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Abstract

The best method for estimating the fundamental matrix

and/or the epipole over a given set of point correspondences

between two images is a nonlinear minimization, which

searches a rank-2 fundamental matrix that minimizes the

geometric error cost function. When convenience is pre-

ferred to accuracy, we often use a linear approximation

method, which searches a rank-3 matrix that minimizes the

algebraic error. Although it has been reported that the alge-

braic error causes very poor results, it is currently thought

that the relatively inaccurate results of a linear estimation

method are a consequence of neglecting the rank-2 con-

straint, and not a result of exploiting the algebraic error.

However, the reason has not been analyzed fully. In the

present paper, we analyze the effects of the cost function

selection and the rank-2 constraint based on covariance

matrix analyses and show theoretically and experimentally

that it is more important to enforce the rank-2 constraint

than to minimize the geometric cost function.

1. Introduction

When analyzing a pair of images, the first important step

is to estimate its epipolar geometry, or its fundamental ma-

trix, from a set of point correspondences of feature points

between images[1, 3, 4, 5, 6, 7, 8, 9, 10]. This estimation

problem of epipolar geometry is one of the most important

issues in computer vision, and a great number of studies

have been performed in an attempt to solve this problem.

A highly accurate fundamental matrix is obtained by mini-

mizing the geometric cost function (or Sampson error), and

the resulting fundamental matrix should be bounded to be

of rank 2. However, since the rank-2 constraint is difficult

to deal with, it is often neglected, or at least relaxed during

the main calculation and then considered afterward. In ad-

dition, the complexity of the geometric error causes another

difficulty in estimating the fundamental matrix. Therefore,

we often minimize a linear approximation of the geomet-

ric error, i.e., the algebraic error. These two approxima-

tions result in a linear solution. Although exploitation of

the algebraic error function has been criticized in that “al-

gebraic distance has no physical significance [9],” or “linear

method does not minimize a physically meaningful quan-

tity [10],” the experimental results presented in [4] indicate

that even when the algebraic error function is used, a nearly

optimal fundamental matrix can be reconstructed provided

that the rank-2 constraint is fully taken into account. How-

ever, this consideration has not yet been analyzed in depth.

In the present paper, we conduct theoretical and experimen-

tal analyses that reveal the reason why the rank-2 constraint

is more important than the cost function design for several

cases.

Specifically, we analyze four methods arising from the

combination of two aspects: constraining the resulting fun-

damental matrix to be of rank 2 or allowing that of rank 3,

and using the geometric error or the algebraic error. We will

hereafter refer to these methods as the A2 and A3 methods,

and the G2 and G3 methods, respectively. The letters A

and G indicate the cost function used, and the numbers 2

and 3 indicate the search space used. For example, the G2

method is a nonlinear minimization method that employs

better choices for both aspects (geometric error with rank-

2 constraint), and the A3 method employs poorer choices

for both aspects (algebraic error without rank-2 constraint).

A standard method [4] is to first use the A3 method, with

the rank correction, to obtain an initial estimation for the

subsequent G2 method. However, since this method suffers

from local minima, several researchers recently proposed

methods that can produce the globally optimal result [1, 5].

Similarly, the A2 method can be used for globally optimal

estimation in the following manner. Since it is a relatively

simple rational equation system in the elements of the fun-

damental matrix or the epipole, it is possible to reduce its

minimization to a high-order polynomial equation in only

one variable, using a gröbner basis manipulation or a multi-

polynomial resultant calculation [2]. This allows us to find
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all of the solutions, including the global minimum and local

solutions1.

The accuracy of the method is modeled by the covari-

ance matrix of the first-order deviation of the estimation

[4, 6, 10]. We derive the covariance matrix for all four meth-

ods introduced above. A comparison of these methods re-

veals the importance of the rank-2 constraint, which has not

been fully analyzed previously. In addition, we complete

the analyses using some experimental results.

2. Fundamental Matrix Estimation

Here, we formulate a problem of fundamental matrix es-

timation and define the algebraic/geometric cost functions,

as well as the rank-2 constraint.

2.1. Definitions

Consider two perspective cameras and P feature points

in a 3-space, and let xp and x′
p be the homogeneous co-

ordinates of images of the p’th feature point taken by two

cameras. Then, the following relation, known as the epipo-

lar constraint [4], holds if the observations are noise-free:

x′T
p Fxp = 0, (1)

where F is a fundamental matrix that conveys internal and

external parameters of the two cameras.

