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Abstract

The capacity to robustly detect humans in video is a crit-
ical component of automated visual surveillance systems.
This paper describes a bilattice based logical reasoning ap-
proach that exploits contextual information and knowledge
about interactions between humans, and augments it with
the output of different low level detectors for human detec-
tion. Detections from low level parts-based detectors are
treated as logical facts and used to reason explicitly about
the presence or absence of humans in the scene. Positive
and negative information from different sources, as well as
uncertainties from detections and logical rules, are inte-
grated within the bilattice framework. This approach also
generates proofs or justifications for each hypothesis it pro-
poses. These justifications (or lack thereof) are further em-
ployed by the system to explain and validate, or reject po-
tential hypotheses. This allows the system to explicitly rea-
son about complex interactions between humans and handle
occlusions. These proofs are also available to the end user
as an explanation of why the system thinks a particular hy-
pothesis is actually a human. We employ a boosted cascade
of gradient histograms based detector to detect individual
body parts. We have applied this framework to analyze the
presence of humans in static images from different datasets.

1. Introduction

The primary objective of an automated visual surveil-
lance system is to observe and understand human behavior
and report unusual or potentially dangerous activities/events
in a timely manner. Realization of this objective requires at
its most basic level the capacity to robustly detect humans
from input video. Human detection, however, is a difficult
problem. This difficulty arises due to wide variability in ap-
pearance of clothing, articulation, view point changes, illu-
mination conditions, shadows and reflections, among other
factors. While detectors can be trained to handle some of
these variations and detect humans individually as a whole,
their performance degrades when humans are only partially
visible due to occlusion, either by static structures in the
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Figure 1. Figure showing valid human detections and a few false
positives.

scene or by other humans. Part based detectors are better
suited to handle such situations because they can be used to
detect the un-occluded parts. However, the process of going
from a set of partial body part detections to a set of scene
consistent, context sensitive, human hypotheses is far from
trivial.

Since part based detectors only learn part of the infor-
mation from the whole human body, they are typically less
reliable and tend to generate large numbers of false posi-
tives. Occlusions and local image noise characteristics also
lead to missed detections. It is therefore important to not
only exploit contextual, scene geometry and human body
constraints to weed out false positives, but also be able to
explain as many valid missing body parts as possible to cor-
rectly detect occluded humans.

Figure 1 shows a number of humans that are occluded
by the scene boundary as well as by each other. Ideally,
a human detection system should be able to reason about
whether a hypothesis is a human or not by aggregating in-
formation provided by different sources, both visual and
non-visual. For example, in figure 1, the system should
reason that it is likely that individual 1 is human because
two independent sources, the head detector and the torso
detector report that it is a human. The absence of legs indi-
cates it is possibly not a human, however this absence can
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be justified due to their occlusion by the image boundary.
Furthermore, hypothesis 1 is consistent with the scene ge-
ometry and lies on the ground plane. Since the evidence for
it being human exceeds evidence against, the system should
decide that it is indeed a human. Similar reasoning applies
to individual 4, only its legs are occluded by human 2. Ev-
idence against A and B (inconsistent with scene geometry
and not on the ground plane respectively) exceeds evidence
in favor of them being human and therefore A and B should
be rejected as being valid hypotheses.

This paper proposes a logic based approach that reasons
and detects humans in the manner outlined above. In this
framework, knowledge about contextual cues, scene geom-
etry and human body constraints is encoded in the form
of rules in a logic programming language and applied to
the output of low level parts based detectors. Positive and
negative information from different rules, as well as uncer-
tainties from detections are integrated within the bilattice
framework. This framework also generates proofs or jus-
tifications for each hypothesis it proposes. These justifica-
tions (or lack thereof) are further employed by the system to
explain and validate, or reject potential hypotheses. This al-
lows the system to explicitly reason about complex interac-
tions between humans and handle occlusions. These proofs
are also available to the end user as an explanation of why
the system thinks a particular hypothesis is actually a hu-
man. We employ a boosted cascade of gradient histograms
based detector to detect individual body parts.

We have applied this framework to analyze the presence
of humans in static images and have evaluated it on the
‘USC pedestrian set B’ [22], USC’s subset of the CAVIAR
dataset [1], that includes images of partially occluded hu-
mans (This dataset will henceforth be referred to in this pa-
per as the USC-CAVIAR dataset). We have also evaluated
it on a dataset we collected on our own. In this paper, we
refer to this dataset as Dataset-A.

