
Detecting Pedestrians by Learning Shapelet Features

Payam Sabzmeydani and Greg Mori
School of Computing Science

Simon Fraser University
Burnaby, BC, Canada

{psabzmey,mori}@cs.sfu.ca

Abstract

In this paper, we address the problem of detecting pedes-
trians in still images. We introduce an algorithm for learn-
ing shapelet features, a set of mid–level features. These fea-
tures are focused on local regions of the image and are built
from low–level gradient information that discriminates be-
tween pedestrian and non–pedestrian classes. Using Ad-
aBoost, these shapelet features are created as a combina-
tion of oriented gradient responses. To train the final classi-
fier, we use AdaBoost for a second time to select a subset of
our learned shapelets. By first focusing locally on smaller
feature sets, our algorithm attempts to harvest more use-
ful information than by examining all the low–level features
together. We present quantitative results demonstrating the
effectiveness of our algorithm. In particular, we obtain an
error rate 14 percentage points lower (at 10−6 FPPW) than
the previous state of the art detector of Dalal and Triggs [1]
on the INRIA dataset.

1. Introduction

In this paper we consider the problem of detecting pedes-
trians in still images. A robust solution to this problem
would have numerous applications, including automated
surveillance, image retrieval and search, and vehicle driver
assistance systems. We will employ a window-scanning ap-
proach, where rectangular windows such as those shown in
Figure 1 are classified as pedestrian or non-pedestrian.

The most important cue for detecting pedestrians in this
still image setting is shape. In particular, pieces of shape
such as the stereotypical omega pattern formed by the head
and shoulders are the important cues for detecting pedestri-
ans. We will refer to these pieces of shape as shapelet fea-
tures1. Consider the cropped portions of windows centered

1The term shapelet was first used by Refreiger [14], naming a series of
localized basis functions of different shapes. Kovesi [7] used the term to
refer to a basis of finite support for describing shape. In the same spirit, we

Figure 1. First row shows examples of pedestrian images. The next
three rows show three local regions within the pedestrian windows.
The last row shows the shapelet features learned by our algorithm
for each of the three regions.

on pedestrians shown in Figure 1. Salient shapelet features
appear on the head and shoulders, along the legs, and on the
arms of the pedestrians in these images.

The contribution of this paper is the development of an
algorithm for learning these shapelet features which can
discriminate between pedestrians and non-pedestrians. We
show that by learning these shapelet features we obtain a
pedestrian detector which significantly outperforms previ-
ous approaches which either use low-level edge cues, or
hand-crafted mid-level features which try to capture the in-
formation present in our shapelet features.

The structure of this paper is as follows. In Section 2 we

use the term shapelet features to refer to features describing local pieces of
shape, which we learn rather than specify as a basis.

1
1-4244-1180-7/07/$25.00 ©2007 IEEE

review the previous work on the pedestrian detection prob-
lem. In Section 3 we give the details of our shapelet fea-
tures and the algorithm. The experimental details, perfor-
mance results and comparisons are presented in Section 4.
We conclude in Section 5.

2. Related Work

The problem of object detection and particularly pedes-
trian detection has received much attention from the com-
puter vision community. In particular, Mohan et al. [10] de-
tect pedestrians as a combination of parts –legs, torso, arms.
Individual SVM detectors are trained for each of the parts,
and their outputs are combined into a final classifier, after
applying geometric constraints. Gavrila and Philomin [5]
and Felzenszwalb [3] compare edge maps of pedestrian
templates to edges found in images. Gavrila and Philomin
use the Chamfer distance, and develop an efficient hierar-
chical system. Felzenszwalb uses a generalization of the
Hausdorff distance, and learns pedestrian templates from
training images. Viola et al. [18] compute spatial and tem-
poral rectangle filters efficiently using the integral image
technique, and learn a pedestrian classifier using a variant
of AdaBoost. Mikolajczyk, et al. [9] use a part based detec-
tor to detect humans. They model humans as assemblies of
parts that are represented by SIFT-like orientation base fea-
tures. Feature selection and the part detectors are learned
using AdaBoost. Fink and Perona [4] describe the Mutual-
Boost algorithm for building a combined detector from a set
of pre-defined and labeled object parts.