Given a set of feature correspondences {(xp, x
′
p)}, a

standard formulation to estimate F is the minimization of

a cost function defined as follows:

E(F ) :=

P−1
∑

p=0

wp ·
(

x′T
p Fxp

)2
, (2)

where wp is the weight for each term. One typical selection

is wp = 1 for all p. In this case, the cost function is referred

to as an algebraic error. Another typical selection is

wp := (|ΠFxp|
2 + |ΠFT x′

p|
2)−1, (3)

where Π :=

[

1 0 0
0 1 0

]

. (4)

The corresponding cost function is called the geometric er-

ror, which is the sum of the Euclidean distances between the

observed feature positions and the corresponding epipolar

lines over the two images. Since the geometric error con-

tains F , which is to be estimated, we usually approximate

F by the estimation result, and the error is referred to as the

Sampson error [4, 5, 8]. In the present paper, however, we

do not need to strictly distinguish between these two errors.

1We have shown in [7] that the A2 method can be reduced to a 1,728th-

order polynomial equation in a single variable representing a ratio (such as

x/z) of the epipole coordinate (x, y, z).

Although F has 3×3 elements, it has only seven degrees

of freedom due to two constraints. First, since the scale of

F should not change the optimal F minimizing eq. (2), the

search space of F is limited so that its Frobenius norm is 1,

hereinafter we write this as |F |2F = 1. Second, F should be

of rank 2, i.e., there exists a vector e such that Fe = 0, and

e is called an epipole.

We use the symbol f to denote a 9-vector containing all

elements of the fundamental matrix F , i.e.,

f := (a, b, c, d, e, f, g, h, i)T , (5)

where F =





a b c
d e f
g h i



 . (6)

Then, we can rewrite the epipolar residual x′T
p Fxp as

(x′
p ⊗xp)

T f , where (a, b, c)T ⊗ (x, y, z)T := (ax, ay, az,

bx, by, bz, cx, cy, cz)T . Stacking this residual for each p,

we define a P -dimensional residual vector r as

r = Jf :=









...

(x′
p ⊗ xp)

T

...









f (7)

where J is a P × 9 Jacobian matrix from f to r.

Letting H = JT WJ , the cost function eq. (2) is

E(f ) = fT Hf , (8)

where W is a weighting matrix. Basically, the matrix is

diagonal and W = diag(w0, w1, · · · ), but it could be any

non-negative symmetric matrix. For an estimation problem,

H , J , and W are contaminated by noise. However, in the

present paper, we analyze the behavior of the solution of a

minimization problem around the true solution. Such anal-

yses assume that the true F , H , J , and W are known.

2.2. Several algebraic properties of F

It is useful to introduce the singular value decomposition

of F :

F = [u0 u1 u2]





ε
σ1

σ2









vT
0

vT
1

vT
2



 . (9)

Among three singular values of F , let ε be the smallest

(the comparison is with respect to absolute values). Ide-

ally ε = 0. Here, v0 is an alias of the previously introduced

e (right epipole) when ε = 0, and we also write u0 as e′

(left epipole). Note that e (the least significant right singu-

lar vector) is also called an epipole, regardless of whether

ε = 0. We can easily see that

Fe = εe′ , and FT e′ = εe . (10)



For later convenience, let us define

B :=





e

e

e



 , and h3i+j = ui ⊗ vj (11)

where (i, j) ∈ {0, 1, 2}2. Nine vectors {hk} form an or-

thonormal basis for the 9D search space for f , and we can

write f = εh0 +σ1h4 +σ2h8. This suggests that f should

be orthogonal to h0, if the rank-2 constraint is considered

(ε = 0). For this reason, we will use h0 extensively, which

is abbreviated as h.

2.3. Incorporating Rank Constraint

In order to force the resulting matrix to be of rank 2, we

extend eq. (8) by adding a penalty term as follows:

Eν(f) = fT (H + νBBT )f , (12)

where BT f should be 0 if the resulting matrix is exactly

rank-2, which is attained when ν → ∞. And since eq. (10)

suggests that BT f = εe′, we have BBT f = εh and ε =
e′T BT f = hT f . Therefore, the matrix B in the above

equation can be replaced by the vector h as follows:

Eν(f) = fT (H + νhhT )f . (13)

Minimization of this function under the constraint |F |2F = 1
reduces to the following eigen-equation as ν → ∞:

(

H + νhhT − λI
)

f = 0 . (14)

In the following sections, we analyze the behavior of the es-

timation result around the true solution for the methods that

minimize the geometric/algebraic error with/without rank-

2 constraint. Note that the behavior is not affected by the

actual implementation and/or the parameterization.

