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Abstract

We introduce an epitomic representation for modeling
human activities in video sequences. A video sequence is
divided into segments within which the dynamics of objects
is assumed to be linear and modeled using linear dynamical
systems. The tuple consisting of the estimated system ma-
trix, statistics of the input signal and the initial state value
is said to form an epitome. The system matrices are decom-
posed using the Iwasawa matrix decomposition to isolate
the effect of rotation, scaling and projective action on the
state vector. We demonstrate the usefulness of the proposed
representation and decomposition for activity recognition
using the TSA airport surveillance dataset and the UCF in-
door human action dataset.

1. Introduction

Recent years have seen burgeoning literature in model-
ing activities ranging from simple, periodic activities such
as walking and running ([1]) to more complex ones that
involve an underlying semantic structure ([12], [23]). We
are interested in modeling complex human activities per-
formed both in indoor and outdoor scenarios such as office
and home environment, surveillance and monitoring in air-
port and urban settings. A brief review of related work is
presented next without attempting to provide an exhaustive
survey.

Domain knowledge about activities can be readily incor-
porated using manually specified ontologies. The Video
Event Representation Language (VERL) and Video Event
Markup Language (VEML) were developed as a formal-
ism to capture such ontologies [8]. Manual annotation and
exhaustive construction of ontologies, however, can be te-
dious.

Several statistical approaches using hidden Markov
models (HMMs) and dynamic Bayesian networks (DBNs)
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([12], [16]) have been proposed. HMMs and DBNs have
proven successful models for activities in which the graphi-
cal structure is known. If the structure is not known apriori
or if the appearance varies drastically, it poses a formidable
challenge to HMMs and DBNs. Hidden Markov model
(HMMs) were used to model primitives of activities in [12].
Temporal sequencing between primitives was captured us-
ing stochastic context free grammar.

Features of motion in activities can be selected depend-
ing on activities of interest. Actions were modeled as a se-
quence of dynamic instants that are points of maximum cur-
vature along the motion trajectory [20]. Similarly, in [22],
changes in velocity curve profiles of actions were used to
segment actions in videos streams. Reliance on features
such as curvature can limit the domain of applicability. For
example, in an airport tarmac surveillance scenario, trajec-
tories formed by passengers walking from gate to aircraft
can follow a straight-line path. Another limitation is that
trajectories may contain only a few points of high curvature
making it possible to encode only a few activities.

Neural networks were used to learn the distribution of
motion trajectories, followed by vector quantization to clus-
ter trajectories into a known number of classes [14]. This
approach was developed further in [11] for robust track-
ing and anomaly detection using a fast fuzzy k-means algo-
rithm. Trajectories were resampled to create data vectors of
equal length for clustering. Subsequently, the time taken to
complete an activity was modeled at the next level. In [21]
factor graphs was employed to classifying surveillance-type
data. These techniques accumulate motion trajectories in
the scene to produce an intuitively appealing map of trajec-
tories. In a highway surveillance scenario, for instance, it
reveals lanes of traffic observed in the scene.

A formal approach for modeling trajectories as a shape
(in Kendall’s shape space) formed by moving landmarks
was presented in [23]. Shape is defined as the geometri-
cal information that remains after filtering out the effects of
translation, rotation and scale. Procrustes distance between
shapes was used to check for anomalous trajectories and
dynamics were modeled in the shape’s tangent space using
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a first order Gauss-Markov model. This can model small
changes about the mean activity shape. It may be necessary
to preserve distinctions arising from factors such as rotation
to distinguish between activities. For example, shape repre-
sentation fails to distinguish between trajectories of persons
embarking an aircraft from those of persons disembarking
the aircraft. The proposed epitomic representation also at-
tempts to extract geometrical aspects such as rotation, scal-
ing and translation. Unlike [23], we retain this information
when constructing a mid-level representation.

Factorization approach was used in [6] to model activi-
ties based on rank constraints. Its effectiveness was demon-
strated for activities such as passengers embarking an air-
craft. As the authors note, however, it cannot be used to
recognize ground crew movement because of drastic varia-
tions across samples.

