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Abstract

3D human pose recovery is considered as a fundamental
step in view-invariant human action recognition. However,
inferring 3D poses from a single view usually is slow due
to the large number of parameters that need to be estimated
and recovered poses are often ambiguous due to the per-
spective projection. We present an approach that does not
explicitly infer 3D pose at each frame. Instead, from exist-
ing action models we search for a series of actions that best
match the input sequence. In our approach, each action is
modeled as a series of synthetic 2D human poses rendered
from a wide range of viewpoints. The constraints on transi-
tion of the synthetic poses is represented by a graph model
called Action Net. Given the input, silhouette matching be-
tween the input frames and the key poses is performed first
using an enhanced Pyramid Match Kernel algorithm. The
best matched sequence of actions is then tracked using the
Viterbi algorithm. We demonstrate this approach on a chal-
lenging video sets consisting of 15 complex action classes.

1. Introduction

Recognizing basic human actions (e.g. walking, sitting
down and waving hands) from a monocular view is an im-
portant task for many applications such as video surveil-
lance, human computer interaction and video content re-
trieval. Recently, many research efforts have focused on re-
covering human poses [1, 6, 12], which is considered as a
necessary step for view-invariant human action recognition.
However, 3D pose reconstruction from a single viewpoint is
a well known difficult problem in itself because of the large
number of parameters that need to be estimated and the am-
biguity caused by perspective projection.

Alternatively, example based methods [16, 17] store a
database of example human figures with known 3D param-

eters and estimate 3D pose by searching for examples sim-
ilar to the input image. Comparing with known examples
is certainly easier than inferring unknown parameters but
good coverage in a high dimensional parameter space needs
a large number of examples. The difficulty in getting enough
examples makes the pose recovered not highly accurate.

Rough estimates of poses may, however, still be suffi-
cient to infer human actions by taking advantage of the con-
textual constraints imposed by actions. Such constraints are
three-fold: First, the occurrence of poses within an action
should follow some specific order; in “walking” for exam-
ple, two-leg crossing should occur between left-leg step-
ping and right-leg stepping. Second, the transitions be-
tween different actions should not be arbitrary; for exam-
ple, “sitting” can not become “walking” without “standing-
up” in between. Third, change in actor’s orientation should
be smooth. By taking advantage of these contextual con-
straints, we can expect to eliminate many short-term errors
caused by image noises and perspective ambiguity.

We present an example based action recognition system
that explores the use of such constraints. These constraints
are inherently modeled using a novel action representation
scheme called Action Net. Action Net is a graph model.
Each node in the Action Net contains the 2D representation
of one view of an example 3D pose called a key pose. Each
link specifies the possible transition of key poses within an
action class or across different action classes.

In the learning phase, key poses of each action class are
extracted from a small set of motion capture sequences. The
key poses capture the essence of each action class even if
there is variance in execution styles of the same action. The
Action Net is automatically constructed by connecting ac-
tions with similar boundary key poses. The key poses are
rendered from a variety of viewpoints using POSER, a hu-
man character animation software, to generate synthetic re-
alistic looking human figures. The Shape Context [2] of the
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human silhouette is computed as the 2D representation of a
human figure and stored in each node of the Action Net.

During recognition, the human silhouette in each input
frame is extracted based on background subtraction. The
shape context of the human silhouette is matched with all
nodes in the Action Net using a modified Pyramid Match
Kernel (PMK) algorithm. The speed of PMK allows us to
cover a large number of viewpoints in near real time. We
show that in the original PMK algorithm [7], two sets of high
dimensional features tend to get a low matching score re-
gardless of their similarity. We propose a fix to this problem
by using a different feature space partitioning scheme. Fi-
nally, the action recognition (including segmentation) prob-
lem is formulated as finding the most likely sequence of
nodes within the Action Net, which is achieved by apply-
ing the Viterbi algorithm [15].

1.1. Related Work

Human action recognition and pose recovery have been
studied extensively in recent years. We give a brief overview
here and refer the reader to [13] for a more comprehensive
survey.

Many 2D approaches to action recognition [3, 4, 9, 11,
21] have been proposed. These approaches can be roughly
grouped as space-time shape based [3, 21], interest point
based [9, 11] and motion template based [4] and they work
effectively under the assumption that the viewpoint is rel-
atively fixed (usually from frontal or lateral view), possi-
bly with small variance. The lack of a view-invariant ac-
tion representation limits the applications of such 2D based
approaches. To overcome this limitation, some approaches
such as [4] resort to using multiple cameras.