Leibe et al. [8] start with a local feature detection to
generate a set of pedestrian hypotheses. By using a train-
ing set which contains foreground masks for pedestrians,
segmentation masks are computed for these hypotheses. A
top-down verification step, using these segmentation masks
and Chamfer matching is then applied. Impressive results
on images with substantial overlap of pedestrians are pre-
sented. Wu and Nevatia [20] also address the problem of
overlapping pedestrians, and formulate a joint likelihood
that is optimized using a greedy algorithm. Dalal and
Triggs [1] use Histogram of Oriented Gradient (HOG) de-
scriptors and Support Vector Machines (SVMs) for building
a pedestrian detector. By tuning all the parameters of their
HOG features, they compare the use of a variety of fea-
ture configurations to find the best configuration for pedes-
trian detection, on a challenging dataset of human figures.
Munder and Gavrila [11] studied the problem of pedestrian
classification with different features and classifiers. They
find that local receptive fields can do a better job in rep-
resenting pedestrians and also SVMs and AdaBoost classi-
fiers outperform the other classifiers tested.

Other approaches use video sequences, and apply back-
ground subtraction to reduce clutter. The Pfinder system of
Wren et al. [19] is an early example of such an approach.

Zhao and Nevatia [21] work on difficult scenes involving
large crowds of people, and segment foreground blobs into
individual people using a Markov chain Monte Carlo tech-
nique. Elgammel and Davis [2] handle overlapping peo-
ple by segmenting foreground regions according to a colour
model that is initialized when the people are unoccluded.

3. Method

A major drawback in many object detection algorithms is
the fixed set of feature descriptors that they use. The prob-
lem with defining features before training the classifier is
that there could be some discriminative information that is
missed by those features. By learning the feature set, we at-
tempt to use information about the object classes in building
our features.

Viola et al. [17, 18], use AdaBoost for face and pedes-
trian classification, using Haar-like wavelet features. The
features they use are low-level, and AdaBoost selects a sub-
set of these features to form the final classifier. In work
closer to ours, Wu and Nevatia [20] use AdaBoost with a
set of hard coded mid-level features, called “edgelets”, as
its weak classifiers. These edgelets are a set of pre-defined
patterns of edges in different locations. Unlike the Haar-like
features, they can harvest more information, but since they
are fixed a priori they may not capture all the available in-
formation that is useful to discriminate between our object
classes.

In our approach, we automatically learn a set of infor-
mative mid-level features, rather than hand-coding them.
These mid-level features, called shapelet features, are con-
structed from low-level features. We build shapelet fea-
tures which best discriminate between pedestrians and non-
pedestrians. We use the AdaBoost algorithm as our core
computational routine, using it once to build the shapelet
features, and again to build a final classifier from these
shapelets. For brevity, we omit some of the details of Ad-
aBoost; our implementation follows the variant developed
by Viola and Jones [17].

The training phase of our algorithm consists of three
steps:

1. Low-level Features: The input to this step is raw train-
ing images. We extract the gradient responses of each
image in different directions, and compute local aver-
age of these responses around each pixel. These low-
level gradients will be used to build more sophisticated
mid-level features (shapelets).

2. Shapelet Features: For each of a number of small
sub-windows inside the detection window, we run Ad-
aboost to select a subset of its low-level features to
construct a mid-level shapelet feature. By only us-
ing the features inside each sub-window, we force Ad-

aBoost to extract as much information as possible at lo-
cal neighborhoods of the image. This process will pro-
vide us with a shapelet feature for each sub-window.
Each of these is intended to be more descriptive than
the low-level features and discriminative regarding our
object classes. Each shapelet feature consists of a com-
bination of gradients with different orientations and
strengths at different locations within the sub-window.

