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Abstract

A novel algorithm called Average Neighborhood Mar-
gin Maximization (ANMM) is proposed for supervised lin-
ear feature extraction. For each data point, ANMM aims at
pulling the neighboring points with the same class label to-
wards it as near as possible, while simultaneously pushing
the neighboring points with different labels away from it as
far as possible. We will show that features extracted from
ANMM can separate the data from different classes well,
and it avoids the small sample size problem existed in tradi-
tional Linear Discriminant Analysis (LDA). The kernelized
(nonlinear) counterpart of ANMM is also established in this
paper. Moreover, as in many computer vision applications
the data are more naturally represented by higher order ten-
sors (e.g. images and videos), we develop a tensorized (mul-
tilinear) form of ANMM, which can directly extract features
from tensors. The experimental results of applying ANMM
to face recognition are presented to show the effectiveness
of our method.

1. Introduction

Feature extraction (or dimensionality reduction) is an
important research topic in computer vision and pattern
recognition fields, since (1) the curse of high dimensional-
ity is usually a major cause of limitations of many practical
technologies; (2) the large quantities of features may even
degrade the performances of the classifiers when the size
of the training set is small compared to the number of fea-
tures [1]. In the past several decades, many feature extrac-
tion methods have been proposed, in which the most well-
known ones are Principal Component Analysis (PCA) [10]
and Linear Discriminant Analysis (LDA). However, there
are still some limitations for directly applying them to solve
vision problems.

Firstly, although PCA is a popular unsupervised method
which aims at extracting a subspace in which the variance of
the projected data is maximized (or, equivalently, the recon-
struction error is minimized), it does not take the class in-
formation into account and thus may not be reliable for clas-

sification tasks. On the contrary, LDA is a supervised tech-
nique which has been shown to be more effective than PCA
in many applications. It aims to maximize the between-
class scatter and simultaneously minimize the within-class
scatter. Unfortunately, it has also been pointed out that there
are some drawbacks existed in LDA [13], such as (1) it usu-
ally suffers from the small sample size problem [18] which
makes the within-class scatter matrix singular; (2) it is only
optimal for the case where the distribution of the data in
each class is a Gaussian with an identical covariance ma-
trix; (3) LDA can only extract at most c− 1 features (where
c is the number of different classes), which is suboptimal
for many applications.

Another limitation of PCA and LDA is that they are all
linear methods. However, it is discovered that many vi-
sion problems may not be linear [7][20], which makes these
linear approaches inefficient. Fortunately, kernel based
methods [2] can handle these nonlinear cases very well.
The basic idea behind those kernel based techniques is to
first map the data to a high-dimensional (usually infinite-
dimensional) feature space, and make the nonlinear prob-
lem in the original space linearly solvable in the feature
space. It has been shown that Kernelized PCA [3] and Ker-
nelized LDA [19] can improve the performances of original
PCA and LDA significantly in many computer vision and
pattern recognition problems.

Finally, PCA and LDA take their inputs as vectorial data,
but in many real-world vision problems, the data are more
naturally represented as higher-order tensors. For example,
a captured image is a 2nd-order tensor, i.e. matrix, and the
sequential data, such as a video sequence for event analysis,
is in the form of 3rd-order tensor. Thus it is necessary to de-
rive the multilinear forms of these traditional linear feature
extraction methods to handle the data as tensors directly.
Recently this research topic has received considerable inter-
ests from the computer vision and pattern recognition com-
munity [5], and the proposed methods have been shown to
be much more efficient than the traditional vectorial meth-
ods.

