
Incorporating On-demand Stereo for Real Time Recognition

T. Deselaers1,2, A. Criminisi1, J. Winn1 and A. Agarwal1
1Microsoft Research Ltd., Cambridge, United Kingdom

2Human Language Technology and Pattern Recognition, RWTH Aachen University, Germany
deselaers@cs.rwth-aachen.de, {antcrim,jwinn,ankagar}@microsoft.com

Abstract
A new method for localising and recognising hand poses
and objects in real-time is presented. This problem is im-
portant in vision-driven applications where it is natural for
a user to combine hand gestures and real objects when in-
teracting with a machine. Examples include using a real
eraser to remove words from a document displayed on an
electronic surface.

In this paper the task of simultaneously recognising ob-
ject classes, hand gestures and detecting touch events is cast
as a single classification problem. A random forest algo-
rithm is employed which adaptively selects and combines
a minimal set of appearance, shape and stereo features to
achieve maximum class discrimination for a given image.
This minimal set leads to both efficiency at run time and
good generalisation. Unlike previous stereo works which
explicitly construct disparity maps, here the stereo match-
ing costs are used directly as visual cue and only computed
on-demand, i.e. only for pixels where they are necessary for
recognition. This leads to improved efficiency.

The proposed method is assessed on a database of a va-
riety of objects and hand poses selected for interacting on a
flat surface in an office environment.

1. Introduction
This paper presents a unified algorithm for the auto-

matic recognition and localisation of hand poses and object
classes in real-time. The algorithm has been designed for
(but is not restricted to) scenarios where a person makes
use of his/her hands together with common physical objects
to drive an application either displayed on a tablet screen
or projected onto a table top. Figure 1 shows an example
application where a user edits an electronic document us-
ing common office objects such as pens and erasers while
manipulating it via natural hand gestures.

Enabling intuitive and natural interaction in such a sce-
nario requires accurate and efficient recognition of different
hand poses and a variety of object classes1, together with

1Unlike previous work on surface computing [20] here all physical ob-
jects are assumed to be untagged.

Figure 1. An example hardware setup and application. A user
edits an electronic document by using his hands, real pens, and
erasers. An overhead stereo camera is used both for gesture/object
recognition and touch detection. A web cam and small display
may also be used to aid collaboration with remote users.

the ability to detect when the user touches the workspace
surface. Current touch-screen technology and hand-based
user interfaces do not support all these requirements [2].

Although within the seemingly constrained setup consid-
ered here (see fig. 1), the problem of recognising different
hand poses and objects remains challenging due to the large
variability in lighting conditions, skin colour, hand sizes,
object appearance (e.g. different types of cell phones), the
presence of sleeves etc. (fig. 3). Furthermore, touch vs. non-
touch discrimination must be robust with respect to different
camera setups, hand poses and cases where the hands may
or may not be holding objects.

Previously, the problems of recognising object
classes [4, 11, 16, 22], hand gestures [9, 19] and touch
detection [18, 20, 21] have been treated separately. In
contrast, the stereo- and learning-based approach pro-
posed here addresses all three problems within a unified
classification framework.

The discriminative classifier developed here builds upon
recent advances in random forest learning [1, 8, 10, 24], and
is capable of efficiently combining appearance, shape and
depth cues to achieve accurate class discrimination. An il-
lustration of the importance of depth cues both for touch
detection and as an aid to recognition is shown in fig. 2.

Existing work in stereo vision has concentrated on the

1-4244-1180-7/07/$25.00 ©2007 IEEE

(a) (b)

(c) (d)

Figure 2. Depth cues for touch detection and hand pose recog-
nition. Examples of different hand poses and the corresponding
disparity maps (computed using a conventional stereo algorithm;
red indicates large disparities and blue small ones). (a) A hand
in the “fist” pose, touching the working surface, and (b) above
the surface. Stereo cues help distinguish “touch” and “no-touch”
cases. (c,d) Images of a hand in the “flat” and “spider” pose, re-
spectively. In (c) the whole hand is touching the surface, whereas
in (d) only the fingertips are touching. Although the shape of the
two silhouettes (c,d) is very similar, the corresponding disparity
maps contain sufficient information to disambiguate the two cases.

extraction of disparity maps [3, 7, 14, 17] from image pairs.
However, accurate disparities require incorporating spatial
smoothness priors, which often involve running compu-
tationally expensive procedures such as alpha expansion
graph cuts, belief propagation or dynamic programming.
Examples of papers which tackle the problem of efficient
disparity map computation are [15, 23]. However, those
approaches still produce whole disparity maps as output.
Another step towards using stereo information efficiently
was presented in [6] for purposes of foreground/background
segmentation. It was shown that rather than solving the ‘full
stereo problem’ and computing disparity maps, cheaper
stereo likelihoods could be computed for each pixel. In
this paper, the idea of cheap stereo is investigated further.
In fact, instead of computing disparity maps, stereo match-
ing costs are used directly as visual features for classifica-
tion. Furthermore, those stereo features are calculated only
at those pixels which require depth cues for improved class-
discrimination. This, together with a new training-method
penalising computationally expensive features enables real-
time performance.