A truly view-invariant approach needs the knowledge of
3D human poses, which can be robustly recovered from
multiple views [10, 20]. A more challenging problem is re-
covering 3D poses from a single view. One group of meth-
ods learns a direct mapping from the image feature space
(e.g. silhouette) to the parameter space (e.g. 3-D pose) us-
ing techniques such as regression [1] or manifold embedding
[6]. However, such mapping is usually multi-valued and it is
difficult for direct mapping to maintain multiple hypotheses
over time. There are also approaches [12] that directly ex-
plore through the parameter space and search for an optimal
solution. Due to the high dimensionality, such approaches
usually use sampling based techniques and look for image
evidences to guide the sampler, but the computational com-
plexity is still very high.

Many approaches to the pose tracking or the action recog-
nition task use graph models such as Hidden Markov Models
[16] and Conditional Random Fields [18] to exploit tempo-
ral constraints. The major difference between the Action
Net and these graph models is that information such as cam-
era viewpoint and action connectivity is explicitly modeled
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Figure 1. Automatically extracted key poses and the motion energy
chart of three action sequences. Marked dots in the bottom row are
the positions of the key poses.

in the Action Net, while these graph models use parameters
to encode such information.

2. Action Representation

Human action is characterized by a spatial element,
which is the body pose at each time step, and a temporal
element which is the evolution of the body poses over time.
Instead of including body poses in all frames, we can have a
more compact representation of a human action. For exam-
ple, the following poses suffice to describe a walking action:
�two legs crossing � right leg forward � two legs cross-
ing � left leg forward � two legs crossing�, as shown in
Fig.1(a). In Fig.1(b) and 1(c), a “sitting down” and a “stand-
ing up” action are clearly observed with only three poses
each. We term such poses as key poses and an action class
is modeled as a sequence of key poses.

This representation has two major advantages: First, be-
cause actions are recognized by comparison with known ac-
tion models, a small number of key poses reduces the com-
putational complexity; second, by focusing on the key poses
only, we can capture the essence of an action class even if
there is variance in execution styles of the same action.

2.1. Automatic Extraction of 3D Key Poses

We learn key poses using 3D motion capture data. First,
we manually select a small set of motion capture sequences
for each action class. Significantly different styles for the
same action type (e.g. “sitting on the ground” vs “sitting on
a chair”) are treated as different action classes. Sequences
of the same action class are aligned using the Dynamic Time
Warping [14] algorithm, which is widely used to find an op-
timal alignment between variable length sequences.

Consider the averaged sequence for one action class,
which contains a series of 3D body joint positions ����� �
����� � ���� � ������, where � and � are the frame index and
the joint index, respectively. The motion energy at the �-th
frame is defined as:

�� �

��
���

����� � ������ �
� (1)



where ��� denotes Euclidean distance and � is the number of
body joints.

Key poses are defined as the poses with maximum or
minimum motion energy within a sliding window, i.e. 	�

equals
���
���
������

	�� or
���

���
������

	�� , where 
 is the half length

of the sliding window centered at the current frame �. The
3D key poses shown in Fig.1 (from the lateral view) are ac-
tual results obtained this way. The change of motion energy
in each sequence is shown at the bottom and the positions
of these key poses are marked. We choose 
 � �	 frames
in our system which results in an average of about four key
poses for each action class.

2.2. Generation of an Action Net

An action class is modeled as a chain of the extracted
key poses, as shown in Fig.2(a). Each node (state) in this
graph model corresponds to one key pose. Like many other
graph models such as HMMs, each node has an underlying
observation node (not shown in the figure).

We also consider other types of connectivity. A back-link
connects backward two states in the same model, as shown
in Fig.2(b). Back-links are useful to model periodic actions
such as walking and actions with unknown number of re-
peated motions such as waving hands. An inter-link links
one action to another, as shown in Fig.2(c). Inter-links are
used to rule out unlikely transitions between different ac-
tion models. Both back-links and inter-links are determined
based on the similarity between two 3D key poses, i.e. pose
� can connect to pose � iff ����� � ���� � � Æ.