In this paper, we propose a novel supervised linear fea-
ture extraction method called Average Neighborhood Mar-
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gin Maximization (ANMM). For each data point, ANMM
aims to pull the neighboring points with the same class la-
bel towards it as near as possible, while simultaneously push
the neighboring points with different labels away from it as
far as possible. Compared with traditional LDA, our method
has the following advantages:

1. ANMM avoids the small sample size problem [18]
since it does not need to compute any matrix inverse;

2. ANMM can find the discriminant directions without as-
suming the particular form of class densities;

3. Much more feature dimensions are available in
ANMM, which is not limited to c − 1 as in LDA.

Moreover, we also derive the nonlinear and multilinear
forms of ANMM for handling the nonlinear and tensor data.
Finally the experimental results on face recognition are pre-
sented to show the effectiveness of our method.

The rest of this paper is organized as follows. In sec-
tion 2 we will briefly review some methods that are closely
related to ANMM. The algorithm details of ANMM will be
introduced in section 3. In section 4 and section 5 we will
develop the kernelized and tensorized forms of ANMM. The
experimental results on face recognition will be presented
in section 6, followed by the conclusions and discussions in
section 7.

2. Related Works

In this section we will briefly review some linear feature
extraction methods that are closely related to ANMM. First
let’s see some notations and problem definition.

Let {(x1, y1), (x2, y2), · · · , (xN , yN )} be the empirical
dataset, where xi ∈ R

d is the i-th datum represented by a
d dimensional column vector, and yi ∈ L is the label of xi,
L = {1, 2, · · · , c} is the label set. The goal of linear feature
extraction is to learn a d × l projection matrix W, which
can project xi to

yi = WT xi,

where yi ∈ R
l is the projected data with l � d, such that

in the projected space the data from different classes can be
effectively discriminated.

Traditional LDA learns W by maximizing the following
criterion

J =

∣∣WT SbW
∣∣

|WT SwW| ,

where Sb =
∑c

k=1 pk(mk−m)(mk−m)T is the between-
class scatter matrix, where pk and mk are the prior and
mean of class k, and m is the mean of the entire dataset.
Sw =

∑c
k=1 pkSk is the within-class scatter matrix with

Sk being the covariance matrix of class k.

It has been shown that J can be maximized when W is
constituted by the eigenvectors of S−1

w Sb corresponding to
its l largest eigenvalues [13]. However, when the size of the
dataset is small, Sw will become singular. Then S−1

w does
not exist and the small sample size (SSS) problem occurs.
Many approaches have been proposed to solve such a prob-
lem, such as PCA+LDA [18], null space LDA [14], direct
LDA [9], etc. Li et al. [6] further proposed an efficient and
robust linear feature extraction method which aims to max-
imize the following criterion which was called a margin in
[6]

J = tr
(
WT (Sb − Sw)W

)
, (1)

where tr(·) denotes the matrix trace. We can see that there
is no need for computing any matrix inverse in optimizing
the above criterion. However, such a margin is lack of geo-
metric intuitions. Qiu et al. [23] proposed a Nonparametric
Margin Maximization Criterion for learning W, which tries
to maximize

J =
N∑

i=1

wi(‖δE
i ‖2 − ‖δI

i ‖2) (2)

in the transformed space, where ‖δE
i ‖ is the distance be-

tween xi and its nearest neighbor in the different class, ‖δI
i ‖

is the distance between xi and its furthest neighbor in the
same class. The problem is that using just the nearest (or
furthest) neighbor for defining the margin may cause the
algorithm sensitive to outliers. Moreover, the stepwise pro-
cedure for maximizing J is time consuming.

From another point of view linear feature extraction can
also be treated as learning a proper Mahalanobis distance
between pairwise points, since

‖yi−yj‖2 = ‖WT (xi−xj)‖2 = (xi−xj)T WWT (xi−xj)

Let M = WWT , then

‖yi − yj‖2 = (xi − xj)T M(xi − xj).

Weinberger et al. [15] proposed a large margin criterion to
learn a proper M for k Nearest Neighbor classifier, and op-
timize it through a Semidefinite Programming (SDP) pro-
cedure. Unfortunately, the computational burden of SDP
is high, which limits its potential applications in high-
dimensional datasets.