The remainder of the paper is structured as follows; sec-
tion 2 describes the database used to train the system and
evaluate its performance; section 3 presents the algorithm
for segmenting the foreground from the background sur-
face. The main contribution of this paper is introduced in
section 4 which describes the recognition and touch detec-
tion algorithms. Experimental results are in section 5.

2. The database

A fully labelled database of several different hand poses
and objects was constructed for purposes of training and
testing. Fig. 3 shows example images. The database con-
sists of stereo image pairs of 45 classes, broadly divided
into the following three different groups. (a) Hand poses (12

Figure 3. Database of stereo images. Example images (only left
views shown here). The database comprises images of different
people’s hands in 12 different poses and images of 12 different
objects classes. The large variability in lighting conditions, skin
colour and the presence of sleeves makes recognition challenging.

classes): fist, fist (side view), flat hand, flat hand (side view),
picking, point with 1 finger, point with 2 fingers, right an-
gle, ring, spider, thumb up and thumb up (side view). (b)
Objects held by a hand (10 classes): black pen, blue pen,
red pen, green pen, pencil, stylus (from the tablet display),
eraser, scissors, post-it note and paper. (c) Objects on their
own (2 classes): cell phone and sticky tape. For each of
the classes from categories (a) and (b), examples where the
hand (or the object) are touching the screen are labelled as
being different from cases where they are above the screen.
There are thus effectively twice the number of classes as
the number of hand poses/objects. The two objects in (c)
always occur on their own and are always touching the sur-
face. Finally, scissors never touch the surface.

For each class we have captured 100 images, divided ran-
domly into 50 training and 50 test images. The images were
captured under different lighting conditions, with different
people’s hands (3 female and 5 male) in different poses.
For each class both “touch” and “no-touch” image pairs
were recorded. Epipolar rectification of all stereo pairs is
achieved using conventional techniques [5].

3. Foreground extraction
Before any object/gesture can be recognised the fore-

ground needs to be segmented from the background. This
section describes the segmentation algorithms employed.

In the case where the workspace surface is an LCD dis-
play (as in the example in fig. 1), placing polarising fil-
ters before the cameras (orthogonally to the display’s own
polarisation) achieves background suppression. However,
our recognition system may also be employed with non-
electronic surfaces such as a wooden desk top. In this case,
in order to perform segmentation while allowing for pos-
sible camera jitter and changes in lighting conditions the
following learning approach is employed.

Training. A small set of images containing foreground
(hand/objects) exemplars are manually segmented (off-line)

and stored. Additionally, some images of the “clean” back-
ground (e.g. wooden desk) are captured under slightly dif-
ferent lighting conditions and different camera positions.
A decision tree is then trained [12] on those segmentation
masks, so as to learn to discriminate between background
and foreground. The tests used in the tree nodes are the
same appearance features that are employed in the classi-
fication stage and will be described in section 4.2. Fore-
ground models and segmentation tree can now be refined
by: i) adding more, unsegmented images containing fore-
ground; ii) using the learnt tree to segment them and; iii)
re-training of the tree on all obtained segmentation masks.

Segmentation. During testing the learned decision tree is
applied to each pixel in an input image. Thus, each pixel is
associated with a label, i.e. the index of the terminal node
reached when the tree is applied at that pixel (fig. 4, top). A
foreground/background segmentation mask is obtained by
energy minimisation, similar to GrabCut [13], but with two
important differences. First, in GrabCut appearance is mod-
elled by means of Gaussian Mixture Models in RGB space.
In contrast, in our system the output of the decision tree is
used as unary potentials, i.e. histograms over the leaf la-
bels are used to model appearance of foreground and back-
ground. Second, our system does not require manual initial-
isation; instead automatic initialisation is achieved by using
aggregate foreground and background histograms across the
training set described earlier. As in [13], we alternately up-
date the segmentation and the foreground/background his-
tograms for a number of iterations (typically just two for an
optimal speed/accuracy trade off).

