Robust Metric Reconstruction from Challenging Video Sequences
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Abstract

Although camera self-calibration and metric reconstruc-
tion have been extensively studied during the past decades,
automatic metric reconstruction from long video sequences
with varying focal length is still very challenging. Several
critical issues in practical implementations are not ade-
quately addressed. For example, how to select the initial
frames for initializing the projective reconstruction? What
criteria should be used? How to handle the large zooming
problem? How to choose an appropriate moment for up-
grading the projective reconstruction to a metric one? This
paper gives a careful investigation of all these issues. Prac-
tical and effective approaches are proposed. In particular,
we show that existing image-based distance is not an ade-
quate measurement for selecting the initial frames. We pro-
pose a novel measurement to take into account the zoom
degree, the self-calibration quality, as well as image-based
distance. We then introduce a new strategy to decide when
to upgrade the projective reconstruction to a metric one. Fi-
nally, to alleviate the heavy computational cost in the bun-
dle adjustment, a local on-demand approach is proposed.
Our method is also extensively compared with the state-of-
the-art commercial software to evidence its robustness and
stability.

1. Introduction

Structure and motion (SAM) recovery has been a long
research topic for its importance in computer vision and
wide applications in industrials, e.g. advertisement, film
production and architecture design [1, 15]. One of the most
challenging issues in SAM is to handle the long video se-
quences with varying focal length [10, 14, 13]. There are
two main difficulties. First, in auto-calibration, zooming
in/out may be confused with a forward/backward transla-
tion. Second, while processing long video sequences, the
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computational cost and time grow rapidly as the number of
frames increases, and the accumulation error may cause the
recovery to fail. However, metric reconstruction from long
video sequences with varying focal length is very impor-
tant, since such sequences are very common in professional
movies and freelance personal videos. Most existing tech-
niques handle the cases with unknown but constant focal
length [3, 8, 9, 20].

Traditionally, SAM estimation starts with an algebraic
initialization of the projective structure and motion using
two- [22] or three- [2] view epipolar constraints, then up-
grades the projective reconstruction to a metric one by some
self-calibration techniques. These steps generally adopt the
bundle adjustment (BA) method [7, 21] to refine the solu-
tion. To handle the unknown and varying intrinsic camera
parameters, the selection of initial frames in projective re-
construction initialization is very crucial. In [13, 18], two
initial frames are selected if they contain sufficient feature
matches and their viewpoints are not too close to each other.
However, it was observed in our experiments that such se-
lection criteria is not sufficient for sequences with varying
focal length, and often produce unreliable recovery results.

For long video sequences, the accumulation error in
the projective reconstruction may ultimately cause the self-
calibration to fail. Recently, Repko and Pollefeys [16] pro-
posed a self-calibration approach to alleviate this problem.
It still requires that the intrinsic camera parameters are con-
stant. Moreover, the SAM estimation for a long sequence is
time consuming, since the computational cost is dominated
by BA, which grows rapidly with the number of frames. Al-
though the computational cost can be reduced by taking ad-
vantage of the sparseness during optimization [21] or using
key frames [6, 5, 19, 16], it is not efficient enough.

In this paper, we focus on the metric SAM recovery
problem for challenging video sequences, and propose a
robust approach, which can efficiently and reliably handle
long sequences with varying focal length. Our main contri-
butions are:

e A novel measurement for selecting the initial frames
for projective reconstruction initialization, by com-



bining the zoom degree, self-calibration quality and
image-based distance;

e A new strategy for upgrading the projective recon-
struction to a metric one, which significantly improves
the accuracy of metric SAM initialization;

e A local on-demand scheme in bundle adjustment,
which dramatically accelerates the computation.

The rest of this paper is organized as follows. Section 2
gives an overview of our framework. Then our three main
contributions are described in Section 3 (selection of ini-
tial frames), Section 4 (selection of upgrading moment) and
Section 5 (local on-demand bundle adjustment). Experi-
mental results and discussions are described in Section 6.
Finally, we draw the conclusion in Section 7.

2. Framework Overview

In this section, we give an overview of our framework,
as shown in Table 1. We first initialize the sequential metric
structure and motion. Then we add and process the remain-
ing frames one by one, in an order so that frames closer to
the initization position are processed earlier. For each newly
added frame, we use pose estimation technique to initialize
its camera parameters and 3D points, and then refine ex-
isting structure and motion with BA. A key to the success
of the above algorithm is to accurately initialize the metric
structure and motion.

