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Abstract

It is well-known that forward motion induces a large
number of local minima in the instantaneous least-squares
reprojection error. This is caused in part by singulari-
ties in the error landscape around the forward direction,
and presents a challenge in using existing algorithms for
structure-from-motion in autonomous navigation applica-
tions. In this paper we prove that imposing a bound on the
reconstructed depth of the scene makes the least-squares re-
projection error continuous. This has implications for au-
tonomous navigation, as it suggests simple modifications
for existing algorithms to minimize the effects of local min-
ima in forward translation.

1. Introduction

Structure-from-motion (SFM), the problem of recon-
structing the three-dimensional structure of a scene and
the motion of a camera from a collection of images, can
be counted among the success stories of Computer Vision.
Over the course of the past twenty years, the geometry of
the problem has been elucidated, and an extensive corpus
of analysis and algorithms has been collated in several text-
books, e.g. [4]. Some have even made their way into the
real-world as commercial products. However, despite all the
success, forward motion still presents a challenge to exist-
ing SFM algorithms. This problem rarely occurs in match-
moving and virtual object insertion, for which most com-
mercial algorithms are designed, but has become painfully
patent with the recent push in autonomous driving.

The difficulties with forward motion are due in part to
the limited lifetime of point-feature tracks: The most infor-
mative features are in the peripheral vision and they quickly
move out of the visual field. This can be addressed by en-
larging the field of view, all the way to omni-directional
cameras, which explains their popularity in robotic naviga-
tion. A less-easily fixed difficulty with forward motion is

the presence of a large number of local minima in the least-
squares landscape of the reprojection error, which many ex-
isting algorithms try to minimize. These local minima have
been studied in some detail by Oliensis [7] and Chiuso et
al. [2], using tools first introduced by Heeger and Jepson
[5] and Golub and Pereyra [3]. All have shown the pres-
ence of local minima corresponding to well-known ambigu-
ities (Necker-reversal, plane-translation and bas-relief) and,
more importantly for our problem, they have shown that
the least-squares reprojection error has singularities cor-
responding to translation in the direction of point features,
which introduce a fine-scale topology with many local min-
ima around the true direction of translation (see [7], figures
1 and 8, or [2] figure 7). In order to overcome this prob-
lem, semi-global approaches based on convex optimization
and fractional programming have been recently proposed
[1, 6], but the resulting algorithms are too slow to run in real
time for navigation applications, and the actual hypothe-
ses to guarantee global convergence are not strictly satis-
fied for central projection and forward motion. Thus we are
left with finding simpler ways to handle the strange geom-
etry of the reprojection error surface. Is such a geometry a
product of the mathematics we are using, for instance the
choice of L2 to measure reprojection error, or is it intrinsic
to the problem? Can a different choice of norm eliminate
the singularities? Is there some reasonable assumption we
can make on the scene or on the inference process that will
make the singularities vanish?

In this paper we show that the singularities are a byprod-
uct of the mathematics, and can be easily eliminated.
Specifically, we prove that imposing a bound on the
depth of the scene makes the least-squares reprojection
error continuous. We also show how such an assumption
can be easily embedded in an iterative algorithm. It does
not, however, show that local minima disappear altogether.
In fact, only continuity can be guaranteed analytically, not
convexity, and an empirical analysis shows that some local
minima still exist.
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2. Background
In this section we will introduce the notation and

rephrase some of the results of [2] and [7] for completeness.
Let X1, . . . , XN ∈ R3 be points on a rigid body (the

scene). Let xi = Xi/|Xi| be the projection of the i-th point
taken from a given vantage point on a spherical imaging
surface. Let v and ω be the instantaneous linear and angular
velocities of the scene (rigid body) relative to the camera.
The motion causes the feature projections xi to move on
the imaging surface with velocities zi. Our goal is to re-
cover both the structure and motion from the measurements
x1, . . . , xN and z1, . . . , zN . To this end we note that the
i-th measured velocity is given by

zi = ω × xi + λi (v − 〈v, xi〉xi) + ni (1)

where λi = 1/|Xi| is the inverse of the distance of the
i-th feature from the camera center and ni is measure-
ment noise. As zi, ni and ω × xi belong to the tan-
gent space Txi(S2) of the spherical imaging surface, the
norm of the residual does not change if we pre-multiply by
−x̂i = −xi×, obtaining

−x̂izi = x̂2
i ω − λix̂iv − x̂ini. (2)

As the norm and statistics of±x̂ini and ni are the same, we
set yi = −x̂izi and define the fitting cost

E(v, ω, λ1, ..., λN ) =
N∑

i=1

‖ni‖2 =

=
N∑

i=1

‖yi − x̂2
i ω + λix̂iv‖2. (3)

The goal of SFM, for the purpose of our analysis, is to
find the minimizers of the cost function E.