3. Feature Extraction by Average Neighbor-
hood Margin Maximization (ANMM)

In this section we will introduce our Average Neighbor-
hood Margin Maximization (ANMM) algorithm in detail.
Like other linear feature extraction methods, ANMM aims
to learn a projection matrix W such that the data in the pro-
jected space have high within-class similarity and between-
class separability. To achieve such a goal, we first introduce



(a) Neighborhood in the original
space

(b) Neighborhood in the projected
space

Figure 1. An intuitive illustration of the ANMM criterion. The
yellow disk in the center represents xi. The blue disks are the
data points in the homogeneous neighborhood of xi, and the red
squares are the data points in the heterogeneous neighborhood of
xi. (a) shows the data distribution in the original space, (b) shows
the data distribution in the projected space.

two types of neighborhoods:

Definition 1(Homogeneous Neighborhoods). For a data
point xi, its ξ nearest homogeneous neighborhood N o

i is
the set of ξ most similar1 data which are in the same class
with xi.

Definition 2(Heterogeneous Neighborhoods).For a data
point xi, its ζ nearest heterogeneous neighborhood N e

i is
the set of ζ most similar data which are not in the same
class with xi.

Then the average neighborhood margin γi for xi is defined
as

γi =
∑

k:xk∈N e
i

‖yi − yk‖2

|N e
i |

−
∑

j:xj∈No
i

‖yi − yj‖2

|N o
i |

,

where | · | represents the cardinality of a set. Literally, this
margin measures the difference between the average dis-
tance from xi to the data points in its heterogeneous neigh-
borhood and the average distance from it to the data points
in its homogeneous neighborhood. The maximization of
such a margin can push the data points whose labels are
different from xi away from xi while pull the data points
having the same class label with xi towards xi. Fig.1 gives
us an intuitive illustration of the ANMM criterion.

Therefore, the total average neighborhood margin can

1In this paper two data vectors are considered to be similar if the Eu-
clidean distance between them is small, two data tensors are considered to
be similar if the Frobenius norm of their difference tensor is small.

be defined as

γ =
∑

i
γi

=
∑

i


 ∑

k:xk∈N e
i

‖yi − yk‖2

|N e
i |

−
∑

j:xj∈No
i

‖yi − yj‖2

|N o
i |


 ,

and the ANMM criterion is to maximize γ.
Since

∑
i

∑
k:xk∈N e

i

‖yi − yk‖2

|N e
i |

= tr


∑

i

∑
k:xk∈N e

i

(yi − yk) (yi − yk)T

|N e
i |




= tr


WT


∑

i

∑
k:xk∈N e

i

(xi − xk) (xi − xk)T

|N e
i |


W




= WT tr(S)W, (3)

where the matrix

S =
∑
i,k:

xk∈Ne
i

(xi − xk) (xi − xk)T

|N e
i |

, (4)

is called the scatterness matrix. Similarly, if we define the
compactness matrix as

C =
∑
i,j:

xj∈No
i

(xi − xj) (xi − xj)
T

|N o
i |

. (5)

Then

∑
i

∑
j:xj∈No

i

‖yi − yj‖2

|N o
i |

= tr
(
WT CW

)
.

Therefore the average neighborhood margin can be rewrit-
ten as

γ = tr
[
WT (S − C)W

]
. (6)

If we expand W as W = (w1,w2, · · · ,wl), then

γ =
∑l

k=1
wT

k (S − C)wk.

To eliminate the freedom that we can multiply W with
some nonzero scalar, we add the constraint

wT
k wk = 1,

i.e. we restrict W to be constituted of unit vectors. Thus
our ANMM criterion becomes

max
∑l

k=1
wT

k (S − C)wk

s.t. wT
k wk = 1. (7)



Table 1. Average Neighborhood Margin Maximization

Input: Training set D = {(xi, yi)}N
i=1, Testing set

Z = {z1, z2, · · · , zM}, Neighborhood size
|N o|, |N e|, Desired dimensionality l;

Output: l × M feature matrix F extracted from Z .

