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Abstract

A study of the performance of recently introduced dis-

criminant methods for interest point detection [6, 14] is

presented. It has been previously shown that the resulting

interest points are more informative for object recognition

than those produced by the detectors currently used in com-

puter vision. Little is, however, known about the properties

of discriminant points with respect to the metrics, such as

repeatability, that have been traditionally used to evaluate

interest point detection. A thorough experimental evalua-

tion of the stability of discriminant points is presented, and

this stability compared to those of four popular methods.

In particular, we consider image correspondence under ge-

ometric and photometric transformations, and extend the

experimental protocol proposed by Mikolajczyk et al. [13]

for the evaluation of stability with respect to such transfor-

mations. The extended protocol is suitable for the evalu-

ation of both bottom-up and top-down (learned) detectors.

It is shown that the stability of discriminant interest points

is comparable, and frequently superior, to those of interest

points produced by various currently popular techniques.

1. Introduction

Saliency mechanisms play an important role in the abil-

ity of biological vision systems to perform complex tasks,

such as detection and recognition of objects from cluttered

background. By identifying certain regions of the visual

field as more important, or salient, than others they enable

a non-uniform allocation of perceptual resources that eases

the computational burden posed by visual tasks [15]. In

the computer vision literature, the saliency problem is fre-

quently referred to as the extraction of interest points, and

has been a subject of research for a few decades. Various

interest point detectors have been proposed and applied to

many computer vision tasks. Recently, interest point de-

tectors have been extensively used in the context of the ex-

traction of image descriptors for matching-based recogni-

tion [9, 10], or for learning object categories [4, 1].

Although it has long been known that human judge-

ments of saliency [18] can be of two types, bottom-up

(stimulus-driven) or top-down (task-specific), most popu-

lar interest point detectors have an exclusively bottom-up

nature. These detectors define interest points as image loca-

tions that exhibit some properties which are universally de-

sirable [7, 16, 8, 12, 3]. The most popular among such prop-

erties is that of stability to various imaging and geometrical

transformations, an optimality criterion for which many in-

terest point detectors have been proposed [7, 5, 17, 12, 10].

Recently, it has been shown that some of these detectors

are stable with respect to a broad class of image transfor-

mations, including various geometric transformations (rota-

tion, scaling, affine mappings), lighting variation, blurring,

and image compression [13]. When compared with the top-

down strategies, bottom-up detection has various advan-

tages, including 1) optimality criteria that are amenable to

closed-form mathematical solutions, 2) freedom from com-

putationally intensive training, and 3) low implementation

complexity. These advantages are, however, closely tied to

what is also their major limitation: due to the absence of

task-specific focus, bottom-up detectors can only be opti-

mal in very generic senses, and the resulting interest points

are usually not the best for any specific application.

Recently, there have been attempts to overcome this

problem, by introducing top-down interest point detec-

tors [6, 14]. A proposal which explicitly targets recognition

is to define saliency in terms of features. The basic idea is

that, for recognition, salient features are those which best

discriminate between the class to recognize and the remain-

ing classes [6]. Interest points are then the locations where

those features have maximal response. This tunes the inter-

est point detector to the class to recognize, guaranteeing that

only image locations which are informative for the recog-

nition of that class are denoted of interest. Experimental

evaluation, in the domain of learning object categories from

cluttered imagery, has shown that these top-down interest

points can be significantly more informative for recognition

than those produced by bottom-up methods [6, 2].

It is, however, not clear how the two approaches compare
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with respect to the criteria, such as stability, traditionally

used to evaluate interest points. One potential limitation of

the top-down strategy lies in its dependence on a training

set. For applications where training images are scarce, top-

down detectors could have poor generalization, in which

case the resulting interest points would likely be very unsta-

ble. Unlike bottom-up detectors, whose stability has been

thoroughly characterized, the robustness of top-down inter-

est point detectors has not yet been investigated in detail.