Image epitomes were introduced in [15], which modeled
blocks of pixels using Gaussian distribution. This idea was
extended to videos in [5], where cubes of pixels (i.e., cu-
bic patches in xyt volume) were modeled using Gaussian
distribution. The epitomic representation is attractive for its
efficiency, extensibility and modularity.

In [24], activities were modeled as a sequence of linear
dynamical systems. Switching instants between dynamical
systems are identified when approximation errors from the
trained database exceeds a threshold. Our method also mod-
els activities using linear dynamical systems. But the focus
of application is different as outlined next.

We propose an epitomic model for activities, using kine-
matics of objects within short-time intervals. Given a video
sequence, moving objects are detected and their motion tra-
jectories are automatically extracted. Assuming that the dy-
namics is linear within the segment, it is modeled using lin-
ear systems xk+1 = Fxk + uk. Here, xk is the state vector
denoting position and velocity, F is a square matrix and
uk is the input signal. An epitome is defined as the tuple
(x0; F ; µ, Σ), where x0 is the initial state, F is the matrix
and µ, Σ represent mean and covariance of the input signal
uk, t ∈ [k0, k0 + T ], for a segment of length T .

The system matrices are decomposed using the Iwasawa
matrix decomposition [13] that yields three factors repre-
senting the effect of rotation, scaling and projective action
on the state vector. The efficacy of the decomposition for
key frame detection is demonstrated using the projective
component. Also, it is used to geodesic distances between
activities, which can be physically interpreted.

The rest of the paper is organized as follows. Low-
level video processing is discussed in section 2. Section
3 motivates an epitomic representation for activities. Star
diagrams are presented in section 4 as a way to visual-
ize epitomes. In section 5, the Iwasawa decomposition is
described. Section 6 describes the notion of distance for
comparing epitomes. Section 7 illustrates the usefulness of
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Figure 1. UCF Dataset: (a) Sample image from the UCF human
action dataset. White line shows the hand trajectory; (b) Motion
trajectory for pick up object from desk.

the proposed method for activity recognition and key frame
detection using the Transportation Security Administration
(TSA) airport tarmac surveillance dataset and the Univer-
sity of Central Florida (UCF) indoor dataset of human ac-
tions. Section 8 concludes the paper.

2. Low level video processing

In our experiments we have used existing algorithms
for object detection and tracking with slight modifications.
They are briefly summarized here. The background in each
RGB color channel is modeled using single independent
Gaussian distributions at every pixel [4]. The background
model is reinitialized at regular intervals to handle changes
in lighting. Motion trajectories are obtained using the KLT
algorithm [17] whose feature points are initialized at de-
tected locations of motion blobs by the background subtrac-
tion component. The trajectories are smoothed using a me-
dian filter. Low level processing in the UCF dataset follows
a different procedure (section 7).

3. Epitome model for Activities

A video sequence is divided into segments of length T .
Moving objects are detected and their short-time motion tra-
jectories are obtained as described in the previous section.
The kinematics of motion within segments is assumed to
be linear so that linear systems can be used in modeling (1).
The estimated tuples (x0; F ; (µ, Σ)) are called activity epit-
omes, where x0 represents the initial state, F ∈ GL(n, R)
(GL(n, R) is a Lie group of all invertible matrices with real
entries) is an invertible n×n system matrix and (µ, Σ) rep-
resents the statistics of input signal uk, k ∈ [0, T ] that is as-
sumed to be i.i.d. Gaussian distribution (Gaussian assump-
tion is not essential and other distributions can be used).

Assuming full state output, kinematics of motion in each
video segment can be written as:

xk+1 = Fxk + uk, (1)

yk = xk, (2)



(a) (b) (c) (d)
Figure 2. UCF Dataset: (a) Motion trajectory for pick up object
from desk and (b) its star diagram; (c)Motion trajectory for pick up
an umbrella from cabinet and (d) its star diagram.
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Figure 3. UCF Dataset: Top row shows trajectories of the hand
opening the cabinet door. Bottom row shows the corresponding
star diagrams.

where xk ∈ R
4 is the state vector with initial value

x0, F is the system matrix of size 4 × 4 and uk is the
input signal. The state vector represents the 2-D position
and velocity. The model in (1) is a state-space represen-
tation of the familiar Newton’s laws in mechanics given by
mq̈(t)+k1q̇(t)+k2q(t) = u(t), which describes the motion
of bodies subjected to conservative forces.