3. Final Classifier: The shapelet features only describe
local neighborhoods of the image and therefore their
individual classification power is still much below an
acceptable level. By merging these features together
we can combine the information from different parts
of the image. In order to archive this goal, we use Ad-
aBoost for the second time to train our final classifier,
using shapelet features as its input.

3.1. Low-level features

Many pedestrian detection approaches capture local in-
formation as their lowest level features. Approaches include
computing image gradients [1], computing wavelet coeffi-
cients [16], and applying simple rectangular filters [17] or
more sophisticated features such as edgelets [20]. In our
work, we use gradient responses as our lowest level fea-
tures. We use the absolute value of gradient responses, com-
puted in four different directions, as our low-level features.
The absolute value is used because the sign of the gradient
is uninformative due to varying clothing and background
colors. To reduce the influence of small spatial shifts in the
detection window, we locally average the gradient informa-
tion in each direction by convolving the gradient responses
with a box filter:

Sd(x) = |I(x) ∗ Gd| ∗ B (1)

where ∗ denotes convolution, I(x) is the intensity image,
Gd is the gradient kernel (e.g. [−1, 0, 1] or [−1, 0, 1]T) that
we use to get derivatives in direction d ∈ D, B is a 2-D av-
eraging box filter (e.g. a 5 × 5 matrix with all the elements
1
25) used for averaging, and Sd(x) is our final low-level fea-
ture, which captures the amount of gradient at every pixel
in direction d. D is the set of possible directions that we
are computing the gradients in. In our experiments we use
four directions; D = {0◦, 45◦, 90◦, 135◦}. Figure 2 shows
two pedestrian examples and their Sd(x) in two of the four
computed directions.

At this point, for every pixel x in the image, we have the
local average of gradient responses in different directions d.
These locally smoothed gradient responses are used as our
low level features.

The information captured about the classes by each of
the low-level features is very little. If used as a classifier,
each of these low-level features Sd(x), can only separate

Figure 2. Low-level features of two sample images in two of the
directions.

our two classes (pedestrian and background) slightly better
than random classification. To make our features more in-
formative, we will use AdaBoost to combine them together
to create more informative mid-level features, the shapelet
features.

3.2. Shapelet Features

We define a shapelet feature as a weighted combination
of low-level features. Each low-level feature consists of a
location, a direction and a strength. Each shapelet feature
covers a small sub-window of the detection window, and its
low-level features are chosen from that sub-window.

We will consider k sub-windows wi ∈ W , i = 1, . . . , k
inside our detection window. Selecting the set of sub-
windows W will be explained in detail in Section 4.2. We
will build a separate mid-level shapelet feature feature for
each sub-window wi. To do this, we collect all the low-level
features that are inside that sub-window {fp

d = Sd(p) : p ∈
wi, d ∈ D} and consider them as potential weak classifiers
of an AdaBoost run.

In each iteration t of the AdaBoost [17] training algo-
rithm, one of the features ft ∈ {fp

d} is chosen as the feature
of the weak classifier ht(x) to be added to the final classi-
fier. This weak classifier is of the form:

ht(x) =
{

1 if ptft(x) < ptθt

0 otherwise
(2)

for an image detection window x, where θt ∈ (−∞,∞)
is the classification threshold of the classifier and pt = ±1
is a parity for inequality sign.

After all T iterations of the algorithm, we get the final
classifier Hi(x) for sub-window wi. This classifier is of the
form:

Hi(x) =
{

1
∑T

t=1 αi
th

i
t(x) ≥ 0

0 otherwise
(3)

where αi
t is the selected weight for classifier hi

t(x), as
chosen by the AdaBoost algorithm. We train such a classi-
fier for every sub-window wi.

Each Hi(x) is a local classifier, containing some of the
low-level features inside the sub-window wi. If we take a
second look at the classifier form in equation 3, it can be

seen that the weighted sum of weak classifiers is a contin-
uous value. Let us call this sum si(x) =

∑T
t=1 αi

th
i
t(x).

A useful characteristic about these classifiers is that this
si(x) contains more information than only specifying the
class by its sign. The further away the value of si(x) from
the zero, the more certain we are about its estimated class.
Therefore this value can be used as a confidence measure
of the classification. This is similar to the confidence pre-
diction AdaBoost that has been developed by Schapire and
Singer [15].