1 Track feature points over the whole sequence.
2 Select superior tracks and key frames.

3 Initialize the metric structure and motion.
3.1 Select the reference triple frames (RTFs) to initial-

ize the projective reconstruction
3.2 Estimate the projective SAM with an incremental

approach, and select an appropriate moment to up-

grade it to a metric framework
4 For every additional key frame,

4.1 Initialize the newly added camera and 3D points
4.2 Refine the existing SAM by local on-demand BA
Solve the camera parameters of all non-key frames

6 [Optional] Refine the whole SAM through BA

W

Table 1. An overview of our framework.

2.1. Feature Matching and Key Frames

Our automatic feature tracking algorithm is based upon
the iterative KLT algorithm [11, 17]. The matches between
consecutive frames are constrained by the epipolar geom-
etry [22]. We use RANSAC algorithm [4] to find a set of
inliers that have consistent epipolar geometry. The matched
feature points constitute the feature tracks.

As we know, structure and motion estimation with longer
tracks is more reliable and robust than with that shorter
tracks [5]. Let N be the minimal track length we required.
Then we select the tracks not shorter than N as superior
tracks for reconstruction. We use the interval % to se-
lect the key frames to ensure that all superior tracks stride
over at least two key frames. We also require that three con-
secutive key frames have sufficient of common tracks (at
least 30 in our experiments) for robust estimation. If the
common tracks are less than the required, we temporarily
decrease the interval to select the key frames until there are
enough common tracks or the interval is 1. The follow-
ing estimation is mainly based on key frames and superior
tracks.

2.2. Camera Model

We model each camera using seven parameters, i.e., the
rotation expressed by three Euler angles © = (6,,6,,0.),
the translation t = (¢4, ¢,,t,), and the focal length f. The
intrinsic matrix is then

f 0 ¢
K=| 0 af ¢ (1)
0 0 1

where aspect ratio o and principal point (¢, ¢,) are as-
sumed known. In our experiments, they are set to 1 and
the image center, respectively.

3. Selection of Initial Frames

Certain factors may affect the precision of SAM estima-
tion. Firstly, sufficient features should be matched. Sec-
ondly, the structure and motion also should not be near-
degenerate so that the structure is well-conditioned. The
second requirement is usually verified by the median dis-
tance between points transferred through an average planar-
homography and the corresponding points in the target im-
age [13], called image-based distance:

b = median(d(Hu,u’)) )

where H is the planar-homography and can be solved by
minimizing b. These two criteria is usually employed to se-
lect initial pairs for initialization in previous work [13, 18].
However, from on our experience, Pollefeys et al’s selec-
tion criteria, which maximizes the product of the number of
matches and the image-based distance, is not always reli-
able in the focal-length-varying configurations. Therefore,
more factors should be analyzed.

As we know, self-calibration from two views contains
uncertainty and is not reliable. Triple views are much more
robust and have a nice cost performance. Therefore, we
choose a triplet of views as the basic building block for



structure and motion recovery. After the step 2 in Table 1,
we obtain key frames indexed with 1, 2, ..., etc. Then we
group them into a series of triplets, such as (1,2,3), (2,3,4),
(3.4.,5), ... , etc., denote them as triplets 1, 2, 3, ..., etc.

3.1. Stabilizing Self-Calibration

The linear algorithm proposed in [13, 14] can deal
with varying intrinsic camera parameters. Readers are re-
ferred to Appendix for more details. However, problems
still exist. In practice, the estimated f? may be very
small or even negative. The reason is that the first three
items of Equation 10 are not symmetric for the constraint
in f7, which deviates (P[1]Q*Py[1]7)/(Pk[3]Q* Pc[3] )
and (Py[2]Q* Pi[2] )/ (Px[3]* P¢[3] T) from 1.0 to zero or
even negative. A similar discussion is also given by Polle-
feys in his online tutorial [12]. In order to alleviate this
problem, we define the following non-linear cost function
based on Equation 10,