By connecting different action models, we build a more
complex graph model called an Action Net. (See an exam-
ple in Fig.2(d).) Action Net provides long-term contextual
constraints for action recognition and segmentation in that
the links within an action model specify the order of the key
poses and the links across action models constrain the pos-
sible action transitions.

2.3. Pose Representation in 2D

Key poses are defined in 3D. However, because the input
of the system is a video, we need to either infer 3D poses
from the video, which is usually hard, or alternatively, store
all 2D views for each 3D key pose. Although it is impossible
to cover all viewpoints, it is feasible to cover a large num-
ber of viewpoints and make observation difference between
adjacent viewpoints small enough.

Even so, collecting multiple-view action data from real
videos is a formidable task. A more practical way is to use
synthetic human figures. We use POSER1, a leading soft-
ware for generating realistic looking human characters, to
render key poses from a variety of viewpoints. We cover 
�Æ

of camera tilt angle at 	Æ intervals and ��Æ of pan angle at
��Æ intervals. This results in a total of 19�36=684 images
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Figure 2. Action graph models. (a) The general model of a single
action; (b) Back-link (in red); (c) Inter-link (in blue); (d) A simple
Action Net consisting of the three actions shown in Fig.1; (e) The
unrolled version of (d). Only models with the first two pan angles
(�Æ and ��Æ) are shown.

for each pose. From a stationary camera, the tilt angle is
fixed. If we assume tilt is given (e.g. from camera calibra-
tion), during recognition, we need to search from only 36
images (rendered from the given tilt angle) for each pose.
We can not assume a given pan angle, however, because the
orientation of the actor is unknown, which is equivalent to
an unknown pan angle. The roll angle controls the image
rotation. A rotation invariant representation of 2D poses is
described later.

We choose the silhouette of a human as the image ob-
servation for a 2D pose. Silhouette is widely used [2, 3, 4,
6, 10, 21] due to some obvious advantages: it contains rich
shape information of a 2D pose and it is relatively easier to
extract a human contour (e.g. from background subtraction)
than to detect body parts; it is insensitive to internal texture
and color, and its shape has been extensively studied. Some
drawbacks of this feature include the dependency on the
quality of foreground segmentation and ambiguity caused
by loss of internal detail. These issues can be overcome to
some extent by using robust background subtraction algo-
rithms such as Mixture of Gaussian [19] and considering the
contextual constraints, as described in the introduction. An-
other issue is occlusion. In this work, we assume that only
one person is in the scene or there are multiple persons with
separate silhouettes, thus mutual occlusion is not present.

The Shape Context (SC) [2] of silhouettes is used to ob-
tain a robust scale and translation invariant shape represen-
tation. As illustrated in Fig.3(a), the SC of each sampled
edge point of a silhouette is a log-polar histogram of the
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coordinates of the rest of the point set measured using the
reference point as the origin. Because only relative scale
and position is used here, the representation is invariant to
scale and translation. We use 12 angular � 5 radial bins
for each SC and we uniformly sample 200 edge points on
each silhouette, so the SC of a silhouette is represented by
200 feature points in a 60-dimensional space, or more intu-
itively, a ���� � matrix, as shown in Fig.3(b).

In order to obtain image rotation invariance, we compute
the principal axis of the silhouette using the second-order
moments [5]. Before computing shape context, the rotation
angle of the principal axis is compensated so that the princi-
pal axis is vertical.

2.4. Unrolled Action Net

The Action Net described in 2.2 is “unrolled” to model
changes in the actor’s orientation. First, each action model
in the Action Net is unrolled 36 times representing the same
action rendered from different camera pan angles (assum-
ing tilt angle is given). We add an additional subscript to
each node to represent the pan angle. Second, in this un-
rolled Action Net, action model � can inter-link to action
model � iff (1) There is an inter-link (including self-loop)
from � to � in the original Action Net and (2) they are ren-
dered from the same or adjacent viewpoints (i.e. difference
in pan angle is less than ��Æ). For example, the unrolled
version of the Action Net in Fig.2(d) is shown in Fig.2(e).
The complete graph is quite complex so only the first two
pan angles (�Æ and ��Æ) are shown here. The green links
are the inter-links that connect action models rendered from
adjacent viewpoints. These inter-links allow us to model
gradual change in the actor’s orientation.