In this work, we present the results of a study of this

question, through a detailed experimental evaluation of the

repeatability of discriminant interest points. In particular,

we consider image correspondence under various geomet-

ric and photometric transformations. The main contribu-

tions are as follows. First, we extend the experimental pro-

tocol proposed in [13] for the evaluation of interest point

detection, so as to make it applicable to both bottom-up and

top-down (learning-based) detectors. The extended proto-

col consists of a series of experiments which quantify the

relationship between stability and training set size. The

original protocol becomes a special case of this extension,

enabling a fair comparison of bottom-up and top-down tech-

niques. The second contribution is a comparison between

the stability of discriminant interest points and those of in-

terest points produced by four bottom-up detectors widely

used in computer vision: the scale saliency detector (SSD)

of [8], the Harris-Laplace (HarrLap) detector of [12], the

Hessian-Laplace (HesLap) detector of [12], and the maxi-

mally stable extremal region (MSER) detector of [10].

It is shown that the matching performance of the top-

down interest points is comparable with, and frequently su-

perior to, those of their bottom-up counterparts. In particu-

lar, discriminant points perform best when trained with rich

training sets, and achieve comparable performance when

training sets are small. Only in the extreme cases of com-

plex scenes, subject to substantial transformations, and very

little training data, did their stability scores dropped below

those of the best non-discriminant methods. This suggests

that the discriminant formulation is a good idea even from a

stability point of view: not only it enables the design of

detectors that can be made more invariant by simply in-

creasing the richness of their training sets, but it appears to

work well even when training data is limited. We propose

an explanation for this observation, based on connections

between stability, sparseness, and discrimination.

2. Interest point detectors

We start with a brief review of all interest point detectors

compared in the experiments of the following sections1.

1Implementations of all detectors are available from their original au-

thors, and were used to produce all results presented in this paper. Binary

codes are available from http://www.svcl.ucsd.edu/projects/saliency,

2.1. Discriminant saliency detector (DSD)

Under the discriminant formulation [6], interest points

are the locations of maximal response of a set of salient vi-

sual features. Feature saliency is defined as the discriminant

power of a feature with respect to the classification problem

that opposes the class of interest to all other classes in the

recognition problem. In the implementation of [6], the set of

candidate features consists of the coefficients of the discrete

cosine transform (DCT) and salient features are selected

by the maximum marginal diversity (MMD) criterion. In

particular, images are projected into a K-dimensional fea-

ture space, and the marginal distribution of each feature

(Xk) under each class (Y ), PXk|Y (x|i), i ∈ {0, 1}, k ∈
{0, . . . ,K − 1}, is estimated. Features are then sorted by

decreasing mutual information with the class label,

I(Xk;Y ) =< KL[PXk|Y (x|i)||PXk
(x)] >Y ,

where < f(i) >Y =
∑M

i=1 PY (i)f(i), and KL[p||q] =
∫

p(s) log p(x)
q(x)dx the Kullback-Leibler divergence between

p and q. The features of largest mutual information are fi-

nally selected. A saliency map is generated by 1) projecting

the image into the subspace spanned by the salient features,

and 2) combining the resulting projections Ri(x) according

to

SD(x) =

n
∑

i=1

ωiR
2
i (x),

with ωi set to the mutual information between the corre-

sponding features and class label. Interest points are then

determined by a non-maximum suppression stage, which

sets the scale of each point to the spatial support of the fea-

ture of largest response at that point. Figure 1 (b) illustrates

some salient locations generated by DSD.

2.2. Scale saliency detector (SSD)

This detector defines saliency as spatial unpredictability

of image regions, and relies on the changes of the infor-

mation content of the distribution of image intensities over

spatial scales to detect interest point locations [8]. To de-

tect an interest point, the entropy, H(s,x), of the histogram

of local intensities over the image neighborhood of circular

scale s, centered at x, is first computed,

H(s,x) = −
∑

I

p(I, s,x) log p(I, s,x),

where p(I, s,x) is the histogram of image intensities. Its

local maximum over scales, H(x), is then determined and

the associated scale is considered as a candidate scale, sp,

http://www.robots.ox.ac.uk/˜timork/salscale.html and

http://www.robots.ox.ac.uk/˜vgg/research/affine/detectors.html. The

default parameters settings, if applicable, were used.



for location x. A saliency map is obtained as a weighted

entropy,

SS(x) = H(x)W (sp,x)

where W (s,x) = s
∫

∣

∣

∂
∂s

p(I, s,x)
∣

∣ dI , and interest points

are finally located by clustering this saliency map. An ex-

ample of salient points detected by the SSD is presented in

Figure 1 (c).