1 N
Ecatiy = N1 ’;Ek7 3)
where

Ey = (é)z((% — 1) 4 (BB )2y
FE(BREEDLT gy (BB )2
o) (e — 12 + (% ~1)?)
Gk PRI RE )2 + (o (R A2
k) Ry

The notations are explained in the Appendix. Firstly, we
use the linear algorithm introduced in the Appendix to esti-
mate the focal lengths f;. The weights of the first two terms
of Equation 10 are set to values higher than the default val-
ues ( % in our experiment) to avoid that the estimated f7
being too small or negative. Then these results are refined
by minimizing the cost function E,;;5. This modification
can significantly improve the robustness of self-calibration,
especially in the focal-length-varying configurations.

3.2. Zoom Degree

Although some algorithms for varying and unknown fo-
cal length have been proposed, the robustness is still an iss-
sue. First, in auto-calibration, a forward translating camera
may be confused with zooming, especially when the scene
is near planar. Second, zoom may bring up some other prob-
lems, such as motion blur may occur, and feature matching
is more challenging. In general, the matching noise is larger
than the cases without zoom. These problems aggravate
further the confusion problem between a zoom in/out and
a forward/backward translation. The following problem of-
ten occurs. The estimated SAM deviates largely from the

ground truth, although the reprojection error is small. We
find that a smaller zoom is more suitable for initialization.
We propose a criteria to evaluate the degree of zooming
between two views. The pure focal length difference be-
tween two views is normalized with the image-based dis-
tance (Equation 2):

|fi/ fi = U+ |fi/fi =1

Qbij

Afi; = 4)

In our implementation, we perform projective reconstruc-
tion on each triplet of key frames independently, and then
estimate their focal length by self-calibration.

3.3. Self-Calibration Quality

Since we begin with a projective reconstruction, and then
upgrade it to a metric one through self-calibration, the qual-
ity of projective reconstruction is very important. As we
know, self-calibration is sensitive to noises, and requires
very accurate projective reconstruction. The reprojection
error is usually used to assess the precision of projection
matrices. In this paper, we argue that the reprojection er-
ror is not reliable for evaluating the precision of projective
reconstruction in the case that no prior knowledge is avail-
able. In practice, although the reprojection error is quite
small, projection matrices are still ill-posed, which leads to
the failure of self-calibration. Since self-calibration is sensi-
tive to the precision of projective reconstruction, the quality
of self-calibration is a reasonable way to evaluate the qual-
ity of projective reconstruction. Based on the cost function
in Equation 3, we define the criteria for the self-calibration
quality as the following,

C<Ecalib) = (5)

£
—F——€
€+ v Ecalib

where ¢ = 0.1, 0 = 0.2 in our experiments. The value of
C(FEcalip) is in the range of [0,1]. No matter whether E.;ip
is small or large, C'(E ;) manifests a good discriminative
ability.

3.4. Criteria for Selecting Initial Frames

Generally, a subsequence or initial views suitable for
metric reconstruction should satisfy the following factors:

1. There are sufficient feature matches
2. The configurations are not near-degenerate
3. The zoom degree is small

4. The self-calibration quality is good

Generally, more feature matches produce more robust es-
timation. But it is difficult to determine how many matches



are sufficient. In fact, this factor can be suggested by the
self-calibration quality. Therefore, we do not set a thresh-
old value for this factor. For a triplet ¢, we define the follow-
ing criteria to account for the image-based distance, zoom
degree and self-calibration quality:

Si = C(Ecativ)(Bi,it1 + Biy1,i+2 + Bijit2) (6)

where B;; = Mb’—ijfﬁ, and 8 = 0.04 in our experiments.
We employ a method similar to [13] with our stabilized
self-calibration to reconstruct each triplet independently and
compute its S; according to Equation 6.
Furthermore, the initial frames should be in a suitable
subsequence for more robustness. In order to evaluate the
suitability of the subsequence associated with the triplet ¢,

we apply a Gaussian filter on S; as the following:

~ i+3w B (k'—'i)2 i+3w . (k—i)Q
Si,:( Z e 2w? Sk)/ Z e 2w? @)

k=i—3w k=i—3w

where w = 3 in our experiments. Finally, we use the fol-

lowing criteria
5P =1/8;8; (8)

to select the best triplet with maximum S?. Such as triplet /,
ie. (I,1+1,1+2), is selected as our initial frames, which is
defined as reference triple frames (RTFs). In the following
estimation, other key frames will be processed incremen-
tally with the ordering: [ — 1,1+ 3,1 — 2,1 4+ 4, ..., etc.