3. Action Recognition and Segmentation

During recognition, human blobs in input frames are
segmented using background subtraction and silhouettes of
these blobs are extracted. The shape context of each silhou-
ette is matched with all nodes in the unrolled Action Net.
Then we consider the matching results as a whole by tak-

(a) (b)

Figure 3. Shape Context Descriptor. (a) The shape context of
the edge point at the origin, represented as a 60-D vector (12
angular�5 radial bins); (b) The shape context of the silhouette
shown in (a), represented by a ���� �� matrix.

ing advantage of the contextual constraints imposed by the
Action Net to get a robust action recognition result.

3.1. Fast Pose Matching

Due to the large number of comparisons, a fast pose
matching algorithm is crucial to our system. This makes the
Pyramid Match Kernel (PMK) algorithm appealing. PMK
is a feature set matching algorithm recently proposed by
Grauman and Darrell in [7]. Their results show that PMK
achieves comparable results at a significantly lower compu-
tational cost than other state-of-the-art approaches. PMK
also works with unordered features, which fits the shape
context features well. PMK has been applied to object
recognition in [7]. We are not aware of PMK previously
applied to the action recognition problem.

The basic idea of PMK is that instead of directly com-
paring features in two feature sets, it calculates intersections
over multi-resolution histograms, which gives a linear com-
plexity in the number of features. The similarity between
the two sets is defined by the weighted sum of histogram in-
tersections at each level; the weights are proportional to the
resolution of each level, as shown in Eq.2

���

histogram pyramids� �� �
�������� �� �

��
���

�

��
�� ������� ���� ��� ���������� ������ ���� �� �

number of newly matched pairs at level �

(2)

where the notations are as follows: (1) � ,� : feature sets;
(2) ����: histogram pyramid of � ; (3) �

��
: weight at level

�; (4) �����: histogram of � at level �; (5) ���: The size of
intersection of two sets.

However, when applied to high-dimensional features
such as shape contexts, PMK produces a low matching score
even when two silhouettes are quite similar. Take Fig.4 for
an example. When Fig.4(c) and Fig.4(e) (two query silhou-
ettes) are compared to Fig.4(a) (the reference silhouette), we
expect a much higher matching score from Fig.4(c) because
of its similar shape to the reference silhouette. But it turns
out that both queries get low scores and the first one is only
slightly higher.

Let us look at Fig.5(a), which shows the number of
newly matched pairs between the reference silhouette and
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Figure 4. Three silhouettes and their range of feature point coordi-
nates in each dimension of the shape context space. (a) Reference
silhouette, (c) Query silhouette 1, (e) Query silhouette 2
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Figure 5. The number of newly matched pairs at each level using
two different PMKs. (a) The original PMK; (b) PMK-NUP. The
difference between two queries is enlarged in (b) because large-
scale matches take place much earlier in query 1 than in query 2.

the query silhouette at each level of histograms. We can see
that large-scale matches occur only at the last several coars-
est levels for both queries. Because the weights associated
with theses levels are very small (the weights decrease ex-
ponentially with the level), the overall matching scores are
small in both cases. A further explanation is that a limited
number of feature points usually scatter sparsely in a high-
dimensional feature space, so at the finest levels, the proba-
bility of points falling into the same bin is small.

This issue is also reported by Grauman and Darrell in [8],
where they propose to use hierarchical k-means clustering to
partition the high-dimensional feature space into a hierarchy
of non-uniformly shaped bins. In our experiments however,
features are so sparse (200 points in a 60-D space) that they
do not exhibit apparent aggregation, so it is hard to decide
the proper number of clusters.

We suggest a different enhancement instead. It is based
on the observation that the shape context features are usually
not distributed in a hyper-cubic space. In fact, data points
spread more sparsely along some dimensions than others.
(See Fig.4(b),4(d),4(f) for some real examples.) More intu-
itively, think of a stripe-shaped cloud of data points in a 2D
space. The original PMK partitions the space using a set of
square bins. When the side length of bins doubles at each
coarser level, points quickly converge along the short side
of the stripe. However, since the resizing speed is the same
for both sides, it takes longer time for the long side of the
stripe to converge. In this sense, it is the long side of the
stripe that prevents matching at the finest levels.