1. Construct the heterogeneous neighborhood and
homogeneous neighborhood for each xi;

2. Construct the scatterness matrix S and compactness
matrix C using Eq.(4) and Eq.(5) respectively;

3. Do eigenvalue decomposition on S − C, construct
d × l matrix W whose columns are composed by the
eigenvectors of S − C corresponding to its largest l
eigenvalues;

4. Output F = WT Z with Z = [z1, z2, · · · , zN ].

Using the Lagrangian method, we can easily find that the
optimal W is composed of the l eigenvectors corresponding
to the largest l eigenvalues of S − C.

To summarize, the main procedure of ANMM is shown
in Table 1.

4. Nonlinearization via Kernelization

In this section, we will extend the ANMM algorithm to
the nonlinear case via the kernel method [2]. More for-
mally, we will first map the dataset from the original space
R

d to a high (usually infinite) dimensional feature space F
through a nonlinear mapping Φ : R

d −→ F , and apply
linear ANMM there.

In the feature space F , the Euclidean distance between
Φ(xi) and Φ(xj) can be computed as

‖Φ(xi) − Φ(xj)‖
=

√
(Φ(xi) − Φ(xj))T (Φ(xi) − Φ(xj))

=
√

Kii + Kjj − 2Kij ,

where Kij = Φ(xi)T Φ(xj) is the (i, j)-th entry of the ker-
nel matrix K. Thus we can use K to find the heterogeneous
neighborhood and homogeneous neighborhood for each xi

in the feature space, and the total average neighborhood
margin becomes

γΦ =
∑l

k=1
wT

k (SΦ − CΦ)wk, (8)

where

SΦ =
∑
i,k:

Φ(xk)∈Ne
Φ(xi)

(Φ(xi) − Φ(xk)) (Φ(xi) − Φ(xk))T∣∣∣N e
Φ(xi)

∣∣∣

CΦ =
∑
i,j:

Φ(xj)∈No
Φ(xi)

(Φ(xi) − Φ(xj)) (Φ(xi) − Φ(xj))
T∣∣∣N o

Φ(xi)

∣∣∣ ,

where N e
Φ(xi)

and N o
Φ(xi)

are the heterogeneous and homo-
geneous neighborhood of Φ(xi). It is impossible to com-
pute SΦ and CΦ directly since we usually do not know the
explicit form of Φ. To avoid such a problem, we notice that
each wk lies in the span of Φ(xi),Φ(x2), · · · ,Φ(xN ), i.e.

wk =
∑N

p=1
αk

pΦ(xp)

Therefore

wT
k Φ(xi) =

N∑
p=1

αk
pΦ(xp)T Φ(xi) = (αk)T K·i,

where αk is a column vector with its p-th entry equal to αk
p ,

K·i is the i-th column of K. Thus

wT
k (Φ(xi) − Φ(xj))(Φ(xi) − Φ(xj))T wk

= (αk)T (K·i − K·j)(K·i − K·j)T αk.

Define the matrices

S̃Φ =
∑
i,k:

Φ(xk)∈Ne
Φ(xi)

(K·i − K·k) (K·i − K·k)T∣∣∣N e
Φ(xi)

∣∣∣ (9)

C̃Φ =
∑
i,j:

Φ(xj)∈No
Φ(xi)

(K·i − K·j) (K·i − K·j)
T∣∣∣N o

Φ(xi)

∣∣∣ ,(10)

then

γΦ =
l∑

k=1

wT
k (SΦ − CΦ)wk =

l∑
k=1

(
wkSΦwk − wkCΦwk

)

=
l∑

k=1

(αk)T
(
S̃Φ − C̃Φ

)
αk

Similar to Eq.(7), we also add the constraints that
(αk)T (αk) = 1 (k = 1, 2, · · · , l). Then the optimal (αk)’s
are the eigenvectors of S̃Φ−C̃Φ corresponding to its largest
l eigenvalues. For a new test point z, its k-th extracted fea-
ture can be computed by

wT
k Φ(z) =

N∑
p=1

αk
pΦ(xp)T Φ(z) = (αk)T Kt

·z. (11)

where we use Kt to denote the kernel matrix between the
training set and the testing set.