2.1. Reduced diagrams

Heeger and Jepson introduced subspace projection into
their SFM algorithm in 1990 [5]. They showed that SFM
can be reduced to a two-dimensional optimization problem.
Their approach was later used by Chiuso et al. [2] to study
local minima in SFM after noticing that the local extrema
in the reduced optimization are related to local minima in
the original one. The two-dimensional landscape can be
visualized in CBS diagram. Here we rederive some of the
properties of CBS diagrams since these results will be used
later in proving continuity of the reduced cost function.

The squared residual E(v, ω, λ1, . . . , λN ) is a function
of both the inverse dephts of the observed points (features)
λ1, . . . , λN (structure) and the camera angular ω and linear
v velocities (motion). The idea of [5] is to solve for all
variables but linear velocity v. This gives a reduced function

E∗(v) = E(v, ω∗(v), λ∗1(v), . . . , λ∗N (v)) of v only. The
CBS diagram is then the function

E∗(v) = min
ω∈R3,λ1,...,λN∈R

E(v, ω, λ1, . . . , λN ) (4)

An algebraically simplified variant, called weighted CBS
diagram, is obtained by optimizing weighted residuals
wi‖ni‖2.

2.2. Properties

The function (4) enjoys several useful properties. First
we note that fixing v turns the minimization (4) into a sim-
ple least-squares problem. To make this more explicit, de-
fine y

.=
[
yT
1 yT

2 . . . yT
N

]T
,

Φ(v) .=


x̂2

1 −x̂1v 0 . . . 0
x̂2

2 0 −x̂2v . . . 0
...

...
...

...
...

x̂2
N 0 0 . . . −x̂Nv

 (5)

a
.=
[
ωT λ1 λ2 . . . λN

]T
, so that

E∗(v) = min
a∈R3+N

E(v, a) = min
a∈R3+N

‖y − Φ(v)a‖2. (6)

Note that the optimal value a(v) of the linear variable a –
angular velocity and structure – for a given linear velocity v
is given by

a(v) = Φ(v)†y (7)

where Φ(v)† is the pseudo-inverse of the matrix Φ(v).

2.2.1 Singular configurations

We say that a vector u is proportional to a vector v, u ∝ v in
symbols, if there exists a number λ ∈ R such that u = λv.
Note that 0 ∝ v for each v.

Proposition 1. Consider features X1, . . . , XN ∈ R3, N ≥
1 and a vector v ∈ S2, such that Xi 6∝ v for i = 1, . . . , N .
The kernel of the matrix Φ(v) is not empty if, and only if,
we can find a vector ω ∈ S2 such that

X>
i Q(v, ω)Xi = 0, (8)

Q(v, ω) =
1
2
(vω> + ωv> − 2〈v, ω〉I). (9)

for all i = 1, . . . , N .

Proof. In order for the kernel of Φ(v) not to be empty, the
following condition must hold

∃ (ω, λ1, . . . , λn) 6= 0 :

X̂2
i ω − X̂ivλi = 0, i = 1, . . . , N. (10)



Since we assumed that X̂iv 6= 0, if we choose ω = 0 then
equation (10) is satisfied if and only if all λi vanish, thus ω
has to be different from zero. Hence, from (10) we get the
following condition by taking the scalar product with v.

∃ω ∈ S2 : 〈X̂2
i ω, v〉 = 0, i = 1, . . . , N. (11)

The reverse implication is also true. Let us assume that
(11) holds, we have 〈X̂2

i ω, v〉 = 0, 〈X̂2
i ω, Xi〉 = 0 and

we know that Xi and v are linearly independent, so X̂2
i ω is

directed along the vector X̂iv, which means that there exists
a λi (possibly null) such that (10) holds.