2. Related Work

Approaches to detect humans from images/video tend
to fall primarily in two categories: those that detect the
human as a whole and those that detect humans based on
part detectors. Among approaches that detect humans as a
whole, Leibe et.al [11] employs an iterative method com-
bining local and global cues via a probabilistic segmenta-
tion, Gavrilla [8, 7] uses edge templates to recognize full
body patterns, Papageorgiou et. al. [15] uses SVM de-
tectors, and Felzenszwalb [4] uses shape models. A pop-
ular detector used in such systems is a cascade of de-
tectors trained using AdaBoost as proposed by Viola and
Jones [20]. Such an approach uses as features several haar
wavelets and has been very successfully applied for face
detection in [20]. In [21] Viola and Jones applied this de-
tector to detect pedestrians and made an observation that
haar wavelets are insufficient by themselves as features for
human detection and augmented their system with simple
motion cues to get better performance. Another feature that
is increasing in popularity is the histogram of oriented gra-
dients. It was introduced by Dalal and Triggs [3] who used
a SVM based classifier. This was further extended by Zhu
et. al [24] to detect whole humans using a cascade of his-
tograms of oriented gradients.

Part based representations have also been used to detect

humans. Wu and Nevatia [22] use edgelet features and learn
nested cascade detectors [10] for each of several body parts
and detect the whole human using an iterative probabilis-
tic formulation. Mikolajczyk et al. [12] divides the human
body into seven parts and for each part a Viola-Jones ap-
proach is applied to orientation features. Mohan et.al. [13]
divides the human into four different parts and learns SVM
detectors using Haar wavelet features. [23, 22, 11] follow
up low level detections with some form of high level rea-
soning that allows them to enforce global constraints, weed
out false positives, and increase accuracy.

Logical reasoning has been used in visual surveillance
applications to recognize the occurrence of different hu-
man activities [17] and, in conjunction with the bilattice
framework, to maintain and reason about human identities
as well [18].

3. Reasoning Framework

Logic programming systems employ two kinds of for-
mulae, facts and rules, to perform logical inference. Rules
are of the form “A ← A0, A1, · · · , Am” where each Ai is
called an atom and ‘,’ represents logical conjunction. Each
atom is of the form p(t1, t2, · · · , tn), where ti is a term,
and p is a predicate symbol of arity n. Terms could ei-
ther be variables (denoted by upper case alphabets) or con-
stant symbols (denoted by lower case alphabets). The left
hand side of the rule is referred to as the head and the right
hand side is the body. Rules are interpreted as “if body then
head”. Facts are logical rules of the form “A ←” (hence-
forth denoted by just “A”) and correspond to the input to
the inference process. Finally, ‘¬’ represents negation such
that A = ¬¬A. In visual surveillance, rules typically cap-
ture knowledge about the proposition to be reasoned about
and facts are the output of the low level computer vision
algorithms onto which the rules are applied [18, 17].

3.1. Logic based Reasoning

To perform the kind of reasoning outlined in section 1,
one has to specify rules that allow the system to take vi-
sual input from the low level detectors and explicitly infer
whether or not there exists a human at a particular location.
For instance, if we were to employ a head, torso and legs
detector, then a possible rule would be:

human(X, Y, S) ←− head(Xh, Yh, Sh),

torso(Xt, Yt, St),

legs(Xl, Yl, Sl),

geometry constraint(Xh, Yh, Sh, Xt, Yt, St, Xl, Yl, Sl),

compute center(Xh, Yh, Sh, Xt, Yt, St, Xl, Yl, Sl, X, Y, S).

This rule captures the information that if the head, torso
and legs detectors were to independently report a de-
tection at some location and scale (by asserting facts
head(Xh, Yh, Sh), torso(Xt, Yt, St), legs(Xl, Yl, Sl) re-
spectively), and these coordinates respected certain geomet-
ric constraints, then one could conclude that there exists a
human at that location and scale. A logic programming sys-
tem would search the input facts to find all combinations
that satisfy the rule and report the presence of humans at
those locations. Note that this rule will only detect humans
that are visible in their entirety. Similar rules can be spec-
ified for situations when one or more of the detections are



missing due to occlusions or other reasons. There are, how-
ever, some problems with a system built on such rule speci-
fications:

1. Traditional logics treat such rules as binary and defi-
nite, meaning that every time the body of the rule is true, the
head will have to be true. For a real world system, we need
to be able to assign some uncertainty values to the rules that
capture its reliability.

2. Traditional logics treat facts as binary. We would like
to take as input, along with the detection, the uncertainty of
the detection and integrate it into the reasoning framework

3. Traditional logic programming has no support for ex-
plicit negation in the head. There is no easy way of specify-
ing a rule like:

¬human(X, Y, S)←¬scene consistent(X, Y, S).

and integrating it with positive evidence. Such a rule says
a hypothesis is not human if it is inconsistent with scene
geometry.