We use the least squares method to estimate th elements
of F and the statistics of u (mean, covariance). The n ×
n matrix is written as a vector in R

n2
and the xk values

are suitably re-arranged so that a desired structure can be
imposed on F . For example, it is often useful to assume a
block diagonal structure of F to represent a second-order
dynamical model in which the x and y components of state
evolution are decoupled.

The signal uk can have a useful role in modeling activ-
ities, besides providing a way to deal with uncertainty. It
can be used to synthesize parts of the activity for handling
occlusions. Also it provides a way of visualizing the data.

4. Star Diagrams

Star diagrams provide a visual summary of activities
and demonstrate similarities between subtrajectories though
overall trajectories may have significant differences because
of semantic ambiguity and context dependency. Seman-
tic ambiguity refers to incomplete textual description of
an activity whose motion trajectories can vary significantly
across samples [12]. Computation of star diagrams using
the estimated epitomes is described next. Short segments of
trajectories are synthesized using the estimated initial state
and input signal parameters (mean and variance). The mean

(a) (b)
Figure 4. TSA airport surveillance dataset. (a) Motion trajectories
of passengers embarking; (b) its star diagram

of each segment is subtracted out. Subsequent segments are
initialized using the endpoints of the previous segments. A
temporally overlaid plot of the synthesized trajectory seg-
ments are called star diagrams.

Two aspects of star diagrams merit emphasis. Since
the mean of each segment is subtracted, spatial context is
largely lost. This can be recovered using x0 in the epitome.
The ability to enunciate similarities at subtrajectory level,
which accompanies the loss of context, is an asset for activ-
ity recognition and key frame detection. Second, epitomes
can be reliably estimated using fewer number trajectories
compared to a model that is based on the overall trajectory.
This is useful when viewing direction changes, which in
turn causes an apparent change in motion trajectories. The
number of samples per viewing direction may be limited.

Figs. 1 shows a sample image from the UCF human ac-
tion dataset along with the extracted trajectory of the hand
performing a picking up action. Figs. 2(a) and (c) show two
instances of picking up action to illustrate large changes in
appearance. In fig. 2(a), an object lying in the desk is being
picked up whereas in fig. 2(c), an object lying in the cabinet
shelf is picked up. The star diagrams in the two cases (fig.
2(b) and (d)) differ by a rotation angle. This is captured us-
ing the Iwasawa matrix decomposition. Fig. 3 shows trajec-
tories for opening the cabinet door and star diagrams syn-
thesized using each of the trajectories. Though the appear-
ance of trajectories in the three cases varies, similarities are
preserved in the star diagram. In these illustrations, gradual
rotations of the state vector and abrupt changes characterize
the activities. Such changes motivate the decomposition of
motion as discussed in the next section.

Fig. 4 shows star diagrams for activities on an airport
tarmac. In fig. 4(a), activities include passengers embarking
an airplane, movement of ground crew and a truck. The star
diagram (fig. 4(b)) shows a compact representation using
epitomes that were learnt using trajectories in fig. 4(a).

5. Iwasawa decomposition

Star diagrams provide a visual representation of epito-
mes. Motivated by the structure inherent in them, we pro-
pose a decomposition of epitomes into three components



using the Iwasawa matrix decomposition. The three compo-
nents are rotation, scaling and translation of the state vector.

Definition 1 Let F ∈ GL(n, R). Then there exist unique
matrices K, A, N , such that F = KAN , where (i) K is an
orthogonal matrix, (ii) A is a diagonal matrix with positive
diagonal entries, and (iii) N is a unit upper triangular ma-
trix, i.e., all the diagonal elements are unity. This is called
the Iwasawa matrix decomposition [13].