4. Selection of Upgrading Moment

For a long sequence, the accumulation error in the pro-
jective reconstruction may ultimately cause the failure of
self-calibration. Therefore, we should manage the accumu-
lation error, and select an appropriate moment to upgrade
the projective reconstruction to a metric one before the ac-
cumulation error damages the self-calibration.

The feature tracks in the RTFs are called reference
tracks. Their corresponding 3D points are called reference
3D points. Since the RTFs are suitable for initialization, its
projective reconstruction can be regarded reasonable close
to the ground truth. Hence, the reference 3D points are well-
conditioned, and their reprojection error can be used to es-
timate the precision of reconstruction reliably. Therefore,
we use the reference 3D points to manage the accumulation
error in the projective reconstruction. For every additional
key frame, we check if it satisfies that there are at least n,,
projections of reference 3D points, and the average repro-
jection error of these reference 3D points is less than e,
pixels. In our experiments, n,, = 15 and e, = 3.0. If no
more additional key frames satisfy this condition, the pro-
jective reconstruction is stopped and upgraded to a metric
one through our stabilized self-calibration with these key

frames. The results are refined through metric bundle ad-
justment immediately. So far, we have accomplished the
task for initializing the metric structure and motion recov-
ery.

5. Local On-Demand Bundle Adjustment

In step 4.2 of Table 1, if we refine the existing SAM with
traditional BA for every additional frame, the computational
cost is prohibitively large for long sequences. To reduce the
computational cost of BA, we propose a local on-demand
scheme. Firstly, we only refine the additional key frame and
its visible m; 3D points (i.e., those 3D points that have the
corresponding 2D feature points in this frame). Other cam-
eras and 3D feature points are fixed, in order to reduce the
computational cost. In fact, we only need to fix the cameras
of the n; key frames that also present (“‘see”) one or more
of these m; 3D points. All other unrelated cameras and 3D
feature points are not touched.

If the refined reprojection error exceeds the threshold,
more key frames and the associated 3D points should be
considered in the next round of refinement. The cameras
of these n; + 1 key frames and their associated 3D points
are treated as variables and refined. Other cameras and 3D
points are fixed (unrelated cameras and 3D points are not
touched). This local on-demand approach to bundle adjust-
ment continues until either the threshold is satisfied or all
key frames and 3D points have been refined. In practice,
the threshold is usually satisfied even in the first round of
refinement. That means the computational time can be sig-
nificantly reduced.

6. Experiments

We have examined our algorithms with different video
sequences on a desktop PC with Intel Xeon 3.0 GHz CPU
and 2 GB memory. Table 2 shows the statistics of three
video sequences we tested. In the first 100 frames of the
Synthetic Campus sequence, the camera turns right and
zooms in with a slight translation, and then moves freely
and rapidly. In some subsequences, the camera simul-
taneously zooms in and moves backward, or zooms out
and moves forward. In addition, 11.7% image noise is
added, i.e., each pixel is perturbed by a random number uni-
formly distributed in [-30,30] (pixel values are in the range
[0,255]). The Building and the Garden sequence are two
real outdoor video sequences captured by a hand-held video
camera. They are long sequences with varying focal length.

Table 2 also summarizes the performance. In our
method, the computational time mainly depends on the
number of key frames, 3D points and image projections.
For the Building sequence of 2,410 frames, we choose 98
key frames and reconstruct 2,908 3D points with 462,621
image projections, which take around 16 minutes. The root



sequence | Syn. Campus | Building | Garden

frames 601 2410 1608

key frames 51 98 55

3D points 2825 2908 4283

image projections 171,342 | 462,621 | 803,750

RMSE. (pixels) 0.586 1.327 1.065

matching time (min.) 7 28 21

solving time (min.) 6 16 12
performance list of boujou three

matching time (min.) 6 21 14

solving time (min.) 55 51 34

Table 2. The statistical results of our approach and the performance
of boujou three.

mean squared error (RMSE) of the reprojections is 1.327
pixels. For extensive comparison, these sequences are also
tested with the state-of-the-art software product, “boujou
three” by 2d3 company [1], which is the best available to
us. Compared with the performance of boujou three shown
in the last rows of Table 2, our method is 3 to 9 times faster
than that of boujou three.