2.3. Harris-Laplace (HarrLap) and Hessian-
Laplace (HesLap) detectors

These two detectors are designed to maximize the sta-

bility of image regions to some geometric transformations

(e.g. scaling) [12]. They are essentially corner detectors,

inspired by the observation that corners are stable under

various types of image transformations. In particular, to

find interest points, the HarrLap detector relies on an auto-

correlation matrix [7],

Ha(x, y) =
∑

(u,v)

wu,v∇I(x + u, y + v)∇T I(x + u, y + v)

(1)

where ∇I(x) = (Ix(x), Iy(x))T , is the spatial gradient of

the image at location x = (x, y), and wu,v a low-pass filter

(typically a Gaussian) that smoothes the image derivatives.

HesLap, on the other hand, uses the Hessian matrix of local

image intensities,

He(x, y) = (2)

∑

(u,v)

wu,v

[

Ixx(x + u, y + v) Ixy(x + u, y + v)
Iyx(x + u, y + v) Iyy(x + u, y + v)

]

,

where Ixy(·) represents the second order derivative with re-

spect to x and y. In both cases, the scale of interest points

is determined by application of the Laplacian operator,

|L(x, y, s)| = s2|Ixx(x, y, s) + Iyy(x, y, s)|,

for a number of scales s. This operator has been demon-

strated to give the best scale selection results in the exper-

imental comparison of [11]. Starting from a set of initial

locations obtained by detecting local maxima of (1) or (2)

on multiple scales, the final interest points are detected by

an iterative algorithm, which sequentially searches for lo-

cal maxima over scale and space [12]. Examples of interest

points detected by HarrLap and HesLap are shown in Fig-

ure 1 (d) and (e).

2.4. Maximally stable extremal region (MSER) de-
tector

The maximally stable extremal region (MSER) detector

defines interest regions by an extremal property of image in-

tensity. The word extremal refers to the property that all pix-

els inside the MSER have either higher (brighter) or lower

(a) (b)

(c) (d)

(e) (f)
Figure 1. Interest points detected, on image (a), by different ap-

proaches: (b) DSD, (c) SSD, (d) HarrLap, (e) HesLap, (f) MSER.

For intelligibility, the points shown are randomly selected from all

locations generated by the detectors.

(darker) intensity than all the pixels in its outer boundary.

The set of extremal regions is the set of all connected com-

ponents obtained by thresholding a gray-level image, and

possesses some desirable properties: the set is closed under

1) any continuous (and projective) transformation of image

coordinates, or 2) any monotonic transformation of image

intensities. The “maximally stable” extremal regions are the

ones whose area changes the least in response to a change

of threshold.

The enumeration of extremal regions can be imple-

mented very efficiently, with complexity O(n log log n),
where n is the number of image pixels [10]. The implemen-

tation of the complete MSER detector is as follows. First,

pixels are sorted by intensity, and sequentially placed in the

image (either in descending or ascending order). The list of

connected components, and their area, is stored as a func-

tion of pixel intensity. The intensity levels which are local

minima of the rate of area change are finally selected as

thresholds, and used to produce the MSERs. Even though

the output regions produced by MSER can be of arbitrary

shape, they (like those of other detectors) are represented



by a circular shape, for comparison purposes. The regions

produced by MSER are illustrated in Figure 1 (f).