We define our shapelet features as these {si(x) : i ∈
{1, 2, . . . , k}}. The index i corresponds to one of the sub-
windows wi ∈ W , and hi

t(x) and αi
t are the parameters

associated with the classifier Hi(x). Note that si(x) is a
shapelet feature that is trained specifically to distinguish
between the two classes, based on gradients from its sub-
window.

We train these shapelet features for a set of sub-windows
inside the detection window. We visualize the results of
the shapelet learning algorithm in Figure 3, which shows
the sum of all the low-level features selected inside all the
shapelet features over the entire the detection window. The
selected low-level features are separated in two groups ac-
cording to their classification parity pt. This parity shows
whether the selected feature is part of a positive (pedes-
trian) or negative (non-pedestrian) discriminating shapelet
feature.

(a) (b)
Figure 3. An illustration of low-level features selected and
weighted in shapelet features across the detection window. (a)
pedestrian class features, (b) non-pedestrian class features.

3.3. Final Classifier

Now that we have defined our shapelet features si(x),
we use AdaBoost to create a final classifier from them. The

details of creating weak classifiers gt(s) are the same as
previous step. Each gt(s) consists of one of the shapelet
features st(x), a threshold θt, and a parity pt.

The final classifier is in the form of:

C(s) =
{

1
∑T

t=1 αtgt(s) ≥ λ
0 otherwise

(4)

where s = (s1(x), s2(x), . . . , sk(x)) denotes all the
shapelet features for input image detection window x. λ
is the final classifier’s threshold; originally zero but can be
adjusted to get different detection and false positive rates.
Note that this time the weak classifiers gt(s) (equivalent of
ht(x) in the previous step) are applied in the new feature
domain s instead of the low level features x, and there-
fore the final classifier will be a combination of weighted
thresholded shapelet features. Again, the selection of the
shapelet feature, threshold, and parity for use in classifier
gt(s), along with its weight αt, are chosen using the variant
of AdaBoost used by Viola and Jones [17].

(a) (b)
Figure 4. Illustration of low-level features belonging to only the
shapelet features inside the final classifier. (a) pedestrian class fea-
tures, (b) non-pedestrian class features.

When the final classifier is trained, one can illustrate all
the low-level features that are inside the selected shapelet
features. Depending on the parity pt assigned to each of the
features (classifiers), these features are indicative of either
pedestrians or non-pedestrians. An illustration of both sets
of features are shown in Figure 4. Note how the feature sum
that belongs to the pedestrian class contains the gradients of
a person’s silhouette.

3.4. Discussion

One might argue that using all the low-level features to-
gether in one AdaBoost run, and training a classifier in one

step could result in equivalent performance. There are two
arguments against such an approach. First is that using all
of the low-level features in one AdaBoost run is very expen-
sive computationally, if not intractable. (We attempted such
an experiment, and were unable to complete it.)

The second, and the more important reason is the “lazi-
ness” of AdaBoost. AdaBoost always extracts the minimum
amount of information, from the training data, needed to
predict the classes. This way many semi-redundant features
that could be useful on the test set are discarded. In practice,
it is often observed that iterating AdaBoost further to select
more features, even after correctness on the training set has
reached a plateau, proves advantageous. For our shapelet
features, we extract more information at local areas of the
image, before focusing on the final classification. This over-
harvested information could contain noisy data, but overall,
the extra information can lead to improved generalization,
as our performance on our testing data indicates.

Our approach is related to the FeatureBoost algorithm of
O’Sullivan et. al [12], which deemphasizes (or removes)
individual features in successive AdaBoost-like iterations.
While the motives are related, our work is different in the
execution. We explicitly learn features in sub-windows of
the detection window, and then combine them in a subse-
quent classification stage.