In the following, we first show the efficiency of our crite-
ria in selecting initial frames, including a comparison with
the criteria of Pollefeys et al. [13] (Pollefeys criteria for
short). Then we compare the results of different upgrading
strategies. Finally, we verify our algorithm by generating
augmented videos based on our reconstruction results, and
compare them with that of boujou three.

Initialization Criteria Analysis: We first analyze the cri-
teria for selecting initial frames using the Synthetic Campus
sequence, as shown in Figure 1(A). Figure 1(A1)-(A4) re-
spectively show the average number of matches, average
image-based distance, zoom degree, and self-calibration
quality of each triplet. Figure 1(AS) shows the translation
initialization error of each triplet. Since the accuracy of
the recovered 3D structure is highly related to the camera
translation, triple frames with smaller translation initializa-
tion error are more suitable for initialization. Therefore, the
triplets around 35~45 are good candidates for initialization.

Figure 1(A6) and (A7) respectively show the suitable
scores of the triplets computed using Pollefeys criteria [13]
and our criteria in Equation 8. The peak score in Fig-
ure 1(A6) is at 12, implying that Pollefeys criteria will
choose triplet 12 for initialization, which is a poor candi-
date as indicated by the translation initialization error curve
in Figure 1(AS). This is because that Pollefeys criteria, as
a product of the average number of feature matches and
the average image-based distance, may not adequately re-
flect the translation initialization error. In contrast, the peak
score in Figure 1(A7) is at 41, implying that our criteria will
choose triplet 41 for initialization, which is a good candi-
date as indicated by the translation initialization error curve
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Figure 2. Focal length obtained by different upgrading strategies.

in Figure 1(AS).

Then we analyze the impact of three factors included
in our selection criteria. The image-based distance criteria
is useful to detect the case of near-pure rotation or near-
degenerate configurations, e.g. triplets 1-7. However, it is
not sensitive to reflect the instability of reconstruction, es-
pecially in the large zoom case, e.g. triplets 11-17. Fortu-
nately, the self-calibration quality measures reconstruction
quality well and remedy this flaw. Small initialization error,
e.g. triplets 35-45, usually occurs in the case of small zoom
degree. Therefore, it is quite necessary to include zoom de-
gree and self-calibration quality in our selection criteria.

In addition, Figure 1(A8) shows the reprojection error of
projective/metric reconstruction (upgrading to metric with-
out being refined by BA) from each triplet. It shows the
reprojection error of most triplets is very small and close
to each other, and therefore it is unreliable to measure the
projective reconstruction quality.

We perform the same analysis in Figure 1(B) for the real
video sequence, Building. Note that the final result by our
algorithm is used as the ground-truth to compute the trans-
lation initialization error, since there is no ground-truth for
this real captured sequence and our result is accurate as
demonstrated by our augmented video result. Figure 1(A)
and (B) show that our criteria is superior for not only syn-
thetic but also real videos. Figure | also shows that it is a
bad choice to initialize the sequential structure and motion
computation from the beginning of these two sequences,
which may cause the initial 3D point structure and camera
motions to be ill-posed and eventually result in bad recon-
struction or even failure.

Upgrading Strategy Evaluation: We evaluate our up-
grading strategy using the Synthetic Campus sequence and
the real Building sequence, and compare them to different
strategies. The focal length after upgrading and the ground-
truth focal length are shown in Figure 2.

Figure 2(a) shows the results for the Synthetic Campus
sequence. One can easily see that our upgrading scheme
produces the best results on focal length, and upgrading
immediately from RTFs even produces much better results
than upgrading after the complete projective reconstruction.
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Figure 3. The Synthetic Campus sequence. (a) the synthetic scene with the camera trajectory (red line); (b) the ground truth of the focal
length; (c) the focal length recovered by our method and boujou three.