We rewrite (11) by using the identity (a × b) × c =
〈a, c〉b− 〈b, c〉a to get X̂2

i ω = 〈Xi, ω〉Xi − 〈Xi, Xi〉ω and
the equivalent conditions

v>(XiX
>
i ω − (X>

i Xi)ω) =

X>
i (vω> − v>ωI)Xi = X>

i MXi = 0,
(12)

M = vω> − v>ωI. (13)

This is the equation of a quadric and is more easily stud-
ied by symmetrizing the matrix M , obtaining the equivalent
constraints

X>
i QXi = 0, i = 1, . . . , N, Q =

1
2
(M+M>). (14)

If v 66= w it is easy to verify that the eigenvectors and
eigenvalues of Q are given by

z1 = v + ω, λ1 = 1
2 (1− 〈v, ω〉), (15)

z2 = v − ω, λ2 = − 1
2 (1 + 〈v, ω〉), (16)

z3 = v × ω, λ3 = −〈v, ω〉. (17)

If v = ±ω, then Q = ±v̂2 and the eignevectors-eigenvalues
are given by

z1 = v, λ1 = 0 (18)

z2,3 ∈ v⊥, λ2,3 = ∓1. (19)

Equation (8) then defines a double elliptical cone which
contains v and ω, directed either along v+ω with major axis
along v−ω (if 〈v, ω〉 > 0), or directed along v−ω with ma-
jor axis along v + ω (if 〈v, ω〉 < 0). In case 〈v, ω〉 = 0 the
cone degenerates to the union of the two planes 〈X, v〉 = 0
and 〈X, ω〉 = 0.

We observe that:

• Φ(v) is 3N × 3 + N so for N = 1 the kernel is not
empty. Indeed (ω, λ1) = (X1, 0) belongs to the ker-
nel.

• For N = 2 the kernel is also not empty. The con-
ditions of Proposition 1 are in fact satisfied for ω ∝
(v × x1)/〈v, x2〉 − (v × x2)/〈v, x1〉+ x1 × x2.

• If N ≥ 3, then Φ(v) has full rank N + 3 as long the
quadratic equation (8) is not satisfied for some ω ∈ S2.

The previous observations motivate the following defini-
tion:

Definition 1. The points X1, . . . , XN (N ≥ 3), are said to
be in general position for the linear velocity v 6= 0 if, and
only if,

1. Xi 6∝ v, i = 1, . . . , N ,

2. there exists no angular velocity ω such that
X>

i Q(v, ω)Xi = 0 for all i = 1, . . . , N .

We also say that the points are in general position if they are
in general position relatively to all velocitites v for which
point 1 above is satisfied.

We can now rephrase Proposition 1 in the following re-
mark.
Remark 1. If points X1, . . . , XN are in general position for
v 6= 0, then the matrix Φ(v) has full rank.

2.2.2 Correspondence of minimizers

Proposition 2. The reduced cost function E∗(v) enjoys
the following properties. Let Ω = S2 − {x1, . . . , xN} the
open subset of the imaging sphere that does not include the
feature projections and let {x1, . . . , xN} be in general po-
sition. Then:

• If v is a critical point (or global minimizer) of E∗(v)
for v ∈ Ω, then (v, a(v)) is a critical point (or global
minimizer) of E(v, a) for (v, a) ∈ Ω× RN+3.

• If (v, a) is a global minimizer of E(v, a), then v is a
global minimizer of E∗(v).

Proof. This kind of problems is discussed in [3]. The rank
of Φ(v) is constant for all v ∈ Ω. The result is then an
immediate application of Thm. 2.1 therein.

Prop. 2 says that all the critical points of the reduced cost
function E∗(v) (except at most singularities corresponding
to the feature projections) correspond to critical points of
the full cost function E(v, a). It also says that global mini-
mizers of the full and reduced cost functions correspond.

What the proposition does not say is that critical points
of E(v, a) are reflected by the reduced cost function E∗(v).
This is however easily seen. Since the points are in general
position, Φ(v) never drops rank and a(v) and E∗(v) are
differentiable. Let (v, a) be a critical point of E(v, a). Then
a = a(v) and ∇E(v, a(v)) = 0, so that

∂E∗

∂v
(v) =

∂E

∂v
(v, a(v)) +

∂E

∂a
(v, a(v))

∂a

∂v
(v) = 0. (20)

So, except for singularities or pathological cases, the local
minima of the reduced and full costs correspond.



