solver presented in Section 3.1is the followingMatlab
code:

function e_sols=get_e_from_B(B)
% B is 5x15
% t is 3 times 10,
% one solution per column

%Compute Grobner Basis
M = inv(B(:,1:5))*B(:,6:15);

%Extract transposed Action Matrix
N = zeros(10);
N(1:4,:) = -M(2:5,:);
N([15 26 37 58 69 90])=1;

%Solve eigenproblem
[V,D] = eig(N);

%Extract solutions
e_sols = V(8:10,:);



Figure 11. Reconstructions from 140 frames of a turntable sequence; Left: Differential Five-point; Right: Finite motion Five-point; Top:
Unbundled reconstructions; Bottom: With bundle adjustment. The point cloud represents triangulated feature points visible from the last
camera. Green indicates lower reprojection error.