We take advantage of this distribution and force data
points to converge faster along these “long sides”. Instead
of using a common scale factor for all dimensions, we as-
sign a different scale factor for each dimension based on the
range of data in this dimension so that data points converge
at the same speed in all dimensions. This results in a non-
uniform partitioning in the feature space. This idea, termed
as PMK-NUP in this paper, is illustrated and compared with
the original PMK in Fig.6.

Consider a set of � feature points in a �-dimensional
space: ������� ��������� ���� ������ ���������. The range of

Figure 6. The original PMK uses a uniform partitioning scheme
(left two). For a stripe-shaped distribution, the long side of the
stripe converges slower than the short side. With PMK-NUP (right
two), both sides converge at the same speed.

these points in the �-th dimension is:

�� �
�

���
���

�������
�

���
����

������� � � �� �� ���� � (3)

Suppose that the �-th dimension has the smallest value
of range ����. Considering only the �-th dimension, the
original PMK (with a scale factor of �) takes �������� steps
to converge to a single bin. For another dimension �, in order
to converge at the same speed, � , the scale factor the �-th
dimension, has to satisfy ������� � ��������, and thus

� � �����
�

���� ����

� � �� (4)

Here we impose a lower bound of � for � so that points will
not converge too slowly along the �-th dimension.

In practice, ���� can be very small and thus result in large
scale factors for all dimensions. That will force points con-
verge to a single bin in all dimensions immediately. So we
impose a lower bound of � on ����.

���� � ����
�

���
���

����� �� (5)

PMK is changed to PMK-NUP as follows: when a bin
is being resized, the scale factor � (instead of 2) is applied
to the �-th side of the bin. Note that the scale factors are
computed based on the reference silhouette. The same scale
factors are applied to the query silhouette when it is com-
pared to the reference silhouette.

The question is: will PMK-NUP also increase the match-
ing score between two different silhouettes? The answer is
yes, but not as much as the increase between two similar
silhouettes. This is because different silhouettes have differ-
ent distributions. Take Fig.4 for an example. The ranges
in some dimensions of the “sitting” silhouette are signif-
icantly larger than the same dimensions of the “standing”
silhouettes. Because the partitioning is based on the refer-
ence silhouette, those dimensions will converge at a much
lower speed in the “sitting” query, which ends up preventing
large-scale matches in the finest levels. Compare the newly
matched pairs of two query silhouettes using the original
PMK and PMK-NUP, as shown in Fig.5(a) and 5(b) respec-
tively, we can see that with PMK-NUP, although large-scale
matches take place earlier in both queries, the difference be-
tween the two queries is actually enlarged.



3.2. Searching for the Best Action Sequence

Suppose there are N nodes in the unrolled Action Net and
� frames in the input video. After the previous step, we get
an ��� array of matching scores. To find out which action
is being performed at the �-th frame, the simplest solution is
to assign the action label from the best matched key pose for
the �-th frame. However, this solution may be oversimpli-
fied because it overlooks the following issues. (1) Silhou-
ettes can be easily distorted by a bad foreground segmenta-
tion; (2) Even if silhouettes are clean, different actions can
share similar 3D poses and different 3D poses can get simi-
lar silhouettes (from specific viewpoints); (3) Because only
a small set of key poses are used, some input silhouettes may
not find a good match anyway and thus the matching results
for these silhouettes are left undefined. All these issues indi-
cate that the decision based on an individual matching score
is unreliable.

To robustly recognize actions from unreliable individ-
ual observations, we take advantage of the contextual con-
straints imposed by the Action Net and formulate the action
recognition and segmentation problem as finding the most
likely sequence of nodes within the Action Net. The famous
Viterbi algorithm [15] is a suitable tool for this task. The
toy example shown in Fig.7 illustrates how the Viterbi algo-
rithm is employed in our system. Consider the Action Net in
Fig.7(a) and the corresponding array of matching scores in

(a) (b)

Figure 7. Action recognition and segmentation using the Viterbi al-
gorithm. (a) An Action Net consisting of two simple action mod-
els. Note that an unrolled Action Net is actually used. (b) The
Viterbi algorithm finds the most likely sequence of 2D poses (and
thus actions) called the Viterbi Path. Each element ��� 	� of this
2D array keeps three values: the matching score (in black) between
node � in the Action Net and input frame 	, the best score (in red)
along a path up to ��� 	� and the previous element on this path. At
time t, element ��� 	� looks at every node that links to node � in
the Action Net and chooses the one with the maximum path score.
Element ��� 	� then links itself to this path, updates the path score
by adding its own matching score and records the previous ele-
ment. When the last frame has been processed, the element with
the maximum path score is found and the Viterbi Path (in bold) is
back tracked. The complexity of the Viterbi algorithm for a fully
ergodic graph model is 
���� �, where N is the number of nodes
in the graph and T is the number of frames. For an Action Net,
because the average in-degree of each node is small, the overall
complexity reduces to 
��� �.