Upgrading after the complete projective reconstruction pro- ure 3(c), most of the focal length recovered by boujou three
duces extremely large focal length error at key frame 13. are quite close to the ground truth, while there is signifi-
Figure 2(b) shows another set of results for the real Building cant deviations at the frames with peak local maximum fo-
sequence, and evidences that our upgrading strategy works cal length values, e.g. frame 361. Our method produces
nicely for real sequence as well. more accurate results at these frames than boujou three. The
maximum deviation from the ground truth is less than 2%.
Verification: In the following, we show more metric re- In addition, our method successfully reconstructs the whole
construction results and corresponding augmented videos, sequence, while boujou three does not provide a solution
including a comparision with that of boujou three. Fig- for the first 183 frames.
ure 3 compares the focal length recovered by our method In Figure 4, we show the results of recovered focal

and boujou three. As shown by the dashed curve of Fig- length, 3D points, camera trajectory from the real Building
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sequence. Since there is no ground truth, we verify the re-
covered results by augmenting the video with two synthetic
objects. The dashed curve in Figure 4(a) and the camera
trajectory in Figure 4(c) indicate that the recovered camera
motion by boujou three is very jittering, which is however
(a) our method not true. Several augmented frames captured from boujou

: three are shown in Figure 5(b), to examine its reconstruc-
tion quality. While the overlaid dome far away from the
camera in boujou three’s augmented video looks steady, the
overlaid box closer to the camera is jitter and drifts, which
implies the recovered SAM is not accurate. The recovered

(b) captured from boujou three results by our method are shown in Figure 4(a) (solid curve)
Figure 5. Some augmented frames of the Building sequence. and Figure 4(b), the quality is also verified by the aug-
mented video result as shown in Figure 5(a), in which both
the farther dome and nearby box remain firmly registered to
the scene throughout the sequence. Figure 6 shows another
set of reconstruction result and augmented video result by
our method with the real sequence, Garden. High quality
reconstruction is resulted.
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We have presented a robust approach for automatic met-
ric reconstruction. The major advantage of our approach is
that it can reliably handle long video sequences with vary-
ing focal length, which may cause problems to previous
methods. In addition, our approach is very efficient. These
advantages are achieved by our innovations in the selection
criteria of initial frames, the upgrading strategy and the lo-
cal on-demand optimization scheme. The robustness and
efficiency have been demonstrated by our extensive experi-
ments on both synthetic and real video sequences.

The limitation of the proposed work is that we do not
consider the non-linear lens distortion in our current SAM
estimation, thus our method may be unsuitable for the se-
quences that contain significant lens distortion. Addressing
the lens distortion is left for future development. Another
future direction is to improve the feature tracking results
for sequences with motion blur, so that we can have enough
long tracks for robust metric reconstruction.

Figure 6. The result of the Garden sequence. (a) shows the fo-
cal length recovered by our method. (b) shows our recovered 3D
points and the camera trajectory overlaid with the synthetic ob-
jects. (c) some augmented frames by our method.
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Appendix

According to computer vision theory, the projection of
the absolute quadric in the image yields the dual image ab-
solute conic:

w* ~ KiKy, | ~ PP, T, )
where K, and Py, is the intrinsic matrix and projection ma-
trix of frame k, which are normalized according to [13]. If
the skew is assumed to zero, both principal point and aspect
ratio are known, according to the linear self-calibration al-
gorithm proposed in [13, 14], Equation 9 can be rewritten
as follows:

2.0 0 a

f]? 0 Y J:)l f2 0 a; T

el OS2 0| =Pl o 0 2 | P
0 0 1 3,
ar az az |al|

The uncertainty is taken into account by weighting the equa-
tions accordingly.

@(Pk[lm’kpk[ﬂ — P[3]Q*P[3]7) =

an (P21 P[2]T — PB]Q" P[3]T) =

55 (Pe[1]Q* P [1]T — P[2]Q* P[2]T) =:0 (10)
o (Pe[1Q P[3]T) = 0

7 (P21 P[3]T) = 0

0.01v (Pk[ }Q*Pkp}-r) 0

where P[] is the ith row of Py, and v a scale factor that
is initialized to 1 and then set to P;[3]Q* P,[3]" with Q*
which is the result of the previous iteration. An estimate
of the dual absolute quadric 2* can be obtained by solving
the above set of equations for all views through linear least-
squares. Please refer to [13, 14] for more details.
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