4. Such a system will not be scalable. We would have
to specify one rule for every situation we foresee. If we
would like to include in our reasoning the output from an-
other detector, say a hair detector to detect the presence of
hair and consequently a head, we would have to re-engineer
all our rules to account for new situations. We would like a
framework that allows us to directly include new informa-
tion without much re-engineering.

5. Finally, traditional logic programming does not have
support for integration of evidence from multiple sources.

3.2. Bilattice Theory

Bilattices are algebraic structures introduced by Gins-
berg [9] as a uniform framework within which a number
of diverse applications in artificial intelligence can be mod-
elled. In [9] Ginsberg used the bilattice formalism to model
first order logic, assumption based truth maintenance sys-
tems, and formal systems such as default logics and cir-
cumscription. In [2], it was pointed out that bilattices serve
as a foundation of many areas such as logic programming,
computational linguistics, distributed knowledge process-
ing, reasoning with imprecise information and fuzzy set the-
ory. In our application, the automatic human detection sys-
tem is looked upon as a passive rational agent capable of
reasoning under uncertainty. Uncertainties assigned to the
rules that guide reasoning, as well as detection uncertain-
ties reported by the low level detectors, are taken from a
set structured as a bilattice. These uncertainty measures are

ordered along two axes, one along the source’s1 degree of
information and the other along the agent’s degree of be-
lief. As we will see, this structure allows us to address all
of the issues raised in the previous section and provides a
uniform framework which not only permits us to encode
multiple rules for the same proposition, but also allows in-
ference in the presence of contradictory information from
different sources.

Definition 1 (Lattice) A lattice is a set L equipped with a
partial ordering≤ over its elements, a greatest lower bound

1A single rule applied to a set of facts is referred to as a source here.
There can be multiple rules deriving the same proposition (both positive
and negative forms of it) and therefore we have multiple sources of infor-
mation.

Figure 2. The bilattice square ([0, 1]2,≤t,≤k)

(glb) and a lowest upper bound (lub) and is denoted as L =
(L,≤) where glb and lub are operations from L × L →L
that are idempotent, commutative and associative. Such a
lattice is said to be complete, iff for every nonempty subset
M of L, there exists a unique lub and glb.

Definition 2 (Bilattice [9]) A bilattice is a triple B =
(B,≤t,≤k), where B is a nonempty set containing at least
two elements and (B,≤t), (B,≤k) are complete lattices.

Informally a bilattice is a set, B, of uncertainty measures
composed of two complete lattices (B,≤t) and (B,≤k)
each of which is associated with a partial order ≤t and ≤k

respectively. The ≤t partial order (agent’s degree of belief)
indicates how true or false a particular value is, with f be-
ing the minimal and t being the maximal while the ≤k par-
tial order indicates how much is known about a particular
proposition. The minimal element here is ⊥ (completely
unknown) while the maximal element is ⊤ (representing
a contradictory state of knowledge where a proposition is
both true and false). The glb and the lub operators on the
≤t partial order are ∧ and ∨ and correspond to the usual
logical notions of conjunction and disjunction, respectively.
The glb and the lub operators on the ≤k partial order are ⊗
and ⊕, respectively, where ⊕ corresponds to the combina-
tion of evidence from different sources or lines of reasoning
while ⊗ corresponds to the consensus operator. A bilattice
is also equipped with a negation operator ¬ that inverts the
sense of the ≤t partial order while leaving the ≤k partial
order intact and a conflation operator − which inverts the
sense of the ≤k partial order while leaving the ≤t partial
order intact.

The intuition is that every piece of knowledge, be it a rule
or an observation from the real world, provides different de-
grees of information. An agent that has to reason about the
state of the world based on this input, will have to translate
the source’s degree of information, to its own degree of be-
lief. Ideally, the more information a source provides, the
more strongly an agent is likely to believe it (i.e closer to
the extremities of the t-axis) . The only exception to this
rule being the case of contradictory information. When two



sources contradict each other, it will cause the agent’s de-
gree of belief to decrease despite the increase in information
content. It is this decoupling of the sources and the ability
of the agent to reason independently along the truth axis that
helps us address the issues raised in the previous section. It
is important to note that the line joining⊥ and⊤ represents
the line of indifference. If the final uncertainty value associ-
ated with a hypothesis lies along this line, it means that the
degree of belief for and degree of belief

against it cancel each other out and the agent cannot say
whether the hypothesis is true or false. Ideally the final un-
certainty values should be either f or t, but noise in obser-
vation as well as less than completely reliable rules ensure
that this is almost never the case. The horizontal line join-
ing t and f is the line of consistency. For any point along
this line, the degree of belief for will be exactly
equal to (1-degree of belief against) and thus
the final answer will be exactly consistent.