Fig.7(b). The goal is to find a path (called the Viterbi Path)
through the array from left to right that has the maximum
sum of matching scores. See Fig.7 for a brief description of
the algorithm. For details of the Viterbi algorithm, we refer
to the excellent tutorial in [15].

Note that we assume a uniform transitional probability
for each link (and thus neglected) of the Action Net. This
is because modeling transitional probability for each link of
such a complex graph (with thousands of links) requires a
huge training set, which is not applicable in practice.

4. Experimental Results

We demonstrate the proposed approach on a public video
set2, which contains 180 video clips (36 shots taken from 5
cameras) of one of 12 actors performing 15 action classes.
The average length of a clip is 1165 frames. One example
from each camera is shown in Fig.8. The actors can freely
choose position and orientation in these clips. The order
and the number of action instances performed in each clip
also vary. The large number of action classes and the large
variance in viewpoints and subjects (and thus the execution
styles) make action recognition a challenging task.

(a) Camera 1 (b) Camera 2 (c) Camera 3 (d) Camera 4 (e) Camera 5

Figure 8. The Inria Xmas dataset. One example from each camera
is shown.

Human blobs are provided with the dataset. The quality
of these blobs is generally good but many defects are also
present. See Fig.9 for some examples. Morphological clos-
ing operation is applied to repairing some of the defects but
this is ineffective for the severely contaminated blobs.

(a) (b) (c) (d)

Figure 9. Examples of defects in the provided blobs, including (a)
shadows (b) missing body parts (c) broken contours and (d) cor-
rupted blobs

The 15 included action classes are listed in the first col-
umn of Table 1. Based on the observation of actions per-
formed by two actors (one male and one female), we manu-
ally select motion capture sequences with the motions sim-
ilar to the observed actions from a large motion capture

2Videos are obtained from Inria Xmas Motion Acquisition Se-
quences, available at https://charibdis.inrialpes.fr/html/non-secure-
sequence.php?s=IXMAS



database. The extracted key poses for each action class are
shown in Fig.10. Videos of both male and female actors
are included because their execution styles in actions such
as “punch” and “kick” are significantly different. Such vari-
ance is handled using different action models. As seen in
Fig.10, “punch”, “kick” and “point” each has two models.
The symmetric counterparts of some actions (e.g. “wave left
hand” for “wave right hand”) are also included (not shown
in the figure). In total, we get 177 key poses. Since cam-
eras are calibrated, with the known tilt angle, each key pose
is rendered from 36 pan angles. So the unrolled Action Net
(for each camera) has 6372 nodes. The shape contexts of the
2D silhouettes are computed and stored in these nodes.

Action c1 c2 c3 c4 c5 Overall
stand still 73.9 71.2 68.9 73.5 70.1 71.1
check watch 82.8 82.1 81.9 84.2 81.4 82.5
cross arms 83.2 84.3 79.9 84.4 80.6 82.1
scratch head 81.1 81.5 80.1 80.6 77.1 80.2
sit down 86.3 85.3 83.2 82.1 81.4 83.7
get up 85.8 86.7 82.5 84.4 79.1 84.3
turn around 81.1 80 80.5 78.9 75.3 78.8
walk in a circle 79.2 83.3 79.3 79.8 74.4 79.7
wave a hand 80.2 82.3 77.6 81.3 78.1 79.9
punch 87.1 87.7 84.4 88.3 84.6 86.8
kick 89.1 89.6 83.3 89.4 85.3 87.7
point 81.5 83.6 87.1 80.2 79.5 82.7
pick up 83.8 85.9 84 85.1 79.4 83.2
throw over head 81.6 82.3 78.9 80.1 83.3 81.3
throw from bottom 80.1 81.9 81.5 82.4 85.4 82.4
Overall 81.5 82.1 80.1 81.3 78.4 80.6

Table 1. The percentage of correctly labeled frames for each action
class. Each column contains results from one of the five cameras.