4. Fusing appearance, shape and depth for
recognition

This section assumes that foreground/background sepa-
ration has been achieved and focuses on the recognition of
the foreground region2.

4.1. Random Forests for classification

Recent work has demonstrated the effectiveness of Random
Forests algorithms for classification (e.g. [1]), particularly
with regard to speed and robustness to overfitting. In this
paper a number of random trees are trained to select and
combine various visual cues and achieve good class dis-
crimination.

Given an input image and its foreground mask, a deci-
sion tree trained to discriminate between different classes
using tests3 ti is applied to each foreground pixel leading
to a leaf label for each pixel. The leaf label corresponds to

2Since the recognition process is independent of segmentation, a large
part of our training dataset actually consists of pre-segmented images ob-
tained using a black background.

3A test here refers to a boolean decision rule applied to a feature vector.

3 2 1 1 1 1 2 1 2 1 2 2 1 3

1 2 1 3 1 2 2 3 2 2 2 1 2 3

3 2 3 3 3 3 1 1 1 2 2 2 1 1

3 2 1 1 1 1 2 1 2 1 2 2 1 3

2 4 4 4

3 2 2 3 2 3 2 3 4 2 3 2 1 2

3 2 3 4 4 4 1 1 4 4 4 4 1 1

3 2 1 1 1 1 2 1 2 1 2 2 1 3

1 1 4 4 4 4 3 3 3 2 3 2 3 2

3 2 2 2 1 2 4 4 4 4 4 1 2 2

1 2 3 4

1 2 1 3 1 2 2 3 2 2 2 1 2 3

3 2 2 3 2 3 2 3 1 2 3 2 1 2

3 2 3 3 3 3 1 1 1 2 2 2 1 1

3 2 1 1 1 1 2 1 2 1 2 2 1 3

1 1 1 2 2 2 3 3 3 2 3 2 3 2

3 2 2 2 1 2 1 2 2 3 2 1 2 2

Leaf label map Mask

Applying the recognition trees

Histogram

Masked leaf label maps

Input image

Applying the segm. tree

Use the segmentation mask in recognition

Graphcut

2 4 4 4

3 2 2 3 2 3 2 3 4 2 3 2 1 2

3 2 3 4 4 4 1 1 4 4 4 4 1 1

3 2 1 1 1 1 2 1 2 1 2 2 1 3

1 1 4 4 4 4 3 3 3 2 3 2 3 2

3 2 2 2 1 2 4 4 4 4 4 1 2 2

2 4 4 4 2

3 2 3 4 2 3

4 4 4 1 1 4 4 4

1 1 1 2 1 2 1 2

4 3 3 3 2

A

A A

A A

MS

A

A M A S

A M Sppearance ask tereo

Figure 4. Our segmentation and recognition system. (top box)
The segmentation phase. A decision tree trained to discriminate
foreground and background is applied to the image to get a “leaf
label map”. See text. The likelihoods of foreground and back-
ground are then computed from the label map and a min-cut algo-
rithm applied to obtain a segmentation mask. Only appearance
features are used in this phase. (bottom box) The recognition
phase. A Random Forest with T trees, trained to discriminate be-
tween different object classes is applied to an input stereo pair to
produce T new label maps. For each connected foreground region
a histogram of leaf labels is accumulated and classified via nearest
neighbours. Several visual features are combined in this phase.

the index of the leaf reached in the tree (fig. 4, bottom). A
histogram over all such labels for the foreground region is
computed and classified using a nearest neighbour classifier
with Bhattacharyya distance. This method is extended to
use multiple decision trees (a decision forest) by concate-
nating the histograms prior to classification.

The key strength of random forests is that the trees in
the forest capture different cues due to the randomness in
the learning process. Every tree is trained independently of
the others which allows for parallel training of several trees.
In each training iteration, a pool of 200 randomly selected
test candidates T = {t1, . . . , tI} is generated and at each
leaf the test candidate ti with the highest entropy gain4 is
appended as a node in the tree. This procedure is repeated
until no further leaves are appended.

In Random Forests, each tree is allowed to overfit dur-
ing training; but averaging over outputs of multiple trees
leads to good testing generalisation. In many cases Random
Forests have been proved to achieve better generalisation
than AdaBoost despite higher training errors [1, 24]. The
tests used to build the tree are described in the next section.

4.2. Visual features

This section describes the different visual cues, the fea-
tures that are used, and the tests that are made available to
the decision tree learning.

We use a combination of appearance, shape and depth
visual cues. For each of the different visual cues, texture-

4Provided the gain is above a certain threshold.