Definition 3 (Rectangular Bilattice [5, 14]) Let
L = (L,≤L) and R = (R,≤R) be two com-
plete lattices. A rectangular bilattice is a structure
L⊙R = (L×R,≤t,≤k), where for every x1, x2 ∈ L and
y1, y2 ∈ R,

1. 〈x1, y1〉 ≤t 〈x2, y2〉 ⇔ x1 ≤L x2 and y1 ≥R y2,

2. 〈x1, y1〉 ≤k 〈x2, y2〉 ⇔ x1 ≤L x2 and y1 ≤R y2

An element 〈x1, y1〉 of the rectangular bilattice L ⊙ R
may be interpreted such that x1 represents the amount of
belief for some assertion while y1 represents the amount of
belief against it. If we denote the glb and lub operations of
complete lattices L = (L,≤L), and R = (R,≤R) by ∧L

and ∨L, and ∧R and ∨R respectively, we can define the glb
and lub operations along each axis of the bilattice L⊙R as
follows:

〈x1, y1〉 ∧ 〈x2, y2〉 = 〈x1 ∧L x2, y1 ∨R y2〉,

〈x1, y1〉 ∨ 〈x2, y2〉 = 〈x1 ∨L x2, y1 ∧R y2〉,

〈x1, y1〉 ⊗ 〈x2, y2〉 = 〈x1 ∧L x2, y1 ∧R y2〉,

〈x1, y1〉 ⊕ 〈x2, y2〉 = 〈x1 ∨L x2, y1 ∨R y2〉 (1)

Of interest to us in our application is a particular class
of rectangular bilattices where L and R coincide. These
structures are called squares [2] and L ⊙ L is abbrevi-
ated as L2. Since detection likelihoods reported by the low
level detectors are typically normalized to lie in the [0,1]
interval, the underlying lattice that we are interested in is
L = ([0, 1],≤). The bilattice that is formed by L2 is de-
picted in figure 2. Each element in this bilattice is a tuple
with the first element encoding evidence for a proposition
and the second encoding evidence against. In this bilattice,
the element f (false) is denoted by the element 〈0, 1〉 indi-
cating, no evidence for but full evidence against, similarly
element t is denoted by 〈1, 0〉, element ⊥ by 〈0, 0〉 indicat-
ing no information at all and ⊤ is denoted by 〈1, 1〉. To
fully define glb and lub operators along both the axes of the
bilattice as listed in equations 1, we need to define the glb
and lub operators for the underlying lattice ([0, 1],≤). A
popular choice for such operators are triangular-norms and
triangular-conorms. Triangular norms and conorms were

introduced by Schweizer and Sklar [16] to model the dis-
tances in probabilistic metric spaces. Triangular norms are
used to model the glb operator and the triangular conorm to
model the lub operator within each lattice.

Definition 4 (triangular norm) A mapping
T : [0, 1]× [0, 1]→ [0, 1]

is a triangular norm (t-norm) iff T satisfies the following
properties:
- Symmetry: T (a, b) = T (b, a), ∀a, b ∈ [0, 1]
- Associativity: T (a, T (b, c)) = T (T (a, b), c), ∀a, b, c ∈
[0, 1].
- Monotonicity:T (a, b) ≤ T (a′, b′)ifa ≤ a′and b ≤ b′

- One identity: T (a, 1) = a, ∀a ∈ [0, 1].

Definition 5 (triangular conorm) A mapping
S : [0, 1]× [0, 1]→ [0, 1]

is a triangular conorm (t-conorm) iff S satisfies the follow-
ing properties:
- Symmetry: S(a, b) = S(b, a), ∀a, b ∈ [0, 1]
- Associativity: S(a,S(b, c)) = S(S(a, b), c), ∀a, b, c ∈
[0, 1].
- Monotonicity:S(a, b) ≤ S(a′, b′)ifa ≤ a′and b ≤ b′

- Zero identity: S(a, 0) = a, ∀a ∈ [0, 1].

if T is a t-norm, then the equality S(a, b) = 1 − T (1 −
a, 1 − b) defines a t-conorm and we say S is derived from
T . There are number of possible t-norms and t-conorms
one can choose. In our application, for the underlying
lattice, L = ([0, 1],≤), we choose the t-norm such that
T (a, b) ≡ a ∧L b = ab and consequently choose the t-
conorm as S(a, b) ≡ a ∨L b = a + b − ab. Based on this,
the glb and lub operators for each axis of the bilattice B can
then be defined as per equation 1.

3.3. Inference

Inference in bilattice based reasoning frameworks is per-
formed by computing the closure over the truth assignment.