We tested our system on 50 videos clips of the 10 ac-
tors that are not included in the training data. The total
length of these clips (10 actors � 5 cameras) is more than
58,000 frames. For each clip, after the best action sequence
is tracked, we compare the resulting action label at each
frame with the provided ground truth. The recognition rate
is defined as the percentage of correctly labeled frames. The
recognition rate for each action class from each camera as
well as the overall recognition rate are listed in Table 1.
Some result frames are shown in Fig.11. Please see the sup-
plementary material for some result videos.

Our approach achieves an overall action recognition rate
of ���� using a single camera. This is very promising con-
sidering the complexity of the test and the small amount of
data that we used for training. In [20], Weinland et al. re-
port a higher action classification rate (
����) on the same
dataset. They use all five cameras to build visual hulls
and classify actions based on a 3D action representation
called Motion History Volumes. However, instrumenting
with many cameras, each highly calibrated is not feasible
for many applications and reconstruction of 3D shape from
multiple views usually is computationally expensive.

Our results show that among all 15 action classes, “kick”
and “punch” seem to be the easiest actions to recognize.
This is probably because the motion in these two actions
is more noticeable than in other actions. The high scores for
“sit down”, “get up” and “pick up” can also be attributed
to this reason. Some arm related actions such as “scratch
head”, “wave a hand” and “throw over head” got relatively
low scores mostly because they have several (similar) key
poses in common. The same explanation applies to “walk
in a circle” and “turn around”. “Stand still” received the
lowest score which is not surprising because it has only one
key pose and this key pose is similar to the boundary key
poses of other actions, such as the staring key pose of “turn
around” and the ending key pose of “get up”. So there is not
a clear cut between “stand” and these actions.

The performance in general is consistent with respect to
the camera viewpoints, but there are some notable differ-
ences. For example, two “throw” actions are better recog-
nized in camera 5 because the motion appears more salient
in this viewpoint. The performance for “sit down” and “get
up” in camera 5 is lower than average for the opposite rea-
son.

To justify the use of the PMK-NUP and Viterbi Path
searching, we also tested the following approaches using the
same experimental setup: (1) Original PMK only, (2) PMK-
NUP only, (3) Original PMK with Viterbi. For the first two
approaches, at each frame, the action label of the pose with
the largest matching score is selected. The overall recogni-
tion rates of these approaches are listed in Table 2.

original PMK PMK-NUP
without Action Net ����� �����

with Action Net ����� �����

Table 2. Comparison of different approaches. PMK-NUP com-
bined with Viterbi significantly outperforms the other three ap-
proaches.

It is interesting to observe that after applying the Action
Net, PMK-NUP performs significantly better than the orig-
inal PMK (from ����� to ����). This is because for each
input frame, it is likely that the original PMK and PMK-
NUP find the same best matched pose. However, the differ-
ence between a good match and a bad match in PMK-NUP
is larger than in the original PMK. When combined with
Viterbi Path searching, this difference in PMK-NUP is am-
plified over time and finally makes the best pose sequence
easily recognizable. The effectiveness of the Action Net is
clearly seen from this comparison.

Our system runs at 5.1 frames/sec on a single P4 3GHz
CPU. Most of the CPU time is spent on silhouette match-
ing. Because silhouette matches are computed indepen-
dently, this system can be easily parallelled to give a real
time speed.



Figure 10. The extracted key poses for each action class.

Figure 11. Some result frames. Each example shows the original
image, the provided human blob, the recovered pose and the action
label, respectively. Due to the contextual constraints, our approach
is not sensitive to the short-term defects in human blobs, as indi-
cated by the red arrows. The blue arrow shows one failed example,
in which a punching action is recognized as pointing. Those two
actions, however, do appear similar.

5. Conclusions

We have presented an example based single view action
recognition system and demonstrated it on a challenging
test set consisting of 15 action classes. Our major contri-
butions include: (1) a novel action representation scheme
called Action Net, which inherently models the contextual
constrains for action recognition and segmentation, and (2)
an enhanced Pyramid Match Kernel algorithm that takes
advantage of feature distribution and greatly improves the
matching score between two similar feature sets.
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