(a) (b)

plpr
LeftRight

pr

Figure 5. Visual features. (a) An example for a possible test in a
decision tree. The test is applied to the pixel marked with the cross
and the difference between two randomly selected pixels chosen
within a bounding box of 50×50 pixels is compared to two thresh-
olds. (b) For a pair of corresponding pixels pl and pr from a stereo
image pair the disparity d is computed as d = pl − pr .

like filters are applied to obtain features fi which are used
in the tests ti of the decision tree nodes (one test per node).
Generally, the tests compare the values of the features
fi with two randomly selected thresholds (see fig. 5a).
Thus, the tests for a pixel in (x, y) are of the following form:

t(x, y) = θ1 < fi(x, y) < θ2, (1)
where fi(x, y) is a feature function for position (x, y) in the
image, and θ1 and θ2 denote thresholds.

The features fi can be of different forms, either they are
the difference of two randomly selected pixels p1 and p2

within a bounding box centred in (x, y) (type 1) or they are
just the value of one randomly selected pixel in this area
(type 2):

f1(x, y) = p1(x + x′, y + y′)
−p2(x + x′′, y + y′′) (type 1)

f2(x, y) = p1(x + x′, x + y′) (type 2)

where p1(x, y) and p2(x, y) denote the values of pixels at
these positions in the specified colour channels. All param-
eters and the type of the tests are randomly chosen in the
generation of the test candidates. An example test is shown
in fig. 5a. It has been shown, that using sufficiently large
bounding boxes allows to capture long-range interactions
in the images [16]. These tests are applied to different vi-
sual cues and slightly adapted to the specific character of
the cue. Next we describe details of the different visual
cues used here:

Appearance. To capture appearance information, tests are
applied to RGB colour channels. In the training process,
90% of all randomly generated appearance (colour) features
are of type 1 (i.e. pixel differences), and the remaining ten
percent are of type 2 (i.e. absolute values). The advantage of
pixel differences for appearance cues is a better invariance
with respect to lighting changes.

Shape. The binary mask obtained from the segmentation
stage is used as an additional channel in the recognition
phase to capture shape information. The tests applied to
this (binary) mask are of the same type as those applied to
the appearance channels.

Depth. Depth information is essential for reliable touch/no
touch discrimination. Given a pair of rectified stereo im-

ages, depth information can be obtained by finding the cor-
respondence of the pixels in the left image to the pixels in
the right image for every scanline as depicted in fig. 5b. For
every pixel pr in a scanline of the right image, the corre-
sponding pixel pl in the left image is determined within a
certain disparity range ∆. The displacement of pr to pl is
the disparity (d = pl − pr) and is inversely proportional
to the distance of the observed point in the image to the
camera. Usually, to determine the correspondences of the
pixel pairs, the sums of squared distances (SSD) between
all pairs of pixels of a scanline is calculated and the optimal
alignment of all pixels of the left scanline to all pixels of the
right scanline is determined by algorithms such as dynamic
programming, belief propagation or graph cuts.

Direct incorporation of high quality disparity maps in
our framework is straightforward but highly inefficient. Us-
ing low resolution disparity maps, would result in more effi-
cient algorithms but with high costs in the accuracy of touch
detection.

Yet another way to incorporate stereo information effi-
ciently is to use mean and variance disparities or winner-
takes-all (WTA) disparities. For the latter, the calcula-
tion does not require any spatial coherence and there-
fore the computation is cheap. The mean disparity and
its variance are calculated as d =

∑∆
d=0 d · p(d) and

σ2
d =

∑∆
d=0(d − d)2 · p(d), respectively, where p(d) =

exp (−γSSD(pr, pr + d))/Z and SSD is the sum of
squared distances of 3×7 patches around the pixels in the
current scanline of the left and right images. Z is a nor-
malisation factor. WTA disparities are calculated as d̂ =
arg maxd p(d). To calculate the mean, variance, and WTA
disparities, for each pixel matching costs for the whole dis-
parity range ∆ must be computed.

To reduce the number of necessary computations further
we develop new stereo features by subsampling the search
interval ∆ into a small number of allowed disparities di

and extracting the corresponding slices from the whole 3D
matching cost space (an illustration is shown in fig. 6). We
call these ‘disparity cost slices’ (DCS). The idea is to use
stereo matching costs directly as visual features in our learn-
ing framework.

The stereo features used in the test candidates for train-
ing of trees are chosen such that 50% of the features are of
type 2 (i.e. absolute disparity/SSD cost) and the remaining
50% of the features are absolute disparity/cost differences.