Also of note is the work by Huang et al. [6], who build a
cascade detector similar to Viola and Jones [17], but use the
output of the single detector trained for one layer of the cas-
cade as an additional input to the next, in conjunction with
other low-level features. In comparison, our approach in-
stead builds multiple detectors (which are our shapelet fea-
tures) from different areas of the image, and solely relies on
their outputs for training the final classifier.

4. Experimental Results

We evaluate our algorithm by experimenting on two dif-
ferent datasets. One is the MIT pedestrian database [13],
a largely used database for evaluation of pedestrian detec-
tion systems. Because of the simplicity of this dataset, we
will perform most of our experiments on a more challeng-
ing dataset, the INRIA dataset [1]. In this dataset, pedes-
trians are mostly in standing position, but they cover more
diverse body poses and a much varying background in com-
parison to the MIT set. Pedestrian image size in both sets is
64 × 128.

INRIA dataset consists of 1239 pedestrian images (2478
with their left-right reflections) and 1218 person-free im-
ages for training. In the test set there are 566 pedestrian
examples (566 × 2 = 1132) and 453 person-free images.
MIT pedestrian database contains 923 pedestrian examples,
together with their reflections (1846 images). We use 1020
of them for training and 826 for testing. For negative train-
ing and test sets, we use the negative sets of the INRIA

dataset. We randomly sample 12180 negative samples from
the training negative images to train both the shapelets and
the classifier. Then we run the trained classifier on the
whole negative training set and re-collect some harder sam-
ples that are classified as pedestrian. We re-train both the
shapelet features and the final classifier using the initial neg-
ative samples and the selected harder examples as the neg-
ative training set. This bootstrapping process has a positive
effect on the performance results and is done on all of our
tests mentioned throughout this section.

The running time of our algorithm is reasonably effi-
cient. Our unoptimized implementation in Matlab, exhaus-
tively searches a 320× 240 scale-space image (4000 detec-
tion windows) in less than 10 seconds.

For the quantification of the results we plot miss rate ver-
sus False Positive Per Window tested (FPPW) curves on a
log-log scale.

4.1. Normalization

Because of the color, illumination, and background dif-
ferences from image to image, gradient responses can vary
drastically. Feature normalization is an effective way to
overcome these sorts of problems.

Instead of normalizing the image intensity or all the gra-
dients at the beginning, we apply our normalization at the
shapelet level. This way we can handle local illumination
changes much better. We use L2–norm normalization. We
normalize the feature vector of every shapelet feature, by
normalizing all the low-level features that fall into the sub-
window associated with the shapelet feature:

fd =
fd√√√√(

k∑
i=1

fd(i)2) + ε

(5)

Where fd is the vector of low-level features inside one
shapelet, k is the number of those low-level features, and
ε is a small number (1 in our experiments). Note that we
do not normalize each of the four gradient directions sep-
arately. By normalizing the features of different gradient
directions together, we prevent introducing noise in the di-
rections that less gradient exists and instead have more em-
phasis on the dominant direction.

Normalizing every shapelet separately can make the
computations very slow. We use the Integral Image method
to overcome this problem. The Integral Image is a cumula-
tive sum of an image in 2D. We compute the Integral Image
of the square of low-level features summed up in the 4 di-
rections, and use that image to find the normalization factor
of each shapelet sub-window.

4.2. Shapelet Parameters

The most important parameter in shapelet features is
their effective local area defined by their sub-window wi.
For simplicity we will call this parameter as shapelet’s size.
We investigate the influence of shapelet size on the detector
performance.

Our shapelet features are learned using the AdaBoost al-
gorithm. There are different ways to limit the number of
AdaBoost iterations, such as defining a fixed number of it-
erations or setting a performance threshold as the ending
condition. We fixed the number of weak classifiers rela-
tive to the size of each shapelet feature that the AdaBoost is
training. We choose mi =

√
ni weak classifiers, where ni

is the number of features inside the sub-window wi.
We define three sets of shapelet features with different

sizes:

• Shapelet-S: Small size shapelet feature set with sub-
window size of 5×5 pixels and 10(=

√
5 × 5 × 4) ex-

tracted weak classifiers (low-level features) from each
sub-window.