Definition 6 (Truth Assignment) Given a declarative lan-
guage L, a truth assignment is a function φ : L→ B where
B is a bilattice on truth values or uncertainty measures.

Definition 7 (Closure) LetK be the knowledge base and φ
be a truth assignment labelling each every formula k ∈ K.
The closure over φ, denoted cl(φ), is the truth assignment
that labels information that is entailed by K.

For example, if φ labels sentences {p, (q ← p)} ∈ K as
〈1, 0〉 (true); i.e. φ(p) = 〈1, 0〉 and φ(q ← p) = 〈1, 0〉,
then cl(φ) should also label q as 〈1, 0〉 as it is information
entailed by K. Entailment is denoted by the symbol ‘|=’
(K |= q).

Denote by S a set of sentences entailing q. The uncer-
tainty measure to be assigned to the conjunction of elements
of S should be

∧

p∈S

cl(φ)(p) (2)

This term represents the conjunction of the closure of

the elements of S2. It is important to note that this term is

2Recall that ∧ and ∨ are glb and lub operators along the ≤t ordering
and ⊗ and ⊕ along ≤k axis.

∧

,
∨

,
⊗

,
⊕

are their infinitary counterparts
such that

⊕

p∈S p = p1 ⊕ p2 ⊕ · · · and so on



Assume the following set of rules and facts:

Rules Facts
φ(human(X, Y, S)← head(X, Y, S)) = 〈0.40, 0.60〉 φ(head(25, 95, 0.9)) = 〈0.90, 0.10〉
φ(human(X, Y, S)← torso(X, Y, S)) = 〈0.30, 0.70〉 φ(torso(25, 95, 0.9)) = 〈0.70, 0.30〉

φ(¬human(X, Y, S)← ¬scene consistent(X, Y, S)) = 〈0.90, 0.10〉 φ(¬scene consistent(25, 95, 0.9)) = 〈0.80, 0.20〉

Inference is performed as follows:

cl(φ)(human(25, 95, 0.9))=〈0, 0〉 ∨

[

〈0.4, 0.6〉 ∧ 〈0.9, 0.1〉

]

⊕ 〈0, 0〉 ∨

[

〈0.3, 0.7〉 ∧ 〈0.7, 0.3〉

]

⊕ ¬

(

〈0, 0〉 ∨

[

〈0.9, 0.1〉 ∧ 〈0.8, 0.2〉

]

)

=〈0.36, 0〉 ⊕ 〈0.21, 0〉 ⊕ ¬〈0.72, 0〉 = 〈0.4944, 0〉 ⊕ 〈0, 0.72〉 = 〈0.4944, 0.72〉

Figure 3. Example showing inference using closure within a ([0, 1]2,≤t,≤k) bilattice

not the final uncertainty value to be assigned to q, rather it
is merely a contribution to its final value. The reason it is
merely a contribution is because there could be other sets
of sentences S′ that entail q, representing different lines of
reasoning (or, in our case, different rules). These contribu-
tions need to be combined using the ⊕ operator along the
information (≤k) axis. Also, if the expression in 2 evalu-
ates to false, then its contribution to the value of q should
be 〈0, 0〉 (unknown) and not 〈0, 1〉 (false). These arguments
suggest that the closure over φ of q is

cl(φ)(q) =
⊕

S|=q

⊥ ∨[
∧

p∈S

cl(φ)(p)] (3)

where ⊥ is 〈0, 0〉. We also need to take into account the
set of sentences entailing ¬q. Aggregating this information
yields the following expression:

cl(φ)(q) =
⊕

S|=q

⊥ ∨[
∧

p∈S

cl(φ)(p)]⊕¬
⊕

S|=¬q

⊥ ∨[
∧

p∈S

cl(φ)(p)]

(4)

For more details see [9]. Figure 3 shows an example
illustrating the process of computing the closure as de-
fined above by combining evidence from three sources.
In this example, the final uncertainty value computed is
〈0.4944, 0.72〉. This indicates that evidence against the hy-
pothesis at (25,95) at scale 0.9 exceeds evidence in favor
of and, depending on the final threshold for detection, this
hypothesis is likely to be rejected.

3.4. Negation

Systems such as this typically employ different kinds of
negation. One kind of negation that has already been men-
tioned earlier is ¬. This negation flips the bilattice along
the ≤t axis while leaving the ordering along the ≤k axis
unchanged. Another important kind of negation is negation
by failure to prove, denoted by not. not(A) succeeds if A
fails. This operator flips the bilattice along both the≤t axis
as well as the ≤k axis. Recall that, in section 3, − was de-
fined as the conflation operator that flips the bilattice along
the ≤k axis. Therefore, φ(not(A)) = ¬ − φ(A). In other
words, if A evaluates to 〈0, 0〉, then not(A) will evaluate to
〈1, 1〉. This operator is important when we want to detect
the absence of a particular body part for a hypothesis.