4.3. On-demand stereo and cost-aware training
On-demand stereo. In decision trees, in contrast to other
classifiers such as AdaBoost, not every test is applied to ev-
ery observation (here: pixel). Instead, for every pixel, only
the tests along one path through the tree (from root to leaf)
are evaluated. Therefore, we can avoid computing the full
cost space volume (or the selected full slices) which would

d=d1

d=d2

d=d3
d

is
p

ar
it

y
Extract 2D slices
from the
3D costspace

pl

Left image

Figure 6. Disparity Cost Slice stereo features. Sampled stereo
matching costs are used directly as visual features in our learning
framework. Note how the slice corresponding to d = d2 shows a
near perfect alignment of left and right images, suggesting d2 as
the correct depth for the hand.

lead to many unnecessary operations. We only compute
stereo matching costs for those pixels that require depth in-
formation, as dictated by the learned decision tree. This
concept applies to all features, but is most important for the
stereo ones because of their computational cost.

Cost-aware training. A further speedup is obtained by
training the tree cost aware. Conventional tree training min-
imises an entropy criterion, here we modify this criterion to
optimise with respect to efficiency and classification accu-
racy jointly. This is achieved by adding a weighted ver-
sion of the expected cost of evaluating the test. Hence tree
learning now minimises a trade off of discriminatory per-
formance and speed. This is implemented by dividing the
entropy gain for a test by a penalty value accounting for its
computational cost. Thus, more expensive tests are pushed
toward the bottom of the tree and applied to fewer pixels.

In our case, the evaluation of tests for the stereo cues
(even for the DCS stereo slices) is more costly than evalu-
ating appearance or shape tests. The penalisation of stereo
tests allows us to smoothly blend between using stereo fea-
tures and not using them at all.

Memory caching. Finally, a caching mechanism is im-
plemented to avoid repeating calculations. An informal ex-
perimental evaluation with a subset of images has shown
that the cache is used in 16% of all accesses to the cost
space and leads to a significant performance increase. More
details are given in section 5.

5. Results

A look at the selected features. Fig. 7 shows a typical tree
being learnt from our training data, with colour coding in-
dicating the extent to which each cue is used. Appearance,
shape and depth features are all used throughout the tree.
Table 1 provides a quantitative overview on the features that

Figure 7. Selected visual cues. A decision tree trained with all
three visual cues enabled. Like in fig. 4 black indicates appear-
ance, blue denotes shape and red stereo tests.

Table 1. Overview of the tests selected by tree training. The
figures are averaged over six random decision trees and subdivided
based on their visual cues.

type-2 avg. pixel
visual cue tests [%] tests [%] dist.
appearance 55 47 26.8
stereo 32 78 13.7
shape 13 46 37.8

are selected when training decision trees: the percentage of
tests of each type, the percentage of tests for absolute values
(type 2), and the average distance of the pixel pair consid-
ered in the tests. The features used most often are appear-
ance features, followed by stereo and then shape. For stereo
features approximately 80% of the selected tests are of type
2 (absolute SSD matching cost); for appearance and shape
cues, type-1 and type-2 tests are nearly chosen equally of-
ten. The mean distance between test pixel pairs (fig. 5a)
is largest for the shape cue. Unsurprisingly, this indicates
that shape cues are best encoded by longer-range pixel in-
teractions. On the contrary, for stereo features short-range
interactions are sufficient for discrimination.

Comparing the different stereo features. Table 2 shows
the recognition error for each of the stereo features used
with a single tree of different sizes. The three stereo fea-
tures considered here (WTA disparities, mean & variance
disp. and DCS slices) all lead to lower recognition errors
than the no-stereo case (especially for small trees) and with-
out much difference between them. In the remainder of the
paper we use DCS slices because they are computationally
cheaper than the other stereo features. Moreover, they show
no overfitting for large trees. An evaluation of the number
of used DCS stereo slices shows that high numbers of slices
are more likely to overfit and that too few slices underper-
form. Six slices are found to be optimal. These are extracted
at the disparities values 0, 10, 20, 30, 40, and 50 for all fol-
lowing experiments. Note that the tree size is critical since
too small trees do not carry sufficient discrimination power
and too large trees tend to overfit. Both effects (especially
overfitting) are weakened when using decision forests in-
stead of single trees, but it is still desirable to avoid very

Table 2. Error rates [%] using different stereo features for the 45
classes task using different numbers of nodes on the decision tree.