It may be worth noting that the Iwasawa decomposition ap-
plies globally to the entire group manifold [10]. If F ∈
SL(n, R) (i.e, det F = +1), the matrices take the follow-
ing form for n = 2:

K =
(

cos θ sin θ
− sin θ cos θ

)
, A =

( √
a1 0
0 1√

a1

)

and N =
(

1 β
0 1

)
, (3)

where β ∈ R, a1 ∈ R
+ and θ ∈ R/πZ . Each of the

three components are a one-parameter family that decouple
the effect of transformation F on the state of the moving
object. This is used to define distances between F ’s in the
next section.

5.1. Special Case: n = 2

Consider F ∈ SL(2, R) with F =
(

f11 f12

f21 f22

)
,

where fij ∈ R, i, j ∈ {1, 2}. By hypothesis, f11f22 −
f12f21 = 1. From (3), the components of the decomposi-
tion can be calculated as follows:

a1 = f2
11 + f2

21

cos θ =
f11√

f2
11 + f2

21

sin θ =
−f21√

f2
11 + f2

21

β =
1

f11

(
f21 + f12(f2

11 + f2
21)

f2
11 + f2

21

)

=
1

f11

(
f21(f11f22 − f12f21) + f12(f2

11 + f2
21)

f2
11 + f2

21

)

=
f11f12 + f21f22

f2
11 + f2

21

(4)

5.2. General Case

Let F ∈ GL(n, R). Form

M = FT F, (5)

Table 1. Computing the Iwasawa matrix decomposition of an in-
vertible matrix F

Let M = FT F
Compute the Cholesky decomposition M = RT R
Form the diagonal matrix A = diag(R)
Compute the unit upper triangular matrix N = A−1R
Compute K = FR−1

where M is symmetric, positive definite. (5) becomes

M = (KAN)T (KAN) (6)

= NT AT KT KAN (7)

= NT AT AN, (8)

using F = KAN and KT K = I . Let

R
def
= AN (9)

Clearly, R is an upper triangular matrix. (8) becomes

M = RT R (10)

The factorization in (10) is computed using the Cholesky
decomposition.

From definition 1, we know that N is a unit upper trian-
gular matrix. The diagonal matrix A is formed by extracting
the diagonal elements of R so that

N = A−1R. (11)

Since F = KAN (definition 1),

K = FN−1A−1 = FR−1. (12)

The steps are summarized in table 1.

5.3. Geometric interpretation and SVD

The Iwasawa decomposition yields F = KAN as de-
scribed in definition 1. The singular value decomposition
(SVD) of F also yields three factors with F = UΣV T ,
where U and V are orthonormal matrices, and Σ is a diag-
onal matrix of singular values. In other words, SVD repre-
sents two rotations and scaling. It may be interesting to see
the connection between the two decompositions.

SVD provides a co-ordinate basis whereas Iwasawa de-
composition produces three factors which belong to sub-
groups generated by three linearly independent traceless
matrices. The three factors belong to a maximal com-
pact subgroup (K), a maximal Abelian subgroup (A) and
a maximal nilpotent subgroup (N ). The K component of
F = KAN decomposition captures rotation due to F . Both
the diagonal matrices Σ and A in the two decompositions
contain positive real entries and reflect scaling of the state
vector. The N component in KAN decomposition, which
is in reduced row-echelon form captures a projective action
of F . The perceptual significance of N is described next.
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Figure 5. Illustrating the effectiveness of the N component of the
Iwasawa decomposition using a sample trajectory from the UCF
dataset.

5.4. Detecting key frames using the N component

From (3), we know that the N component has a unit up-
per triangular structure. In particular, for F ∈ GL(2, R),
the N component has one free element β ∈ R. The sign
changes of β reflects significant changes in direction of mo-
tion. The following example is used to show the usefulness
of sign(β).