4. Detection System

Rules can now be defined within this bilattice frame-
work to handle complex situations, such as humans being
partially occluded by static structures in the scene or by
other humans. Each time one of the detectors detects a body
part, it asserts a logical fact of the form φ(head(x, y, s)) =
〈α, β〉, where α is the measurement score the detector re-
turns at that location and scale in the image and, for sim-
ple detectors, β is 1 − α . Rules are specified similarly as
φ(human(X, Y, S)← · · · ) = 〈γ, δ〉. γ and δ are learnt as
outlined in subsection 4.2. We start by initializing a number
of initial hypotheses based on the low level detections. For
example, if the head detector detects a head and asserts fact

φ(head(75, 225, 1.25)) = 〈0.95, 0.05〉3, the system records
that there exists a possible hypothesis at location (75,225) at
scale 1.25 and submits the query human(75, 225, 1.25) to
the logic program where support for and against it is gath-
ered and finally combined into a single answer within the
bilattice framework. Projecting the final uncertainty value
onto the 〈0, 1〉 − 〈1, 0〉 axis, gives us the final degree of
belief in the hypothesis. We will now provide English de-
scriptions of some of the rules employed in our system.

4.1. Rule Specification

Rules in such systems can be learnt automatically; how-
ever, such approaches are typically computationally very
expensive. We manually encode the rules while automat-
ically learning the uncertainties associated with them. The
rules fall into three categories: Detector based, Geometry
based and Explanation based

Detector based: These are the simplest rules that hy-
pothesize that a human is present at a particular location if
one or more of the detectors detects a body part there. In
other words, if a head is detected at some location, we say
there exists a human there. There are positive rules, one
each for the head, torso, legs and fullbody based detectors
as well as negative rules that fire in the absence of these
detections.

Geometry based: Geometry based rules validate or re-
ject human hypotheses based on geometric and scene infor-
mation. This information is entered a priori in the system at
setup time. We employ information about expected height
of people and regions of expected foot location. The ex-

3Note that the coordinates here are not the centers of the body parts,
but rather the centers of the body



pected image height rule is based on ground plane informa-
tion and anthropometry. Fixing a gaussian at an adult hu-
man’s expected physical height allows us to generate scene
consistency likelihoods for a particular hypothesis given its
location and size. The expected foot location region is a re-
gion demarcated in the image outside of which no valid feet
can occur and therefore serves to eliminate false positives.

Explanation based: Explanation based rules are the
most important rules for a system that has to handle occlu-
sions. The idea here is that if the system does not detect a
particular body part, then it must be able to explain its ab-
sence for the hypothesis to be considered valid. If it fails
to explain a missing body part, then it is construed as ev-
idence against the hypothesis being a human. Absence of
body parts is detected using logic programming’s ‘negation
as failure’ operator (not). not(A) succeeds when A evalu-
ates to 〈0, 0〉 as described in section 3.4. A valid explanation
for missing body part could either be due to occlusions by
static objects or due to occlusions by other humans.

Explaining missed detections due to occlusions by static
objects is straightforward. At setup, all static occlusions are
marked. Image boundaries are also treated as occlusions
and marked as shown in figure 1(black area at bottom of
figure). For a given hypothesis, the fraction of overlap of
the missing body part with the static occlusion is computed
and reported as the uncertainty of occlusion. The process is
similar for occlusions by other human hypotheses, with the
only difference being that, in addition to the degree of oc-
clusion, we also take into account the degree of confidence
of the hypothesis that is responsible for the occlusion, as
illustrated in the rule below:

human(X, Y, S) ← not(torso(Xt, Yt, St),

torso body consistent(X, Y, S, Xt, Yt, St)),

torso occluded(X, Y, S, Xo, Yo, So),

Yo > Y, human(Xo, Yo, So). (5)

This rule will check to see if human(X, Y, S)’s torso is oc-
cluded by human(Xo, Yo, So) under condition that Yo >

Y , meaning the occluded human is behind the ‘occluder’4

There is a similar rule for legs and also rules deriving
¬human in the absence of explanations for missing parts.

4.2. Learning

Given a rule of the form A ←
B1, B2, · · · , Bn, a confidence value of
〈

F(A|B1, B2, · · · , Bn),F(¬A|B1, B2, · · · , Bn)
〉

is

computed, where F(A|B1, B2, · · · , Bn) is the fraction of
times A is true when B1, B2, · · · , Bn is true.