number of nodes in tree 100 500 1500
no stereo 12.5 2.9 2.4

WTA disp. 3.9 2.1 2.4
Mean&Var disp. 3.9 2.5 2.6
6 DCS stereo slices 4.1 2.3 2.3

a)

0 500 1000 1500
1

2

3

4

5

6

7

number of nodes per tree

e
rr

o
r

ra
te

 [
%

]

1 tree DCS stereo

3 trees DCS stere

1 tree no stereo

3 trees no stereo

b)

0 500 1000 1500 2000 2500 3000
1

2

3

4

5

6

7

number of nodes per tree

e
rr

o
r

ra
te

 [
%

]

1 tree

3 trees

5 trees

7 trees

9 trees

Figure 8. Classification Error. (a) Error curves for: different
nodes per tree, different numbers of trees per forest and for both
stereo and no-stereo cases. (b) Error as a function of the number
nodes for different numbers of trees using 6 DCS stereo slices.

large trees to keep the runtimes low.
Effect of forest size and number of nodes. Fig. 8a com-
pares the recognition error using DCS stereo slices with the
case where no stereo information is used, for varying tree
size and varying forest size. The trees using stereo out-
perform trees without stereo information by a factor of 2
for small tree sizes. As expected, the recognition error de-
creases with increasing number of trees and with increasing
number of nodes. With 3 trees and more than 500 nodes
per tree, the classification accuracy using appearance and
shape only almost matches that obtained by adding stereo
information. However, as pointed out earlier, large trees
involve significant extra computation. Forests with many
small trees tend to work as well as forests with a few large
trees, allowing us to choose an optimal operational point
based on our efficiency requirements. The fact that stereo
features lead to a significant gain in accuracy when working
with a few small trees suggests that generalisation capabili-
ties are highly improved by using stereo features.

Furthermore it can be observed that in the experiments
that use stereo features, the loss of accuracy is smaller for
very high numbers of nodes per tree than the experiments
that use no stereo information at all.

The surprisingly good performance of the non-stereo
method with large trees might partly be due to too little vari-
ation in the evaluation setup. Next, to investigate further the
influence of stereo on generalisation, we reduced the size of
the training set.

Results for up to 9 trees and up to 3000 nodes per tree are
presented in fig. 8b. In this application Using more than 3
trees does not lead to an improvement in accuracy for small

a)

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

number of training images per class

e
rr

o
r

ra
te

 [
%

]

DCS class ER

DCS touch/notouch ER

nostereo class ER

nostereo touch/notouch ER

b)

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

number of training images per class

e
rr

o
r

ra
te

 [
%

]

DCS class ER

DCS touch/notouch ER

nostereo class ER

nostereo touch/notouch ER

Figure 9. Generalisation properties. The influence of the amount
of training data used on the classification performance: a) for 1 tree
with 100 nodes, and b) for 1 tree with 500 nodes. The red lines
denote touch/no touch error rates, and the blue lines denote error
rates for the discrimination of different objects and pose classes.
Dotted lines denote experiments without stereo information and
solid lines denote experiments with 6 DCS stereo slices. Results
are averaged over three runs.

numbers of nodes, but rather weakens the overfitting for
large numbers of nodes. The fact that small trees with stereo
information outperform trees that use appearance and shape
only, suggests that trees that use stereo features generalise
better.

Generalisation. In order to assess generalisation proper-
ties we reduced the amount of training data that is available
for the classification of the leaf histograms while using the
same trees (trained on 20% of all training data) for all exper-
iments. Fig. 9 shows the results of these experiments for (a)
one tree with 100 nodes and (b) one tree with 500 nodes. As
we noticed a high variability in classification accuracy for
small trees due to randomisation effects, the results were
averaged over three runs.

Figure 9a shows how the use of stereo leads to a clear
improvement over the experiments which use only appear-
ance and shape for a reduced training set. This observation
confirms the added generalisation brought in by the depth
cues, both for the touch/no-touch discrimination task and
for the class recognition task. The results with and without
stereo information are very similar for larger trees (fig. 9b),
which also emphasises that generalisation is improved by
incorporating stereo.