3. Repeatability

The performance of discriminant saliency, in the context

of object detection from cluttered scenes, has been studied

in [6]. This study has shown that discriminant saliency pro-

duces interest points which are more informative about the

location of the objects to recognize than all other interest

point detectors. This is not completely surprising, given

that discriminant saliency detectors are optimized for the

class of interest. In what follows we evaluate performance

with respect to the task for which the remaining detectors

are optimal, or close to optimal. This is the stability of in-

terest points with respect to various generic image transfor-

mations.

3.1. Experimental protocol

Ideally, interest points should be unaffected by changes

of the various (scene-independent) parameters which con-

trol the imaging process, e.g. lighting, geometric transfor-

mations (such as rotation and scaling), and so forth. Miko-

lajczyk et al. [13] have devised an experimental protocol

for evaluating the repeatability of interest points under var-

ious such transformations. The protocol includes 8 classes

of transformations, each class consisting of 6 images pro-

duced by applying a set of transformations, from the same

family, to a common scene. The transformations include

joint scaling and rotation, changes of viewpoint angle (ho-

mographies), blurring, JPEG artifacts, and lighting. All de-

tectors other than DSD are explicitly designed to be invari-

ant to, at least, some of these variations. Scale + rotation,

view point changes, and blurring are applied to sets of two

scenes, which can be roughly characterized as textured (e.g.

images of tree bark or of a brick wall) or structured (e.g. an

outdoors scene depicting a boat or a wall covered with graf-

fiti).

3.2. Extending the protocol for learning

Since the protocol of [13] does not define training and

test images, we propose an extension applicable to learning-

based methods, such as discriminant saliency. This ex-

tended protocol is based on various rounds of experiments.

At the kth round, the first k images of a given class are

treated as a training set for that class, and the repeatability

scores of the learned interest point detector are measured

on the remaining 6 − k images. This is accomplished by

matching the interest points detected on these images to the

reference image, which is the kth image. When k = 1,

this reduces to the protocol of [13], but larger values of k

enable a quantification of the improvement of stability with

the richness of the training set. The new protocol is illus-

trated in Figure 2 for k = 1 and 2. In the experiment re-

ported below, the repeatability score of DSD was measured

for k = {1, 2, 3}, and compared to the other detectors op-

erating under the same test protocol (i.e., using image k as

a reference). In preliminary experiments, we noted that the

implementation of DSD of [6] could not deal with the large

variations of scale of this dataset. To overcome this, we

implemented a simple multi-resolution extension of DSD:

discriminant interest points were first detected at each layer

of a Gaussian pyramid decomposition of the image and, at

each interest point location, the layer of largest saliency was

selected. This type of processing is already included in all

other detectors.

3.3. Repeatability score

The criterion used to find the corresponding points be-

tween a pair of images is that of [13]. In particular, a

mapped interest point, Ra, is considered to match the refer-

ence image if there exists an interest point, Rf , in the latter

for which the overlap error is sufficiently small, i.e.

1 −
Ra ∩ Rf

Ra ∪ Rf

< ǫ, (3)

where ∩ represents intersection, and ∪ union. To avoid fa-

voring matches between larger interest points, the reference

region was normalized to a radius of 30 pixels before match-

ing, as suggested by [13]. The matching threshold, ǫ, was

set to 0.4. The repeatability score for a given pair of images

is computed, as in [13], as the ratio between the number of

correspondences and the smaller of the number of regions

in the pair.

3.4. Results

The average repeatability scores obtained (across the set

of test images) by each interest point detector are shown, as

a function of the reference image number k, in Figure 3.

The most surprising conclusion that can be taken from

the figures is the good performance of DSD. When the train-

ing set includes multiple positive examples (k > 1), it out-

performs all other methods for 7 of the 8 classes. But even

when the set of positive training examples is a single im-

age (i.e., there are no training examples for the deforma-

tions suffered by each image patch under the transforma-

tions considered) DSD is competitive with all other tech-

niques. In fact, it still achieves the top repeatability scores

for five of the eight classes (Figure 3 (d)-(h)), and is very

close to the best for another (Figure 3 (b)). HesLap achieved

the best performance among the non-discriminant interest

point detectors.