2.3. Computation of the reduced functional

The reduced cost function (4) can be computed effi-
ciently in two steps: Optimization of the depths given the
motion, optimization of the rotation given the translation.

• Optimizing the depths given the motion. We fix ω
and v in (3), obtaining for each λi its optimal value

λi =
v>x̂>i

v>x̂>i x̂iv

(
x̂2

i ω − yi

)
, (21)

which give the cost function

E(v, ω) =
N∑

i=1

‖ni‖2 =

=
N∑

i=1

∥∥∥∥(I − x̂ivv>x̂>i
v>x̂>i x̂iv

)(
yi − x̂2

i ω
)∥∥∥∥2

. (22)

The depth λi of a feature xi parallel to the mo-
tion direction v does not affect the cost func-
tion, is undetermined and the corresponding opera-
tor x̂ivv>x̂>i /v>x̂>i x̂iv is null. Moreover, as v ap-
proaches xi, the limit of such operator does not exist
(the directional limit, however, is well defined). This
property of the residuals ni generates singularities in
correspondence of features in the cost function.

• Optimizing the rotation given the translation. As-
sume v 6∝ xi for all features xi. Recall that I =
uu> − û2. Let u = x̂iv/‖x̂iv‖, so that

I − x̂ivv>x̂>i
v>x̂>i x̂iv

= −û2 (23)

‖ni‖2 = ‖ − û2(yi − x̂2
i ω)‖2 =

= ‖û(yi − x̂2
i ω)‖2.

(24)

We now use the fact that û = (vx>i − xiv
>)/‖x̂iv‖,

and that the residual yi − x̂2
i ω is orthogonal to xi to

write

E(v, ω) =
N∑

i=1

‖ni‖2 =

=
N∑

i=1

‖xiv
>(yi − x̂2

i ω)‖2

‖x̂iv‖2
=

=
N∑

i=1

(v>(yi − x̂2
i ω))2

‖x̂iv‖2
. (25)

The latter expression is a standard least-squares esti-
mation problem for ω. Note that estimating the veloc-
ity v is much harder, as the weights ‖x̂iv‖ depend on

it. Note also that the residual yi − x̂2
i ω is orthogonal

to xi, so that when the denominator ‖x̂iv‖ is small,
because v approaches xi, the numerator is small too.
Solving for ω yields

ω =

(
N∑

i=1

x̂2
i vv>x̂2

i

‖x̂iv‖2

)−1 N∑
i=1

x̂2
i vv>yi

‖x̂iv‖2
. (26)

3. Bounded depth
In this section we extend the previous results and present

the main contribution of this paper, which is a characteri-
zation of the reduced cost function when the reconstructed
depths are bounded.

Singularities (discontinuities) at feature locations v =
x1, . . . , xN of the reduced cost function E∗(v) are possible
because the feature dephts can be made arbitrarily small.
This is reflected in equation (3): when a coefficient x̂iv → 0
as v → xi, the corresponding variable (inverse depth) λi

approaches infinity to counter-balance. Thus we propose
to work with a “regularized” reduced cost function E∗

α(v)
defined as

E∗
α(v) = min

ω∈R3, |λi|≤α
E(v, ω, λ1, . . . , λN ). (27)

The following lemmas are meant to establish the conti-
nuity of E∗

α(v) and the correspondence of global and local
minimizers, by showing results in a more general setting
(extending Proposion 2 with respect to correspondence of
minimizers).

3.1. Continuity

Consider a function E : V × A → R, where V is a
topological space and A is a subset of Rk, and let E∗(v) =
mina∈A E(v, a). In general, the continuity of E is not suf-
ficient for E∗ to be continuous, as it is only sufficient for the
upper semicontinuity of E∗. However, if A is compact then
E∗ is indeed continuous, as shown in the following lemma.

Lemma 1. Let E and E∗ be defined as above. If E is
continuous, then E∗ is upper semicontinuous; moreover, if
A is compact then E∗ is also continuous.

Proof. Consider the level sets

Ls
E∗ = {v ∈ V : E∗(v) < s} , (28)

Ls
E = {(v, a) ∈ V ×A : E(v, a) < s} . (29)

Then
Ls

E∗ = πV (Ls
E) , (30)

where πV : V × A → V is the canonical projection. Since
the level set Ls

E is open (E is continuous), its projection is
open, too. The openess of Ls

E∗ for every s proves the upper
semicontinuity of E∗.