• Shapelet-M: Medium size shapelet feature set with
sub-window size of 10 × 10 pixels and 20 extracted
weak classifiers from each window.

• Shapelet-L: Large size shapelet feature set with a sub-
window size of 15 × 15 pixels and 30 extracted weak
classifiers.

We also create four new sets (overall seven sets with the
three originals) as different combinations of these three sets.
For example, Shapelet-SM set is the union of Shapelet-S and
Shapelet-M feature sets.

For each shapelet set, we scan the detection window (of
size 64 × 128) with that shapelet’s sub-window size (e.g.
5 × 5), with strides of 4 pixels between sub-windows. This
dense scan, will provide us many local sub-windows inside
the detection window. Each sub-window is considered as
the effective region of one of the shapelets in our shapelet
feature set. That shapelet is learned by using only the low-
level features inside its sub-window.

We trained and tested our detector for all the seven
shapelet sets described. Performance results of these
tests are shown in figure 5. Note that the fine-scale
shapelets (Shapelet-S) contain essential information, the
best detectors all use these shapelet features. How-
ever, adding medium and large scale shapelets (Shapelet-
{SM,SL,SML}) significantly improves performance.

4.3. Evaluation and Comparison

To evaluate our detector on the INRIA dataset, we com-
pare our results with HOG-SVM detector of Dalal and
Triggs [1], the current state of the art pedestrian detector.

10
−6

10
−5

10
−4

10
−3

10
−2

0.01

0.02

0.05

0.1

0.2

0.5

false positives per window (FPPW)

m
is

s
ra

te

Shapelet−S
Shapelet−M
Shapelet−L
Shapelet−SM
Shapelet−SL
Shapelet−ML
Shapelet−SML

Figure 5. Performance of our detector using different shapelet fea-
tures sets.

We use the performance results of their detector on the IN-
RIA set that they have provided with the binaries of their
detector. The performance of our detector on the INRIA
dataset is shown in Figure 6. Our detector outperforms the
HOG detector across all FPPW values, for example obtain-
ing an error rate 14 percentage points lower at 10−6 FPPW.

Figure 7 gives a qualitative assessment of the mis-
takes made by our detector, showing the worst false neg-
ative (most non-pedestrian-like pedestrians) and the worst
false positive (most pedestrian-like non-pedestrian) exam-
ples from our detectors point of view. Note that most of
false negatives are due to the subject’s unusual pose (e.g.
riding a bicycle), semi occlusions, or the extremely light or
dark environments. False positives usually contain vertical
gradients mimicking the torso and leg boundaries.

MIT dataset is a widely used dataset for pedestrian detec-
tion algorithms but unfortunately it is not a well-defined set.
It does not contain a negative set and the positive examples
are not separated into training and testing sets. Therefore,
it is not possible to directly compare our method with the
previous ones that have used this dataset [10, 20, 1]. In Fig-
ure 6(b) we show results of applying our algorithm to our
own version of the MIT dataset.

5. Conclusion

In this paper we presented a novel algorithm for pedes-
trian detection, using learned shapelet features. The power
of our detector lies in the algorithm for learning discrimina-
tive mid–level shapelet features. The approach of learning
discriminative shapelet features over separate regions of the
image is able to capture informative cues from all over the

10
−6

10
−5

10
−4

10
−3

10
−2

0.01

0.02

0.05

0.1

0.2

0.5

false positives per window (FPPW)

m
is

s
ra

te

Shapelet−SML
HOG + SVM

10
−6

10
−5

10
−4

10
−3

10
−2

0.01

0.02

0.05

0.1

0.2

false positives per window (FPPW)

m
is

s
ra

te

Shapelet−SML

(a) (b)
Figure 6. (a) Performance of our detector on the INRIA dataset compared to the HOG detector of Dalal and Triggs [1]. (b) Performance of
our detector on the MIT set.

image. This information is then integrated into a final clas-
sifier to detect pedestrians.