4.3. Generating Proofs

As mentioned earlier, in addition to using the explana-
tory ability of logical rules, we can also provide these ex-

4The reader might notice that calling the human(Xo, Yo, So) within
the definition of a ‘human’ rule will cause the system to infer the presence
of human(Xo, Yo, So) from scratch. This rule has been presented in
such a manner merely for ease of explication. In practice, we maintain a
table of inferences that the query, human(Xo, Yo, So), can tap into for
unification without re-deriving anything. Also we derive everything from
the bottom of the image to the top, so human(Xo, Yo, So), if it exists, is
guaranteed to unify.

planations to the user as justification of why the system be-
lieves that a given hypothesis is a human. The system pro-
vides a straightforward technique to generate proofs from
its inference tree. Since all of the bilattice based reasoning
is encoded as meta-logical rules in a logic programming lan-
guage, it is easy to add predicates that succeed when the rule
fires and propagate character strings through the inference
tree up to the root where they are aggregated and displayed.
Such proofs can either be dumps of the logic program itself
or be English text. In our implementation, we output the
logic program as the proof tree.

5. Body Part Detector

Our human body part detectors are inspired by [24].
Similar to their approach we train a cascade of svm-
classifiers on histograms of gradient orientations. Instead
of the hard threshold function suggested in their paper, we
apply a sigmoid function to the output of each svm. These
softly thresholded functions are combined using a boosting
algorithm [6]. After each boosting round, we calibrate the
probability of the partial classifier based on evaluation set,
and set cascade decision thresholds based on the sequential
likelihood ratio test similar to [19]. To train the parts-based
detector, we restrict the location of the windows used dur-
ing the feature computation to the areas corresponding to
the different body parts (head/shoulder, torso, legs).

6. Experiments

The framework has been implemented in C++ with an
embedded Prolog reasoning engine. The C++ module ini-
tializes the Prolog engine by inserting into its knowledge
base all predefined rules. Information about scene geome-
try, and static occlusions is specified through the user inter-
face, converted to logical facts and inserted into the knowl-
edge base. The C++ module then runs the detectors on
the given image, clusters the detector output, and finally
structures the clustered output as logical facts for the Pro-
log knowledge base. Initial hypotheses are created based
on these facts and then evidence for or against these hy-
potheses is searched for by querying for them. We will first
describe some qualitative results and show how our system
reasons and resolves difficult scenarios, and then describe
quantitative results on the USC-CAVIAR dataset as well as
on Dataset-A.

6.1. Qualitative Results

Tables 1 and 2 list the proofs for humans 1 and 4 from
figure 1. In both cases, the head and torso are visible while
the legs are missing. In case of human 1, it is due to oc-
clusion by the image boundary (which has been marked as
a static occlusion) and in case of human 4 due to occlusion
by human 2. In tables 1 and 2, variables starting with G · · ·
are non-unified variables in Prolog, meaning that legs can-
not be found and therefore the variables of the predicate
legs cannot be instantiated. It can be seen that in both cases,
evidence in favor of the hypothesis exceeds that against.

6.2. Numerical Results

We applied our framework to the set of static images
taken from USC-CAVIAR dataset. This dataset, a subset of



Total: human(243,253,1.5) 〈0.484055, 0.162474〉
+ve evidence: head(244.5, 247.5, 1.5) 〈1, 0〉

torso(243, 253,1.5) 〈1, 0〉
fullbody(243, 256.5,1.5) 〈0.9371, 0.0629〉
on ground plane(243, 253, 1.5), 〈1, 0〉
scene consistent(243, 253, 1.5), 〈0.954835, 0.045165〉
not((legs( G3817, G3818, G3819),

legs body consistent(243, 253, 1.5, G3817, G3818, G3819))) 〈1, 1〉
is part occluded(219.0, 253.0, 267.0, 325.0) 〈0.569444, 0.430556〉

-ve evidence: ¬ scene consistent(243, 253, 1.5) 〈0.045165, 0.954835〉
not((legs( G3984, G3985, G3986),

legs body consistent(243, 253, 1.5, G3984, G3985, G3986))) 〈1, 1〉
Table 1. Proof for human marked as ‘1’ in figure 1

Total: human(154,177,1.25) 〈0.359727, 0.103261〉
+ve evidence: head(154, 177, 1.25) 〈0.94481, 0.05519〉

torso(156.25, 178.75, 1.25) 〈0.97871, 0.02129〉
on ground plane(154, 177, 1.25) 〈1, 0〉
scene consistent(154, 177, 1.25) 〈0.999339, 0.000661〉
not((legs( G7093, G7094, G7095),

legs body consistent(154, 177, 1.25, G7093, G7094, G7095))) 〈1, 1〉
is part occluded(134.0, 177.0, 174.0, 237.0) 〈0.260579, 0.739421〉