Now if A is compact, we consider the level sets

W s
E∗ = {v ∈ V : E∗(v) ≤ s} , (31)

W s
E = {(v, a) ∈ V ×A : E(v, a) ≤ s} , (32)

we also have
W s

E∗ = πV (W s
E) , (33)

since E(v, ·) attains its minimum value in A. Since the level
set W s

E is closed (E is continuous) and A is compact, the
projection is closed, too. This can be easily seen by taking
a point v /∈ W s

E∗ and a covering of {v} × A with open
subsets belonging to W s

E
c, then extracting a finite covering

and considering the intersection of their projections on V to
obtain a neighborhood of v in W s

E∗
c.

Thus, if A is compact E∗ is both upper and lower semi-
continuous, completing the proof.

The result stated in the last lemma applies to the regular-
ized cost function E∗

α defined in (27), since the bound on λi

restricts the space of parameters to a compact space (there
is a natural bound on the parameter ω, given the bound α
on the paramters λi — see Lemma 5) . The use of the cost
function (27) is in this sense justified.

3.2. Correspondence of minimizers

Now we see which results on correspondence of local
and global minima we can obtain in this general setting.

Let a∗ be a function defined from V to A such that

E∗(v) = min
a∈A

E(v, a) = E(v, a∗(v)). (34)

Lemma 2. v̄ is a global minimizer for E∗ if, and only if
(v̄, a∗(v̄)) is a global minimizer for E.

Proof. It follows trivially from the equation
minv∈V E∗(v) = minv∈V,a∈A E(v, a).

Lemma 3. If v̄ is a local minimizer for E∗, then (v̄, a∗(v̄))
is a local minimizer for E.

Proof. Let U 3 v̄ be a neighborhood such that v̄ is a mini-
mizer for E∗ in U . Then for v ∈ U and a ∈ A we have

E(v, a) ≥ E(v, a∗(v)) = E∗(v) ≥
≥ E∗(v̄) = E∗(v̄, a∗(v̄)), (35)

so (v̄, a∗(v̄)) is a minimizer for E in U ×A.

The converse is not true in general, so we consider an
additional constraint on the regularity of a∗.

Lemma 4. If (v̄, a∗(v̄)) is a local minimizer for E and a∗

is continuous in v̄, then v̄ is a local minimizer for E∗.

Proof. Let W 3 (v̄, a∗(v̄)) be a neighborhood such that
(v̄, a∗(v̄)) is a minimizer for E in W . Since the mapping φ :
v 7→ (v, a∗(v)) is continuous in v̄, then φ−1(W ) contains a
neighborhood U of v̄. For v ∈ U , we have

E∗(v) = E(v, a∗(v)) ≥ E(v̄, a∗(v̄)) = E∗(v̄), (36)

so v̄ is a minimizer for E∗ in U .

Under the assumptions of Proposition 2, with a(v) =
Φ(v)†y, continuity of a(v) holds, so all lemmas 2, 3, 4 apply
and we obtain correspondence of minimizers for the regu-
larized reduced cost function (27).

This sequence of lemmas constitutes the contribution of
this paper. In the next section we will illustrate empirically
the effect of bounded depth on CBS diagrams.

4. Experiments
In this section we illustrate the behavior of the CBS di-

agrams when bounding the underlying depths. Notice that
this is not straightforward, because the CBS diagrams do
not depend on depth, at least not directly, because it has
been eliminated by subspace projection [5].

In figure 1 we show the CBS diagrams computed using
various bounds on the scene depth. Each plot is divided
into two parts, for each one the cost function is represented
through a mapping of the domain S2 onto a square (by pro-
jecting onto a octahedron) and with color encoding. The left
part shows just the function values and the feature points in
green, while the right part shows the function with simu-
lated 3D appearance. The four plots start from no boundary
(top left) and go to an extremely high boundary value (bot-
tom right), which actually shows that imposing a bound on
depth that is too strict eventually produces deep changes in
the structure of the cost function, as expected.