Here, let us focus on the case of W = I and ν → ∞ (the

A2 method that employs the algebraic error with the rank-2

constraint). The present analyses will show how well the

A2 method approximates the optimal G2 method (geomet-

ric error with rank-2 constraint) and the degree to which

the A2 method is better than the A3 or G3 methods (alge-

braic/geometric error without rank-2 constraint).

To analyze the behavior of the solution of eq. (14), we

have to consider the ‘inverse’ of (H + νhhT ) as ν → ∞,

which we write by a † operator defined as follows:

H† := H− −
H−hhT H−

hT H−h
, (15)

which is based on the following identity, similar to the

Sherman-Morrison inversion formula:
(

H− −
H−hh

T H−

ν−1 + hT H−h

)

(

H + νhhT
)

= H−H ,
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Figure 1. Histogram of the standard deviation of w
−1

p for 397 im-

age pairs among 36 images.

where H− denotes the Moore-Penrose generalized inverse

of H . The † is defined by limiting ν → ∞ in this for-

mula. The † has similar properties to the usual generalized

inverse, but the rank-2 constraint is fully taken into account.

Compare the following properties:

H†f = 0 , H†HH† = H† , H†h = 0 , (16)

H−f = 0 , H−HH− = H− , H−h 6= 0 . (17)

2.4. Properties of w−1
p

In the case for the algebraic error, we assume that wp =
1. Although this is a seemingly crude approximation, ex-

perimental results (Fig. 1) show that, for a lot of cases, the

actual wp of eq. (3) is compactly distributed around 1, and

so letting wp = 1 is indeed a good approximation. For each

image pair, we let Dw be the standard deviation of w−1
p di-

vided by the mean of w−1
p . The figure shows a histogram

of Dw over 397 image pairs from 36 images, four exam-

ples of which are shown in Fig. 3. We can see that Dw is

small. Specifically, Dw is less than 0.1 for more than half

(over 200 out of 397) of the image pairs. We will show that

the cost function selection affects the estimation accuracy

by O(D2
w) and is much smaller than the degradation caused

by neglecting the rank-2 constraint. Note that, theoretically,

if the cameras that are used are affine, then the wp’s are ex-

actly same for all p’s, and we often use near-affine views for

epipolar geometry estimation.

3. Covariance Matrix as Accuracy Measure

We need a criterion to discuss which method is ‘better’

or ‘worse.’ The analysis in the following section is based on

a standard theory [4, 6, 10] of accuracy measure using the

covariance matrix of the first-order variation of the solution

of a given estimation method. For discussing a covariance

matrix in Section 3.2 and the following sections, we need to

first introduce the first-order variation in Section 3.1.

For the following discussion, we assume the coordi-

nates xp’s and x′
p’s are noise-free, and thus the epipo-



lar residuals are all zero, i.e., r = 0. Noise compo-

nents are explicitly indicated by a ∆ symbol or other des-

ignated symbols. Let us define a noise-free input vector

xT := (· · · (Πxp)
T (Πx′

p)
T · · · )T , and a small noise vec-

tor dT := (· · · (Π∆xp)
T (Π∆x′

p)
T · · · )T . When an input

vector is polluted by a noise like x + d, then the residual r

changes to r + ∆r. Similarly, f changes to f + ∆f , and

e changes to e + ∆e. We will express these ∆-values as

a function of d to the first order. Then, we will derive co-

variance matrices such as E [(∆f )(∆f )T ], where E [·] is the

expectation operator. Since d is a vector having a geometric

dimension, we assume E [ddT ] = ǫ2I , where ǫ is called a

noise level. Although we can develop a similar theory for

an arbitrary E [dd
T ], we prefer to simplify the present dis-

cussion.

3.1. First­order Analysis around the True Solution

The deviation ∆r is expanded as

∆r = ∆Jf + J∆f (18)

= MT d + J∆f (19)

where

MT :=









. . .

(ΠFT x′
p)

T (ΠFxp)
T

. . .









, (20)

and MT is a P × 4P Jacobian matrix from d to r, which

consists of P diagonal blocks of size 1 × 4.

Then, the cost function eq. (2) can be rewritten as

(∆r)T W (∆r) (21)

More precisely, this is an approximation used in Gauss-

Newton iteration for nonlinear optimization, where second-

order derivatives are neglected, and it is also sufficient for

the present analysis, because d is small.