-ve evidence: ¬scene consistent(154, 177, 1.25) 〈0.000661, 0.999339〉
not((legs( G7260, G7261, G7262),

legs body consistent(154, 177, 1.25, G7260, G7261, G7262))) 〈1, 1〉
Table 2. Proof for human marked as ‘4’ in figure 1

the original CAVIAR [1] data, contains 54 frames with 271
humans of which 75 humans are partially occluded by other
humans and 18 humans are occluded by the scene boundary.
This data is not part of our training set. We have trained our
parts based detector on the MIT pedestrian dataset [15]. For
training purposes, the size of the human was 32x96 centered
and embedded within an image of size 64x128. We used
924 positive images and 6384 negative images for train-
ing. The number of layers used in fullbody, head, torso

0 20 40 60 80 100 120
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of False Alarms

D
e

te
c
ti
o

n
 R

a
te

Full Reasoning

Full Reasoning*

Head

Torso

Full Body

Legs

WuNevatia [22]

WuNevatia* [22]

Figure 4. ROC curves for evaluation on the USC-CAVIAR dataset.
Full Reasoning* is ROC curve for 75 humans occluded by other
humans. Results of [22] on the same dataset are copied from their
original paper. WuNevatia* is ROC curve for the 75 humans oc-
cluded by other humans

Occlusion Degree(%) >70 70-50 50-25
Human# 10 31 34
Detection Rate(%)
(interpolated to 19 false alarms) 87 91.4 92.6
Detection Rate(%)
(Wu Nevatia [22]) 80 90.3 91.2

Table 3. Detection rates on the USC-CAVIAR dataset for different
degrees of occlusion on the 75 humans that are occluded by other
humans (with 19 false alarms). Results of [22] on the same dataset
are copied from their original paper.

and leg detectors were 12, 20, 20, and 7 respectively. Fig-
ure 4 shows the ROC curves for our parts based detectors
as well as for the full reasoning system. “Full Reasoning*”,
in Figure 4, is the ROC curve on the 75 occluded humans
and table 3 lists detection rates for these 75 humans for dif-
ferent degrees of occlusion. ROC curves for part based de-
tectors represent detections that have no prior knowledge
about scene geometry or other anthropometric constraints.
It can be seen that performing high level reasoning over low
level part based detections, especially in presence of occlu-
sions, greatly increases overall performance. We have also
compared the performance of our system with the results
reported by Wu and Nevatia [22] on the same dataset. We
have taken results reported in their original paper and plot-
ted them in figure 4 as well as listed them in table 3. As can
be seen, results from both systems are comparable.

We also applied our framework on another set of images
taken from a dataset we collected on our own (in this paper
we refer to it as Dataset-A). This dataset contains 58 im-
ages (see figure 5) of 166 humans, walking along a corridor,
126 of whom are occluded 30% or more, 64 by the image
boundary and 62 by each other. Dataset-A is significantly
harder than the USC-CAVIAR dataset due to heavier oc-
clusions (44 humans are occluded 70% or more), perspec-



Figure 5. An image from Dataset-A
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Figure 6. ROC curves for evaluation on Dataset-A. Full Reason-
ing* is ROC curve for 126 occluded humans.

tive distortions (causing humans to appear tilted), and due
to the fact that many humans appear in profile view. Fig-
ure 6 shows the ROC curves for this dataset. It can be seen
that the low level detectors as well as the full body detector
perform worse here than on the USC-CAVIAR data, how-
ever, even in such a case, the proposed logical reasoning
approach gives a big improvement in performance. If the
performance of the low level detectors is further enhanced
(to take in account profile views and handle perspective dis-
tortions), then results of high level reasoning will further
improve. This is part of our future work.

7. Discussions and Future Work

We have described a logical reasoning approach for hu-
man detection that takes input from multiple sources of in-
formation, both visual and non-visual, and integrates them
into a single hypothesis within the bilattice framework. Use
of logical reasoning permits to explicitly reason about com-
plex interactions between humans as well as with the en-
vironment and thus handle occlusions. Structuring of this
reasoning within the bilattice framework makes it scalable,
so information from new sources can be added easily and
also allows use of explicitly negative information about a
hypothesis, providing for a better separation between true
positives and false alarms. The system also generates proofs
for validation by the operator. Finally, as can be seen from
the closure expression (equation 4), complexity of inference
in such systems is linear in the number of rules and its con-
stituent propositions. In the future we would like to extend
this system to reason explicitly about temporal information
thus helping us not only track humans, but also to define
models for and recognize human activities within a single
framework.
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