The structure of the cost function near singularities, and
its modifications with bounded depths, are better appreci-
ated in the closeups in figure 2, where the opposite of the
function is shown (so that minima are represented as peaks).
It is clear that the bound on depths has the effect of remov-
ing the singularities (as proved) and also that many of the
local minima disappear, even though local peaks are still
present.

We evaluated the improvement obtained by minimizing a
regularized cost function when the algorithm used for min-
imization is a simple gradient descent, in order to provide a
quantitative appraisal of the change in structure that the cost
function undergoes when considering bounded depths. For
these experiments, we generated 10000 scenes of 25 ran-
dom points each, selected according to a Gaussian distribu-
tion with standard deviation 0.5, at a distance of 2.5 from
the camera. The measurements were generated by an in-
stantaneus motion of the camera along the forward direction



Figure 1. CBS diagrams with various depth constraints. Top-left: no constraint; top-right: |Xi| > 0.5L (L is the minimum distance of
features from camera); bottom-left: |Xi| > 0.8L; bottom-right: |Xi| > L.

Figure 2. 3D representation of CBS diagrams with various depth constraints. Top-left: no constraint; top-right: |Xi| > 0.5L; bottom:
|Xi| > 0.8L.

no bound 86.2%
|Xi| > 0.01L 87.1%
|Xi| > 0.05L 87.1%
|Xi| > 0.1L 87.2%
|Xi| > 0.5L 87.1%
|Xi| > 0.9L 88.6%
|Xi| > 1.5L 69.2%

Table 1. Percentage of successes for gradient descent algorithm
with bounded depths. L is the minimum distance of the scene
points from the camera (note that the unit of measure of distances
is chosen so that the instantaneous velocity has unit norm).

with random rotational component, and the descent algo-
rithm was initialized randomly. The step on the direction of
greatest descent was selected using a backtracking strategy,

choosing the first point where the cost function decreases.
As can be seen from Table 1, the fraction of gradient

descent runs that correctly find the global minimum is con-
sistently greater when the bound on the depths is enforced,
even for loose bounds. Eventually, imposing a very strict
boundary disrupts entirely the structure of the cost function,
as shown by the last row of the table.

5. Discussion

We have proven that imposing a bound on the depth of
the reconstructed scene makes the least-squares reprojec-
tion error continuous. This result shows that many of the
local minima induced by singularities in the least-squares
cost function that plague existing SFM algorithms when ap-
plied to autonomous navigation, where most of the motion
is forward, do not really exist and can be simply avoided



by altering the main iteration in the algorithms to enforce
bounded depth. 1

Our theoretical results can be visualized on the two-
dimensional CBS diagrams. Note that we are imposing
bounds on depth, and the CBS diagram does not depend
on depth, so the reader will have to actually read the proofs
to appreciate how this comes about.

Because the local structure is affected by the location
of feature points used in the computation of the reduced
cost, one could conceive sampling strategies where only
subsets of the available measures are chosen. This way
spurious minima due to the configuration of points change,
whereas the only stable minimum under the sampling pro-
cedure should be the one due to the actual motion. This,
however, is beyond the scope of this paper and is the sub-
ject of ongoing work.
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6. Appendix
Lemma 5. Let E be as defined in (3) and fix a bound
α > 0 on the inverse depths, i.e. restric the domain of E to
the set S2 × A, where A = R3 × [−α, α]N . Assume that
there exists two features Xi and Xj which are linearly inde-
pendent. Then there exists a constant B such that, for any
given unit velocity v, any minimizer (ω, λ1, . . . , λN ) ∈ A
of E(v, ·) : A → R must statisfy ‖ω‖ ≤ B.

Proof. Each summand in (3) satisfies ‖yi−x̂2
i ω+λix̂iv‖ ≥

‖x̂2
i ω‖ − ‖yi‖ − α‖x̂iv‖. Moreover, since there are at

least two linearly independent features Xi and Xj , we
can find γ > 0 such that for all ω ∈ R3 we have
max{‖x̂2

i ω‖, ‖x̂2
jω‖} ≥ γ‖ω‖. Hence we get the bound

E(v, ω, λ1, . . . , λN ) ≥

≥
∑

i

‖x̂2
i ω‖ − C1 ≥ γ‖w‖ − C1 (37)

for some constant C1. Therefore lim‖ω‖→∞E = ∞ uni-
formly in v and the minimization problem can be restricted
to a limited subset of A.
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