Fundamental matrix estimation based on the minimiza-

tion of eq. (2) can be regarded as the minimization of

eq. (21) over ∆f , where ∆f is the displacement between

the estimated matrix and the true matrix. Ideally, ∆f should

be 0, which means that the true f is obtained. However, ∆f

cannot be 0 for a general d.

Next, let us explicitly derive ∆f based on eq. (21).

If the rank-2 constraint is neglected, we have to mini-

mize (MT d + J∆f)T W (MT d + J∆f), which reduces

to JT W (MT d + J∆f ) = 0, so the solution is

∆f = −(JT WJ)−JT WMT d . (22)

If the rank-2 constraint is taken into account, then we have

to consider the first-order variation of eq. (14):

((∆H) + ν((∆h)hT + h(∆h)T ) − (∆λ)I)f

+(H + νhhT − λI)(∆f ) = 0 . (23)

From this equation, ∆f is obtained as

∆f = −H†JT WMT d. (24)

Note that H− = (JT WJ)− in the previous result is re-

placed by H†.

3.2. Comparing the Covariance Matrices

Here, ∆f is a first-order approximation of the estimation

error caused by an additive noise d on the input. In addition,

since ∆f is a linear function of d, it is also a zero-mean. In

other words, the estimation is unbiased to the first order.

Thus, the covariance matrix of ∆f is E [(∆f )(∆f )T ]. The

covariance matrix for the rank-2-constrained estimation is

as follows:

V (W ) := ǫ2H†JT WMT MWJH†, (25)

which is straightforwardly derived from eq. (24). The co-

variance matrix is denoted by V (W ) because it is a func-

tion of W . The covariance matrix defines an ellipsoid

(∆f )T V (W )−(∆f) < θ, and the probability that ∆f falls

into the ellipsoid is determined by θ, which is not a function

of W .

Let us assume, for two covariance matrices A and B, that

aT A−a < aT B−a holds for any a, then the ellipsoid of B
is completely subsumed by that of A. In this case, we can

safely say that the method yielding the covariance matrix

B is better than the method yielding A. The inequality is

equivalent to aT Aa > aT Ba and is also written as A ≻ B
[6], which means that A − B is a positive matrix.

4. Covariance Matrix of ∆f and ∆e

Here, we compare the covariance matrices of ∆f and

∆e, for the A2, A3, G2, and G3 methods. We will demon-

strate that the rank-2 constraint is more important than the

cost function selection for many cases.

4.1. Distribution of ∆f using geometric error

When the fundamental matrix is estimated by the best

method (G2, which uses the geometric error with rank-2

constraint), the corresponding covariance matrix is obtained

by substituting W = (MT M)−1 into eq. (25), yielding

VG2 := ǫ2H†. (26)

If the rank-2 constraint is neglected, then the correspond-

ing covariance matrix is easily calculated from eq. (22) as

follows:

VG3 := ǫ2H−. (27)

Then, the difference is

VG3 − VG2 = ǫ2
H−hhT H−

h
T H−h

. (28)



Table 1. Four covariance matrices of ∆f

Cost function \ Search space Rank-2 Rank-3

Geometric A A + B
Algebraic A + O(ǫ2D2

w) A + B + O(ǫ2D2
w)

where







B = ǫ2 H−hh
T H−

hT H−h

A = ǫ2H†

This difference is a positive matrix. It proves qualitatively

that the estimation is more accurate when the rank-2 con-

straint is enforced. However, this shows nothing quantita-

tively. Therefore, we complete the discussion using some

experimental results in a later section of the present paper.

4.2. Distribution of ∆f using algebraic error

The algebraic error is regarded as an approximated ge-

ometric error, where W is replaced by W + ∆W . More

specifically, ∆W = I −W with W = µ(MT M)−1, where

µ is a scalar that adjusts the mean of the elements of W to

be 1, and µ does not affect the estimation results. The ele-

ments of ∆W are O(Dw). In the following, we still use the

symbol H to refer to JT WJ .

With the rank-2 constraint, the ∆f estimated by the odd

weight W + ∆W is

∆f =
(

H + JT ∆WJ
)†

JT (W + ∆W )MT d (29)

=
(

H† − H†JT ∆WJH†
)

JT (W + ∆W )MT d

+O(ǫD2
w) (30)

where we used the following approximation:

(H + JT ∆WJ)† ≈ H† − H†
(

JT ∆WJ
)

H†, (31)

which can be verified directly.