The main procedure Kernel Average Neighborhood Mar-
gin Maximization (KANMM) algorithm is summarized in
Table 2.



Table 2. Kernel Average Neighborhood Margin Maximization

Input: Training set D = {(xi, yi)}N
i=1, Testing set

Z = {z1, z2, · · · , zM}, Neighborhood size
|N o

Φ|, |N e
Φ|, Kernel parameter θ, Desired

dimensionality l;
Output: l × M feature matrix F extracted from Z .

1. Construct the kernel matrix K on the training set;
2. Construct the heterogeneous neighborhood and

homogeneous neighborhood for each Φ(xi);
3. Compute S̃Φ and C̃Φ using Eq.(9) and Eq.(10)

respectively;
4. Do eigenvalue decomposition on S̃Φ − C̃Φ, store the

eigenvectors {α1,α2, · · · ,αl} corresponding to the
largest l eigenvalues;

5. Construct the kernel matrix between the training set
and the testing set Kt with its (i, j)-th entry
Kt

ij = Φ(xi)T Φ(zj).
6. Output FΦ with FΦ

ij = (αi)T Kt
·j .

5. Multilinearization via Tensorization

Till now the ANMM method we have introduced is based
on the basic assumption that the data are in vectorized rep-
resentations. Therefore it is necessary to derive the tensor
form of our ANMM method. First let’s introduce some no-
tations and definitions.

Let A be a tensor of d1 × d2 × · · · × dK . The order of
A is K and the f -th dimension (or mode) of A is of size df .
A single entry within a tensor is denoted by Ai1i2···iK

.

Definition 3 (Scalar Product). The scalar product 〈A,B〉
of two tensors A,B ∈ R

d1×d2×···dK is defined as

〈A,B〉 =
∑

i1

∑
i2
· · ·

∑
iK

Ai1i2···iK
B∗

i1i2···iK
,

where ∗ denotes the complex conjugation. Furthermore, the
Frobenius norm of a tensor A is defined as

‖A‖F =
√

〈A,A〉,
Definition 4 (f -Mode Product). The f -mode product of a
tensor A ∈ R

d1×d2×···dK and a matrix U ∈ R
df×gf is an

d1×d2×· · ·×df−1×gf ×df+1×· · ·×dK tensor denoted
as A ×f U, where the corresponding entries are given by

(A×fU)i1···if−1jf if+1···iK
=

∑
if

Ai1···if−1if if+1···iK
Uif jf

Definition 5 (f -Mode Unfolding). Let A be a d1 × · · · ×
dK tensor and (π1, · · · , πK−1)be any permutation of the
entries of the set {1, · · · , f−1, f +1, · · · ,K}. The f -mode
unfolding of the tensor A into a df × ∏K−1

l=1 dπl
matrix,

denoted by A(f), is defined as

A ∈ R
d1×···×dK ⇒f A(f) ∈ R

df×
∏K−1

l=1 dπl ,

where A(f)
if j = Ai1···iK

with

j = 1 +
∑K−1

l=1
(iπl

− 1)
∏l−1

l′=1
dπl′ .