Let xk = (x(x)
k , x

(x)
k−1, x

(y)
k−1, x

(y)
k ) represent the state,

where (x(x)
k , x

(y)
k ) denotes the position of the object at time

k. Figure 5 shows a trajectory from the UCF dataset for
picking up an object. The discrete time second-order de-
coupled system can be written as

xk+1 =




f
(x)
1 f

(x)
2 0 0

0 1 0 0
0 0 0 1
0 0 f

(y)
1 f

(y)
2


xk +




u
(x)
k

0
0

u
(y)
k


(13)

For simplicity, consider the x component of motion, i.e.,
the top left 2 × 2 block of the system matrix in (13). The
variation of the N component is discussed as the object
traces the path PQRS in three consecutive epitomes. The
x and y co-ordinates of the points are denoted using super-
scripts, e.g., P = (P (x), P (y)). The effect of N component
is given by

x
(x)
k+1 =

(
1 β(x)

0 1

)
x

(x)
k +

(
u

(x)
k

0

)
, (14)

where the superscript on the truncated state vector denotes
motion of the x component. Using (14), the variation in
β(x) as the object moves across the points is as follows

Case 1 P to Q: Since P (x) < Q(x), β(x) > 0.

Case 2 Q to R: Since P (x) = Q(x), β(x) = 0.

Case 3 R to S: Since P (x) > Q(x), β(x) < 0.

So the zero crossings of β(x) (and β(y)) denote perceptually
significant changes. The frames corresponding to the zero
crossings are said to be key frames.

6. Distance between Epitomes

It is necessary to define a notion of distance between
activity epitomes for many applications including activity
recognition and clustering. Euclidean distance between
F1 ∈ R

n×n and F2 ∈ R
n×n may be defined, in which

F1 and F2 are thought of as vectors in R
n2

. Alternatively,
Frobenius distance between F1, F2 can be used, which is
defined as follows:

df (F1, F2) = ||F1 − F2||2F
= tr((F1 − F2)(F1 − F2)T ). (15)

This does not take the geometry of the space into account
and it ignores the group structure of matrices. De Cock and
De Moor described various ways of computing subspace an-
gles between linear systems [7]. It is defined as the principle
angle between the column spaces generated by the observ-
ability matrices of two models. Subspace angles have been
used to measure similarity between dynamical models in [3]
for recognizing humans based on gait.

Distance measures based on subspace angles (or princi-
pal angles) are widely accepted for comparing matrices that
represent dynamics. A commonly used distance (e.g., in
[3]) is Martin distance d2

M defined as [18]:

d2
M = − log

n∏
i=1

cos2(θi), (16)

where θi, i = 1, . . . , n are subspace angles. Subspace an-
gles capture differences that are caused by rotation of sub-
spaces while ignoring changes in other factors such as scal-
ing and translation. Finsler distance [25] uses the largest
principal angle between the subspaces unlike the Martin
distance that uses all n values in (16). This is best suited
when the signal is scalar-valued and generated by a strictly
second-order stationary process. In our case, the number
of outputs of the system is 4 (2D position and velocity).
When the number of inputs and outputs associated with the
system is more than one, the distance is not guaranteed to
be non-negative. The natural metric in Finsler space is the
Finsler-Minkowski metric.

Finsler geometry [2] is concerned with integrals of the
form ∫ b

a

f(q1, . . . , qn;
dq1

dt
, . . . ,

dqn

dt
)dt.

The function f(q1, . . . , qn; dq1

dt , . . . , dqn

dt ) is positive unless

all dqi

dt are zero. Here q stands for position and dq
dt for ve-

locity so that F denotes speed of the moving object. The
integral measures the total distance traveled.

An infinitesimal Riemannian metric ∆ (such as the
Finsler-Minkowski metric) is the analog of the familiar dx
quantity in Euclidean spaces. Just as the distance between



points in Euclidean space is obtained by integrating with re-
spect to dx, the geodesic distance on a smooth manifold is
obtained by integrating with respect to ∆.

Let F ∈ G. The geodesic distance D : G × G → R

between matrices F0 and F1 can by calculated using the
norm induced by the inner product ∆ as follows:

D(F0, F1) = min{I∆(F (·)) : F ∈ C1([0, 1], G),
F (0) = F0, F (1) = F1}, (17)

with I∆(F (·)) =
∫ 1

0
∆(F, Ḟ )dt. The Finsler-Minskowsi

metric has the additional property that ∆(F, Ḟ ) =
∆(F−1Ḟ ) [9].

More precisely, the minimum in (17) should be replaced
by an infimum and existence of geodesics has to be estab-
lished. It is known that geodesics exist as long as the mani-
fold is complete ([2], [19]).