Here, ∆f is a zero-mean, and the covariance matrix is

VA2 = ǫ2
(

H† − H†JT ∆WJH†
)

JT (W + ∆W )MT M ·

(W + ∆W )J
(

H† − H†JT ∆WJH†
)

+ O(ǫ2D2
w)

= ǫ2
(

H† − H†JT ∆WJH†
)

(H + 2JT (∆W )J) ·
(

H† − H†JT ∆WJH†
)

+ O(ǫ2D2
w)

= ǫ2H† + O(ǫ2D2
w) (32)

where we used

(W + ∆W )W−1(W + ∆W )

= W + 2(∆W ) + (∆W )W−1(∆W ). (33)

In eq. (32), it is important that the first-order terms of

∆W cancel each other out. Consequently, this differs from

eq. (26), where the optimal W is used, by only O(ǫ2D2
w).

Similarly, the covariance matrix using the algebraic error

without the rank-2 constraint is as follows:

VA3 = ǫ2H− + O(ǫ2D2
w) . (34)
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Figure 2. Relationship between the standard deviation of w
−1

p and

the z-coordinate of the epipole

4.3. Comparison of the covariance matrices for f

The results are summarized in Table 1, where A = ǫ2H†

(eq. (26)) is equivalent to the (KCR-) lower bound [6], and

B = ǫ2H−hhT H−/(hT H−h) (eq. (28)) is a corruption

caused by removing the rank-2 constraint, whereas using

the algebraic error rather than the geometric error causes

a corruption of O(ǫ2D2
w), which we do not have to distin-

guish with O(D2
w) because the leading term of a covariance

matrix is O(ǫ2). The lower-right algorithm is the linear A3

algorithm.

Although the actual magnitude of Dw is a complicated

function, which is not easy to deal with, the experimental re-

sults shown in Fig. 1 show that Dw is very small for a lot of

cases. Another important property of Dw is shown in Fig. 2,

where Dw’s are plotted with respect to the z-coordinates of

the epipoles, and we can see that Dw and the z-coordinate

have a strong correlation. Thus, the z-coordinate is a good

measure for the Dw, and the difficulty of the estimation is

determined by the distance between the epipole and the im-

age center or the infinite point. This agrees with an obser-

vation reported in [8] whereby forward/backward motion

estimation is more difficult than sideways-motion estima-

tion. We can assume that for several applications epipoles

are nearer to an infinite point than to the image center. In

such cases, the z is small, as is Dw. As a result, the O(D2
w)

terms are considerably smaller than B. Thus, the rank-2

constraint is more important than the cost function selec-

tion. In other words, the algebraic error is sufficiently accu-

rate, and well comparable to the geometric error, when the

rank-2 constraint is fully taken into account. This explains

the experimental results in [4, Fig. 10.3].

These discussions assume that we know the true f when

we estimate f . This is, however, impossible in practice.



Table 2. Four covariance matrices of ∆e

Cost function \ Search space Rank-2 Rank-3

Geometric A A + B
Algebraic A + O(ǫ2D2

w) A + B + O(ǫ2D2
w)

where







B = ǫ2K H−hhT H−

hT H−h
KT

A = ǫ2KH†KT

We can only know an approximation of f or other related

entities, such as epipoles. Since the approximation error is

of the first-order, its effects appear in second-order terms in

∆f . Thus, the previously described first-order terms are not

affected and are valid for the case with unknown f .

4.4. Distribution of ∆e

Since e is determined by the equation Fe = 0, its first-

order deviation is calculated by the perturbation theory of

eigenvectors [6], and the result is as follows:

∆e = −K∆f where K := F−BT , (35)

and F− is the generalized inverse of F , thus K has the fol-

lowing singular value decomposition:

K = [v1, v2]diag(σ−1

1 , σ−1

2 )[h3, h6]
T . (36)

As is for ∆f , e is zero-mean to the first order, and its

covariance matrix is described by

KV KT (37)

where V is the covariance matrix of ∆f for all four cases

discussed previously. In addition, the covariance matrix for

e is rank-2. The results are also summarized in Table 2. The

only difference from Table 1 is that all covariance matrices

are multiplied from the left by K and from the right by KT .

Note that, although the rank correction based on singular

value decomposition [3], which is usually employed after

the A3 method, may improve F significantly, it does not

change e, which is defined in Section 2.2 as the right singu-

lar vector of F . Thus, for ∆e, the right-lower entry of Table

2 applies to the 8-point algorithm regardless of whether the

rank correction is performed.