Effect of stereo on accuracy. To assess further the im-
provement obtained by using stereo information as op-
posed to appearance and shape alone, we analysed the class
and touch/no-touch discrimination separately. Tables 3a,b
show confusion matrices for class discrimination and for
touch/no-touch discrimination for identical setups with and
without stereo features. These results were obtained using
3 trees with 100 nodes each. Additionally, the classification
error rates are given for 1, 3, and 5 trees respectively. In the
1-tree case, stereo improves the class error rate (ER) by 76%
relatively and the touch/no touch error rate by 58%. In the
3-tree case the class ER and the touch/no touch ER are both

Table 4. Cost-aware tree training. The effect of penalties for
stereo features on both efficiency and classification error. The fig-
ure given here are averages over 3 runs for the case of 1 tree with
100 nodes.

penalty 1 1.2 2 ∞
stereo tests in tree 25.0 8.7 4.3 0.0
avg. depth stereo tests 4.9 5.1 5.4 0.0
st. tests on train data [%] 13.2 7.5 4.5 0.0
st. tests on 45 test img [%] 9.7 4.9 0.1 0.0
time to apply a tree [ms] 12.4 6.3 6.2 5.8
overall error rate [%] 4.6 4.4 6.1 10.4

improved by 16% relatively. Using 5 trees, the touch/no
touch error rate is improved by 8.3% relatively. Using 3
trees, there is a significant increase in accuracy when stereo
information is used both for the touch/no touch recogni-
tion and for the discrimination of the different hand poses
and objects. In particular the number of touch events being
missed is reduced from 3.0% to 2.1%. Also among the in-
dividual classes, several improvements are visible: e.g. by
using stereo, the “rightangle” gesture is confused less often
with the “thumb up (side view)” gesture (row 15, col 22).
The same for the “fist” and “pick” gestures. Also the recog-
nition of the “cellphone” class is improved. For the exper-
iments with 1 tree and 100 nodes, the improvements are
due to reduced confusions among the classes “pick”, “point
with 1 finger”, and “point with 2 fingers”, and among the
classes “spider” and “flathand” (fig. 2c,d). Stereo informa-
tion proves useful in class recognition, and even more in
distinguishing touch from no-touch cases.

The effect of cost-aware training. Next, we assess the
effects of cost-aware training. We have experimentally eval-
uated this for 1 tree with 100 nodes. Assuming that a non-
stereo feature has a cost (penalty) of 1, we tested costs 1,
1.2 and 2.0 for stereo features. The results are presented in
Table 4. As expected, a higher stereo penalty significantly
reduces the number of stereo tests to be run (both in training
and testing), while increasing the tree average depth. When
using a penalty of 2 running times are halved (from 12.4 ms
to 6.2 ms) but the classification accuracy is hardly reduced
(from 4.6% to 6.1%) 5. The smooth blending between using
stereo features and using only appearance and shape allows
us to choose an operating point that suits our efficiency re-
quirements with little effect on the classification accuracy.

In the current framework, implemented in C#, the system
processes 15 fps when only appearance and shape are used;
and up to 10 fps when DCS stereo is also enabled. The
experiments are performed on a 3.4 GHz machine.

Pixel-wise vs on-demand stereo. A final test we performed

5the observed slight error reduction for penalty=1.2 is probably due to
randomness in the training.

Figure 10. Example frames of hands and objects segmented and
recognised correctly on a wooden background. “ T” indicates de-
tected touch and “ NT” no touch.

concerns the efficiency of stereo feature computation during
training. To estimate the advantage of on-demand stereo
over pre-calculating all possible stereo costs, we observe
that in order to calculate 6 DCS slices for a pair of 320×240
stereo images, 320 · 240 · 6 SSD costs have to be calcu-
lated. When applying a tree with on-demand calculation
enabled, on a subset of images, in average only 41.7% of
stereo matching costs were required with an average of 16%
of these being required at least twice and thus coming from
cache. Using on-demand stereo with memory caching re-
duced the number of computations to 34.4% of the total for
the complete DCS slices. For WTA disparities, the effect is
slightly stronger, with only 29.7% of all WTA disparities of
the images being evaluated.

Finally, fig. 10 shows results of automatic seg-
mentation, classification and touch detection obtained
by our algorithm. Demo videos are available from
http:://research.microsoft.com/vision/
cambridge/C-Slate/demos.htm.

6. Conclusion

This paper has presented a unified algorithm for the si-
multaneous recognition of hand poses and object classes,
and the detection of touch events. The algorithm developed
here is being used to build new vision driven applications
that can be controlled using natural gestures and common
physical objects in real-time.

Various visual cues such as appearance, shape and depth
(stereo) are combined efficiently by means of random forest
learning. Stereo has been shown to improve the accuracy of
both touch/no touch detection and class discrimination, with
interesting generalisation properties. The structure of our
learning algorithm has enabled expensive stereo features to
be computed on-demand; with great reduction in the num-
ber of necessary computations and consequent increase in
recognition efficiency.

Next, the use of dynamic information for the recognition
of complex, time-dependent gestures promises to be inter-
esting and challenging.