Evaluating the metric ∆ and the integral in (17) is dif-
ficult except in certain special cases. In particular, the dis-
tances can be computed in the case of components obtained
using the Iwasawa matrix decomposition as illustrated using
examples below.

We illustrate the computation of geodesic distances for
special cases (that are relevant to the KAN decomposition).

A =
(

a1 0
0 a2

)
. A simple calculation shows that the

norm ∆(A) is

∆(A−1Ȧ) =
|ȧ1|
a1

+
|ȧ2|
a2

(18)

The shortest path distance from the identity matrix I to A is
D(I, A) = | log a1| + | log a2|.

Consider N ∈ Aff(1) (also known as the “ax + b”

group), i.e., N =
(

ρ β
0 1

)
. The Finsler-Minkowski met-

ric becomes ∆(N−1Ṅ) = |ρ̇|+|β̇|
ρ . For a unit upper tri-

angular matrix, α = 1 so that the shortest path distance
minimizes

∫ 1

0 β̇dβ.

For K =
(

cos θ sin θ
− sin θ cos θ

)
, the Martin distance in

(16) is used.

7. Experiments

We demonstrate the usefulness of epitomic representa-
tion and the Iwasawa matrix decomposition using indoor
and outdoor datasets.

7.1. UCF human actions dataset

The UCF dataset consists of 60 trajectories of common
activities. We divide these into 7 classes: open door, pick
up, put down, close door,erase board, pour water into cup

Table 2. Results: Recognition rate (%) using UCF dataset.
Expt. set UCF Subspace Our method

results [20] angles
Open door 50 56 72

Pick up - 50 61
Put down - 55 72

Close door 53 60 73
Erase board 75 50 75
Pour water 33 67 100

Pick up
and put down 56 44 90

and pick up object and put down elsewhere. The hand tra-
jectories are obtained in a two step process in which the
hand is first detected using a skin detector and then tracked
using the mean-shift procedure. The resulting trajectories
are smoothed out using anisotropic diffusion so that corners
and sharp changes are retained. A detailed description of
the steps is available in [20]. Figures 2(a) and (b) shows
sample images from the dataset along with the trajectories.
Typically, most of the activities in the dataset last for a few
seconds i.e., of the order of 100 frames. We follow Rao et
al.’s ([20]) division of the dataset into gallery and probe sets
to ensure that the results remain comparable. The leave-one
out method is used in the reporting the recognition scores.

7.1.1 Experiment 1: (Activity Recognition)

An extracted motion trajectory from the gallery set is di-
vided into segments of 20 frames with overlap. The state
vector is formed using the instantaneous position along the
trajectory. An epitome (x0; F ; µu, Σu) is estimated for ev-
ery segment as described in section 2. All 16 elements of
F ∈ GL(4, R) are estimated using least squares (section
2). The Iwasawa decomposition is used to find the K, A, N
components of the estimated F matrices.

The distance from a test video sequence to those in the
gallery is computed as follows. Epitomes of the test video
sequence as before and its K, A, N components are com-
puted. The distance between components are computed
separately using the metrics as described in section 6. The
recognition rates are summarized in Table 2.

Comparison of results: Recognition rates obtained us-
ing the proposed method are compared with those reported
in [20] in which points of maximum curvature are used to
compare activities. Also, we computed recognition scores
using subspace angles between matrices [7], [3].

7.1.2 Experitment 2: (Key frame detection)

Activities such as picking up objects and opening a cabinet
door have distinctive points along the trajectory that contain



(a) (b)

(c) (d)
Figure 6. Motion trajectories for two blocks of TSA data.

(a) (b) (c) (d)
Figure 7. UCF dataset: Dots represent key frames detected using
zero crossings of β in the N component. Activities are (a)-(c) Pick
up an object, (b) Open door.

a sharp change in motion. These points denote perceptually
siginificant time instants when the object is picked up or
when the door is opened. The N component is used to de-
tect these time instants (section 5.4). Sample results of key
frame detection are given in figure 7.