It is also interesting to compare the relative performance

of DSD and HesLap by transformation and image class.

With respect to transformations, DSD is the most robust



Training Matching

k = 1

k = 2

Figure 2. Extended protocol for the evaluation of the repeatability of learned interest points. At the k
th round, the detector is trained on

the first k images, and the repeatability score measured by matching the remaining images to the reference, which is set to the last training

image, and shown with thick boundaries.
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Figure 3. Repeatability of interest points under different conditions: scale + rotation ((a) for structure & (b) for texture); viewpoint angle

((c) for structure & (d) for texture); blur ((e) for structure & (f) for texture); JPEG compression (g); and lighting (h).

method in the presence of blurring, JPEG artifacts and light-

ing transformations (Figure 3 (e-h)) independently of the

degree of training. It also achieves the best performance for

changes of viewpoint angle, but this can require more than

one positive example (Figure 3 (c)). Its worst performance

occurs under combinations of scale and rotation (Figure 3

(a) & (b)), where it is always inferior to that of HesLap for

small amounts of training, and sometimes inferior for the

largest training sets. With respect to image class, the ro-

bustness of DSD to geometric transformations is better for

texture (Figure 3 (b) & (d)) than for structured scenes (Fig-

ure 3 (a) & (c)). While, for the former, DSD achieves the

best, or close to the best, performance at all training levels,

for structured scenes DSD is less invariant than HesLap for

the majority of the training regimes.



4. Discussion

Overall, the results above illustrate some of the trade-offs

associated with learning-based (top-down) interest point de-

tectors, such as DSD. On one hand, the ability to select spe-

cific features for the class under consideration, increases not

only the discriminant power but also the stability of interest

point detection. It appears that the principle of discrimi-

nant learning is a good idea even from a repeatability point

of view. It enables the design of detectors which can be

made more invariant by simply increasing the richness of

the transformations covered by their training sets. This is a

property that bottom-up routines lack, and sometimes leads

to dramatic variability of repeatability scores across classes

(see the curves of SSD on Figure 3 for an example). On the

other hand, the generalization of a top-down detector de-

pends on the quality of the training data and the complexity

of the mappings that must be learned. In Figure 3, this can

be seen by the consistent performance loss associated with

smaller training sets, and the greater difficulties posed by

structured scenes, when compared to texture. When little

training data is available, or the mappings have great com-

plexity, explicit encoding of certain types of invariance (as

done by the bottom-up detectors) can be more effective. In

this sense, the combination of top-down and bottom-up in-

terest point detectors, to optimally balance the trade-off be-

tween learning and pre-specification of invariance, could be

beneficial.

It is, nevertheless, surprising that, with respect to stabil-

ity, DSD is competitive with the existing interest point de-

tectors, even for quite small amounts of training data. In the

experiments above, competitive performance was achieved

for k = 1, i.e. the case where only one image is avail-

able for training. In this case, the training set contains no

examples of the variability that a pattern may present in re-

sponse to the transformations considered. The ability of the

discriminant detector to learn stable points under these cir-

cumstances is probably due to a strong connection between

the stability of a pattern and its frequency of occurrence in

the universe of natural images.

Stability requires 2D patterns of image intensity (e.g.

corners), which are less frequent than one dimensional pat-

terns (e.g. lines), and even less frequent than flat patterns

(flat surfaces). Hence, stable features are more rare than

non-stable features, making their presence in an object cat-

egory more discriminant. This makes them more likely to

be selected than non-stable features, even when the training

set contains no explicit information about the deformations

that they undergo, as the image is subject to transforma-

tions. This is illustrated in Figure 4, where we present a

number of discriminant interest points extracted from the

wall image, for k = 1. Note that the interest points tend to

be co-located with corners and T-junctions, which are both

rare (in natural images) and stable.

Figure 4. Discriminant interest points learned from a single train-

ing image. The points are co-located with image patterns that are

both rare and stable.
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