The tensor based criterion for ANMM is that, given
N data points X1, · · · ,XN embedded in a tensor space
R

d1×d2×···×dK , we want to pursue K optimal interre-
lated projection matrices Ui ∈ R

li×di (li < di, i =
1, 2, · · · ,K), which maximize the average neighborhood
margin measured in the tensor metric. That is

γ =
∑

i


 ∑

j:Xj∈No
i

‖Yi − Yj‖2
F

|N o
i |

−
∑

k:Xk∈N e
i

‖Yi − Yk‖2
F

|N e
i |


 ,

where Yi = Xi ×1 U1 ×2 U2 × · · · ×K UK . Note that di-
rectly maximizing γ is almost infeasible since it is a higher-
order optimization problem. Generally such type of prob-
lems can be solved approximately by employing an iteratie
scheme which was originally proposed by [12] for low-rank
approximation of second-order tensors. Later [8] extended
it for higher-order tensors. In the following we will adopt
such an iterative scheme to solve the optimization problem.

Given U1,U2, · · · ,Uf−1,Uf+1, · · · ,UK , let

Y f
i = Xi ×1 U1 · · · ×f−1 Uf−1 ×f+1 Uf+1 · · · ×K UK .

(12)
Then, by the corresponding f -mode unfolding, we can get
Y f

i ⇒f Y(f)
i . Moreover, we can easily derive that

∥∥∥Y f
i ×f Uf

∥∥∥
F

=
∥∥∥∥
(
Y(f)

i

)T

Uf

∥∥∥∥
F

.

Therefore we have

‖Yi − Yj‖2
F

= ‖Xi ×1 U1 × · · · ×K UK − Xj ×1 U1 × · · · ×K UK‖2
F

=
∥∥∥Y f

i ×f Uf − Y f
j ×f Uf

∥∥∥2

F

=
∥∥∥∥
(
Y(f)

i

)T

Uf −
(
Y(f)

j

)T

Uf

∥∥∥∥
2

F

= tr

[
UT

f

(
Y(f)

i − Y(f)
j

) (
Y(f)

i − Y(f)
j

)T

Uf

]

Then knowing U1, · · · ,Uf−1,Uf+1, · · · ,UK , we can
rewrite the compactness matrix and scatterness matrix in
tensor ANMM as

S =
∑
i,k:

xk∈Ne
i

(
Y(f)

i − Y(f)
k

)(
Y(f)

i − Y(f)
k

)T

|N e
i |

,(13)

C =
∑
i,j:

xk∈No
i

(
Y(f)

i − Y(f)
j

) (
Y(f)

i − Y(f)
j

)T

|N o
i |

,(14)



Table 3. Tensor Average Neighborhood Margin Maximization

Input: Training set D = {(Xi, yi)}N
i=1, Testing set

Z = {Z1, Z2, · · · , ZM}, where
Xi, Zj ∈ R

d1×d2×···×dK , Neighborhood size
|N o|, |N e|, Desired dimensionality l1, l2, · · · , lK ,
Iteration steps Tmax, Difference ε;

Output: Feature tensors {Fi}M
i=1 extracted from Z ,

where Fi ∈ R
l1×l2×···×lK .

1. Initialize U0
1 = Id1 , U0

2 = Id2 , · · · , U0
K = IdK

,
where Idi

represents the di × di identity matrix;
2. For t = 1, 2, · · · , Tmax do

For f = 1, 2, · · · ,K do
(a). Compute Y f

i by Eq.(12);

(b). Y f
i ⇒f Y(f)

i ;
(c). Compute S and C using Eq.(13) and Eq.(14);
(d). Do eigenvalue decomposition on S − C:

(S − C)Ut
f = Ut

fΛf with Ut
f ∈ R

df×lf ;
(f). if ‖Ut

f − Ut−1
f ‖ < ε, break;

End for.
End for.

3. Output Fi = Zi ×1 Ut
1 · · · ×K Ut

K .

and our optimization problem (with respect to Uf ) becomes

max
Uf

tr
[
UT

f (S − C)Uf

]
(15)

Let’s expand Uf as Uf = (uf1,uf2, · · · ,uflf ) with ufi

corresponding to the i-th column of Uf , then Eq.(15) can
be rewritten as

max
∑lf

i=1
uT

fi(S − C)ufi. (16)

We also add the constraint that uT
fiufi = 1 to restrict the

scale of Uf . The main procedure of the Tensor Average
Neighborhood Margin Maximization (TANMM) is summa-
rized in Table 3.