5. Experiment

We present some experimental results over a real image

set, consisting of 36 images, including those shown in Fig.

3. In the figures, epipolar lines are also shown when the left-

most two images and the rightmost two images are paired.

Thirty images out of 36 are taken from a circular trajectory

around the object, and six additional images are added in or-

der to increase the variation of the epipole position. In total,

there are 100 feature points, which are tracked manually.

These coordinates are ‘normalized’ [3] to be zero-mean,

and to have a unit covariance matrix. There are 630 possible

pairs and 397 pairs contain seven or more, at most 51, corre-

sponding points. Note that there are 16 pairs that have only

seven correspondences, and we cannot apply those methods

without rank-2 constraint to such pairs. For the number of

correspondences, the mean is 20.2 and the standard devia-

tion is 10.9.

Since we do not know the ground truth, we modify the

input data so that the epipolar constraints are satisfied. For

this purpose, we first obtain the fundamental matrix min-

imizing the Sampson error, then the point coordinates are

corrected by regarding the Sampson-error-minimized fun-

damental matrix as the ground truth. We use such a pseudo-

real data set because it better represents the point distribu-

tion of a real situation, compared to relying on an entirely

numerical simulations.

The first example is the left pair in Fig. 3, and the results

are shown in Table 3, where two nontrivial eigenvalues of

the covariance matrices for ∆e are shown. These values can

be considered as the squared uncertainty radius of the esti-

mated epipole along the principal axes, and thus a smaller

value is preferred.

The degradation caused by neglecting the rank-2 con-

straint is approximately (2.8 0.03) for both cost functions,

and the degradation caused by employing the algebraic er-

ror is of the order of (0.001, 0.001) regardless of the rank-2

constraint. Figure 4 shows the ellipses generated by these

four covariance matrices. The ellipses form two groups,

and the inner group consists of ellipses with the rank-2 con-

straint. The selection of the cost function causes no visible

difference.

Table 4 shows another example, based on the rightmost

pair of Fig. 3, where the rank-2 constraint has a (5, 0) effect,

while the cost-function-caused effects are much smaller.

Figure 5 shows the ellipses generated by these four covari-

ance matrices. Here, the ellipses again form two groups,

and the rank constraint has a non-negligible effect for these

cases.

For more general analyses, let us define a degradation

index as the ratio of the difference of the degraded and true

eigenvalues divided by the true eigenvalue. We focus on the

larger eigenvalue representing the long axis of the ellipse.

For example, in Table 3, the index for rank-caused degrada-

tion is (4.081-1.261)/1.261=2.23. For Table 4, the index is

(6.120-0.949)/0.949 = 5.449. Larger values indicate greater

degradations. Figure 6 shows histograms over 397 image

pairs, for rank-caused and cost-function-caused degradation

indices. The rank-caused degradation (left curve) is 0.0001

through 0.01 for most cases, while the cost-function-caused

degradation (right curve) is 0.01 through 10 for most cases.

Thus, the rank constraint is shown to be more important



Figure 3. Examples of the images (0th, 5th, 10th, and 19th images out of 36 images), with the epipolar lines superimposed.

Table 3. Example 1: Covariance matrices of ∆e, 0th and 5th images, with 36 correspondences

Cost function \ Search space Rank-2 Rank-3

Geometric (1.261 0.512) (4.081 0.546)

Algebraic (1.262 0.513) (4.083 0.546) Figure 4. Ellipses of Table 3.

Table 4. Example 2: Covariance matrices of ∆e, 10th and 19th images, with 13 correspondences

Cost function \ Search space Rank-2 Rank-3

Geometric (0.949 0.294) (6.120 0.380)

Algebraic (0.954 0.295) (6.167 0.381)

Figure 5. Ellipses of Table 4.
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Figure 6. Histograms of the degradation indices over 397 images.

Seven point cases are excluded for the method without rank-2 con-

straint.

than the cost function selection.

6. Conclusions

For epipolar geometry estimation, we herein analyzed

the importance of the rank-2 constraint, as well as that of

the selection of the geometric/algebraic cost function, and

demonstrated through qualitative and quantitative analyses

that the former is more important than the latter.

Future areas for examination include further analyses on

Dw, the theoretical behavior of which we did not discuss in

the present paper, and analyses of the estimation errors with

respect to the second order.
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