7.2. TSA Airport Tarmac Surveillance Dataset

The TSA dataset consists (figures 6 and 8) of airport
surveillance videos captured by a stationary camera that op-
erates at approximately 30 frames per second. The image
size is 320×240. It contains approximately 230, 000 frames
or 120 minutes of video data. Activities include movement
of ground crew personnel, vehicles, planes and passengers
embarking and disembarking. Motion trajectories are ex-
tracted as described in section 2. Figure 6 shows sample
motion trajectories in ten thousand frames. For each of the
blocks in figures 6 and 8, dominant activities for each block
are summarized below:

• Fig. 6(a): Luggage cart activity activity near aircraft.
Ground crew movement near aircraft and to the gate.

• Fig. 6(b): Luggage cart and ground crew activity near
the aircraft. The luggage cart exits. A truck crosses the
scene.

• Fig. 8(a): Ground crew walk across scene and back to
the gate. A truck crosses the scene.

• Fig. 8(b): Ground crew walk from gate to the aircraft
and back. Another person walks across the scene and

(a) (b)

(c) (d)
Figure 8. Motion trajectories for two blocks of TSA data.

Table 3. Recognizing passenger and ground crew trajectories in
the TSA aiport surveillance dataset

Detection False
rate (%) alarm (%)

Passengers 100 23
Ground crew 64 0

back to gate.

7.2.1 Experiment 3: (Activity Recognition)

Each motion trajectory is modeled separately so that at any
given time there are as many epitomes as the number of
objects in the scene. We test the proposed method for ac-
tivity recognition. In figures 6 and 8, (b) shows the clos-
est match for blocks of activity in (a). There are fifteen
such blocks of data (of which only four are shown in fig-
ures 6 and 8 due to space constraints). Fourteen of these
blocks were correctly matched. In the wrongly matched of
video sequences, a truck driving away slowly was confused
with a human (ground crew person) walking along a similar
path. This confusion arises from modeling moving objects
as point trajectories.

7.2.2 Experiment 4: (Clustering)

The contribution of individual activities to the overall recog-
nition, however, is not clear in the above experiment. We
focus on trajectories of humans to demonstrate the efficacy
of the proposed decomposition and distance computation.
There are two classes of humans in the dataset: passengers
and ground crew personnel. It is necessary to distinguish
between these two classes for applications such as anomaly
detection. Unexpected motion patterns of passengers may
be considered anomalous unlike the same motion pattern
involving ground crew personnel. We use the K compo-
nent of the epitome to distinguish between these two classes



since the motion of passengers is tightly clustered in this
space. The K component represents rotation of the state as
shown in (3). Recognition rates are summarized in table 3.

7.2.3 Experiment 5: Key frame detection

We test the efficacy of the N component for identifying the
completion of luggage transfer between an aircraft and lug-
gage cart. In the dataset there are eighteen instances of lug-
gage cart in the scene. Of these four instances correspond to
movement across the scene without meeting an aircraft. In
the remaining fourteen instances (or seven roundtrips to the
aircraft), the luggage cart goes to the aircraft to transfer lug-
gage. The goal is to identify trajectories that correspond to
these exchanges and their time instants. Motion blobs are
detected and tracked as described in section 2. Dynamics
is modeled using a decoupled second-order system (section
5.4) and sign changes are β(x) to detect luggage transfer
times between luggage cart and aircraft.

Results: Of the 14 cases in which luggage carts were
present, 12 were correctly identified. The average error
in localizing the time at which the transfer occurs was 18
frames. The following objects caused three false alarms: (i)
Movement of fuel truck and (ii) Two cases of truck moving
to the terminal, stopping briefly before exiting the scene.

8. Summary

We presented an epitomic representation for modeling
activities using piecewise linear dynamical segments. An
epitome is said to be a tuple consisting of the estimated sys-
tem matrix, initial state and input signal statistics. The Iwa-
sawa matrix decomposition was used to factorize the system
matrix into three components that represent the effect of ro-
tation, scaling and projective action on the state vector. Its
usefulness for activity recognition was demonstrated using
both indoor and outdoor video datasets. As part of future
work, we plan to explore the shape of star diagrams as a
feature for activities.
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