6. Experiments

In this section, we investigate the performance of our
proposed ANMM, Kernel ANMM (KANMM) and Tensor
ANMM (TANMM) methods for face recognition. We have
done three groups of experiments to achieve this goal:

1. Linear methods. In this set of experiments, the per-
formance of original ANMM is compared with the tra-
ditional PCA [16] method, LDA (PCA+LDA) method
[18], and three margin based methods, namely the
Maximum Margin Criterion (MMC) method [6], the
Stepwise Nonparametric Maximum MArgin Criterion
(SNMMC) method [23] and the Marginal Fisher Anal-
ysis (MFA) method [21];

2. Kernel methods. In this set of experiments, the perfor-
mance of the KANMM method is compared with the
KPCA and the KDA method [17];

3. Tensor methods. In this set of experiments, the per-
formance of the Tensor ANMM (TANMM) method is
compared with the Tensor PCA (TPCA) and the Ten-
sor LDA (TLDA) methods [4].

In this study, three face dataset are used:

1. The ORL face dataset2. There are ten images for each
of the 40 human subjects, which were taken at different
times, varying the lighting, facial expressions (open /
closed eyes, smiling / not smiling) and facial details
(glasses / no glasses). The images were taken with a
tolerance for some tilting and rotation of the face up to
20 degrees. The original images (with 256 gray levels)
have size 92 × 112, which are resized to 32 × 32 for
efficiency;

2. The Yale face dataset3. It contains 11 grayscale images
for each of the 15 individuals. The images demonstrate
variations in lighting condition (left-light, center-light,
right-light), facial expression (normal, happy, sad,
sleepy, surprised, and wink), and with/without glasses.
In our experiment, the images were also resized to
32 × 32;

3. The CMU PIE face dataset [22]. It contains 68 indi-
viduals with 41,368 face images as a whole. The face
images were captured by 13 synchronized cameras and
21 flashes, under varying pose, illumination, and ex-
pression. In our experiments, five near frontal poses
(C05, C07, C09, C27, C29) are selected under different
illuminations, lighting and expressions which leaves us
170 near frontal face images for each individual, and
all the images were also resized to 32 × 32.

The free parameters for the tested methods were deter-
mined in the following ways:

1. For the ANMM-series methods (including ANMM,
KANMM, TANMM), the sizes of the homogeneous and
heterogeneous neighborhoods for each data point are
all set to 10;

2. For the kernel methods,we all adopt the Gaussian ker-
nel, and the variance of the Gaussian kernel were set
by cross-validation;

3. For the tensor methods, we require that the projected
images are also square, i.e. of dimension r×r for some
r.

2http://www.uk.research.att.com/facedatabase.html
3http://cvc.yale.edu/projects/yalefaces/yalefaces.html



0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

num. of features

re
co

gn
iti

on
 a

cc
ur

ac
y

2 Train

 

 

ANMM
SNMMC
MFA
LDA
MMC
PCA

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

num. of features

re
co

gn
iti

on
 a

cc
ur

ac
y

3 Train

 

 

ANMM
SNMMC
MFA
PCA+LDA
MMC
PCA

0 10 20 30 40 50 60 70 80
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

num. of features

re
co

gn
iti

on
 a

cc
ur

ac
y

4 Train

 

 

ANMM
SNMMC
MFA
PCA+LDA
MMC
PCA

Figure 2. Face recognition accuracies on the ORL dataset with 2,3,4 images for each individual randomly selected for training.
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Figure 3. Face recognition accuracies on the Yale dataset with 2,3,4 images per individual randomly selected for training.
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Figure 4. Face recognition accuracies on the CMU PIE dataset with 5,10,20 images per individual randomly selected for training.