We showed quantitatively that these shapelet features can
capture more information than fixed feature sets by improv-
ing the classification results. In particular, we obtained a
lower error rate than the previous state of the art detector of
Dalal and Triggs [1] on the INRIA dataset.

References

[1] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In Proc. IEEE Comput. Soc. Conf. Comput.
Vision and Pattern Recogn., 2005.

[2] A. Elgammal and L. Davis. Probabilistic framework for seg-
menting people under occlusion. In Proc. 8th Int. Conf. Com-
puter Vision, 2001.

[3] P. Felzenszwalb. Learning Models for Object Recognition.
Proc. Conf. Computer Vision and Pattern Recognition, pages
56–62, 2001.

[4] M. Fink and P. Perona. Mutual boosting for contextual infer-
ence. Neural Information Processing Systems, 2004.

[5] D. Gavrila and V. Philomin. Real-time object detection for
smart vehicles. In Proc. 7th ICCV, pages 87–93, 1999.

[6] C. Huang, H. Ai, B. Wu, and S. Lao. Boosting nested cascade
detector for multi-view face detection. In Proceedings of the
17th International Conference on Pattern Recognition, 2004.

[7] P. Kovesi. Shapelets correlated with surface normals produce
surfaces. In Proc. 10th Int. Conf. Computer Vision, 2005.

[8] B. Leibe, E. Seemann, and B. Schiele. Pedestrian detection
in crowded scenes. In Proc. IEEE Comput. Soc. Conf. Com-
put. Vision and Pattern Recogn., 2005.

[9] K. Mikolajczyk, C. Schmid, and A. Zisserman. Human de-
tection based on a probabilistic assembly of robust part de-
tectors. Proc. ECCV, 1:69–81, 2004.

[10] A. Mohan, C. Papageorgiou, and T. Poggio. Example-based
object detection in images by components. IEEE Trans.
PAMI, 23(4):349–361, 2001.

[11] S. Munder and D. Gavrila. An experimental study on pedes-
trian classification. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 28(11):1863–1868, 2006.

[12] J. O’Sullivan, J. Langford, R. Caruana, and A. Blum.
FeatureBoost: A Meta-Learning Algorithm that Improves
Model Robustness. Proceedings of the Seventeenth Inter-
national Conference on Machine Learning, pages 703–710,
2000.

[13] C. Papageorgiou and T. Poggio. A Trainable System for Ob-
ject Detection. International Journal of Computer Vision,
38(1):15–33, 2000.

[14] A. Refregier. Shapelets: I. a method for image analysis. Mon.
Not. Roy. Astron. Soc., 338(35), 2003.

[15] R. Schapire and Y. Singer. Improved boosting algorithms us-
ing confidence-rated predictions. In COLT’ 98: Proceedings
of the eleventh annual conference on Computational learn-
ing theory, pages 80–91. ACM Press, 1998.

[16] H. Schneiderman and T. Kanade. A statistical method for 3d
object detection applied to faces and cars. In Proc. IEEE
Comput. Soc. Conf. Comput. Vision and Pattern Recogn.,
volume 1, pages 746–751, 2000.

[17] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. In Proc. IEEE Comput. Soc.
Conf. Comput. Vision and Pattern Recogn., 2001.

[18] P. Viola, M. Jones, and D. Snow. Detecting pedestrians using
patterns of motion and appearance. In Proc. 9th Int. Conf.
Computer Vision, pages 734–741, 2003.

[19] C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland.
Pfinder: Real-time tracking of the human body. IEEE Trans.
PAMI, 19(7):780–785, July 1997.

Figure 7. Examples of errors made by our detector. First two rows show false negative examples and the last two rows contain false positive
examples.

[20] B. Wu and R. Nevatia. Detection of multiple, partially oc-
cluded humans in a single image by bayesian combination
of edgelet part detectors. In Proc. 10th Int. Conf. Computer
Vision, 2005.

[21] T. Zhao and R. Nevatia. Bayesian human segmentation in
crowded situations. In Proc. IEEE Comput. Soc. Conf. Com-
put. Vision and Pattern Recogn., volume 2, pages 459–466,
2003.