The experimental results of the linear methods on the
three datasets are shown in Fig.2, Fig.3, Fig.4 respectively.
In all the figures, the abscissas represent the projected di-
mensions, and the ordinates are the average recognition
accuracies of 50 independent runs. From the figures we
clearly see that the performances of ANMM is better than
other linear methods on all the three datasets.

Table 4 shows the experimental results of all the meth-
ods on three datasets, where the value in each entry repre-
sents the average recognition accuracy (in percentages) of
50 independent trials, and the number in brackets is the cor-
responding projected dimension. The table shows that the
ANMM-series methods can perform better than those tradi-
tional methods on the three datasets.

7. Conclusions and Discussions

In this paper we proposed a novel supervised linear fea-
ture extraction method named Average Neighborhood Mar-
gin Maximization (ANMM). For each data point, ANMM
aims at pulling the neighboring points with the same class
label towards it as near as possible, while simultaneously
pushing the neighboring points with different labels away
from it as far as possible. Moreover, as many computer vi-
sion and pattern recogntion problems are intrinsically non-
linear or multilinear, we also derive the kernelized and ten-
sorized counterparts of ANMM. Finally the experimental re-
sults on face recognition are presented to show the effective-
ness of our proposed approaches.



Table 4. Face recognition results on three datasets (%).

Method
ORL Yale CMU PIE

2 Train 3 Train 4 Train 2 Train 3 Train 4 Train 5 Train 10 Train 20 Train
PCA 54.35(56) 64.71(64) 71.54(36) 45.19(37) 51.91(35) 56.30(40) 46.64(204) 54.72(213) 67.17(241)
LDA 77.36(28) 86.96(39) 91.71(39) 46.04(9) 59.25(13) 68.90(12) 57.05(62) 76.75(62) 88.06(61)
MMC 77.73(54) 85.98(29) 91.26(52) 46.64(54) 58.80(56) 71.67(39) 57.05(210) 77.56(215) 85.54(195)

SNMMC 79.23(49) 87.68(54) 93.59(36) 49.05(49) 66.31(49) 78.57(47) 66.45(223) 80.28(213) 91.20(202)
MFA 77.34(41) 87.19(33) 92.19(33) 49.56(38) 64.60(38) 76.05(39) 63.60(210) 80.69(232) 88.69(205)

ANMM 82.13(37) 89.13(41) 95.84(43) 50.35(41) 67.87(38) 80.69(41) 70.05(222) 82.08(203) 93.46(205)

KPCA 64.23(50) 75.25(54) 79.26(60) 49.34(45) 55.78(47) 60.72(54) 52.35(341) 60.12(384) 72.25(256)
KDA 80.29(38) 89.13(36) 93.12(38) 52.35(14) 64.89(13) 71.95(14) 62.13(67) 81.27(66) 92.11(65)

KANMM 85.46(50) 92.21(39) 96.13(53) 54.62(54) 69.25(66) 80.77(62) 72.01(302) 82.41(280) 93.67(218)

TPCA 59.22(102) 71.25(122) 79.86(102) 50.15(72) 57.23(112) 62.30(102) 51.17(102) 56.65(132) 69.09(112)
TLDA 80.68(92) 89.28(112) 93.37(82) 51.25(92) 66.19(102) 75.88(92) 60.61(122) 80.15(142) 92.75(82)

TANMM 85.87(102) 92.54(92) 96.22(112) 55.31(112) 70.43(82) 81.56(102) 73.02(122) 82.78(92) 94.32(112)

As we mentioned in section 2, linear feature extraction
methods can also be viewed as learning a proper Maha-
lanobis distance in the original data space. Thus ANMM can
also be used for distance metric learning. From such a view-
point, our algorithm is more efficient in that it only needs to
learn the transformation matrix, but not the whole covari-
ance matrix as in traditional metric learning algorithms[15].
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