Table 3. Confusion matrices for class discrimination (top row) and touch/no touch discrimination (bottom row) using 3 trees with 100
nodes for the (a) 6 DCS stereo slice case and (b) no stereo case.

(a) DCSSTEREO
 b

ig
b

la
ck

p
e

n

 b
ig

b
lu

e
p

e
n

 b
ig

gr
e

e
n

p
e

n

 b
ig

re
d

p
e

n

 c
e

llp
h

o
n

e

 e
ra

se
r

 f
is

ts
id

e

 f
is

t

 f
la

th
a

n
d

 f
la

th
a

n
d

st
an

d
in

g

 p
e

n
ci

l

 p
ic

k

 p
o

in
t1

 p
o

in
t2

 r
ig

h
ta

n
gl

e

 r
in

g

 s
ci

ss
o

rs

 s
h

e
et

o
fp

ap
e

r

 s
p

id
e

r

 s
ti

ck
yt

ap
e

 s
ty

lu
s

 t
h

u
m

b
u

p
si

d
e

 t
h

u
m

b
u

p

 y
el

lo
w

n
o

te

bigblackpen 100 0

bigbluepen 0 99 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

biggreenpen 1 0 97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0

bigredpen 0 0 0 100 0

cellphone 0 0 0 0 98 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

eraser 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

fistside 0 0 0 0 0 0 96 0 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0 0

fist 0 0 0 0 0 0 0 99 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

flathand 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

flathandstanding 0 0 0 0 0 0 0 0 0 99 0 0 0 0 1 0 0 0 0 0 0 0 0 0

pencil 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0

pick 0 0 0 0 0 0 0 0 0 0 0 97 0 2 0 1 0 0 0 0 0 0 0 0

point1 0 0 0 0 0 0 1 0 0 0 0 0 97 2 0 0 0 0 0 0 0 0 0 0

point2 0 0 0 0 0 0 0 0 0 0 0 0 1 99 0 0 0 0 0 0 0 0 0 0

rightangle 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99 0 0 0 0 0 0 1 0 0

ring 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0

scissors 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0

sheetofpaper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0

spider 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 99 0 0 0 0 0

stickytape 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0

stylus 0 100 0 0 0

thumbupside 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 99 0 0

thumbup 0 100 0

yellownote 0 100

 t
o

u
ch

 n
o

to
u

ch

touch 97.9 2.1

notouch 2.5 97.5

number of trees 1 3 5
class ER 2.1 0.9 0.8
touch/no touch 3.3 2.3 2.2

(b) NOSTEREO

 b
ig

b
la

ck
p

e
n

 b
ig

b
lu

e
p

e
n

 b
ig

gr
e

e
n

p
en

 b
ig

re
d

p
e

n

 c
e

llp
h

o
n

e

 e
ra

se
r

 f
is

ts
id

e

 f
is

t

 f
la

th
a

n
d

 f
la

th
a

n
d

st
an

d
in

g

 p
e

n
ci

l

 p
ic

k

 p
o

in
t1

 p
o

in
t2

 r
ig

h
ta

n
gl

e

 r
in

g

 s
ci

ss
o

rs

 s
h

e
et

o
fp

ap
e

r

 s
p

id
e

r

 s
ti

ck
yt

ap
e

 s
ty

lu
s

 t
h

u
m

b
u

p
si

d
e

 t
h

u
m

b
u

p

 y
el

lo
w

n
o

te

bigblackpen 100 0

bigbluepen 0 99 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

biggreenpen 1 0 99 0

bigredpen 0 0 0 100 0

cellphone 0 0 0 0 94 0 0 0 0 2 0 0 0 2 2 0 0 0 0 0 0 0 0 0

eraser 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

fistside 0 0 0 0 0 0 99 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

fist 0 0 0 0 0 0 0 97 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0

flathand 0 0 0 0 0 0 0 0 99 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

flathandstanding 0 0 0 0 0 0 0 1 0 98 0 0 0 0 0 0 0 0 1 0 0 0 0 0

pencil 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0

pick 0 0 0 0 0 0 0 0 1 0 0 97 1 1 0 0 0 0 0 0 0 0 0 0

point1 0 0 0 0 0 0 1 0 0 0 0 0 99 0 0 0 0 0 0 0 0 0 0 0

point2 0 0 0 0 0 0 0 0 0 0 0 0 2 98 0 0 0 0 0 0 0 0 0 0

rightangle 0 0 0 0 0 0 0 0 0 0 0 0 0 0 96 0 0 0 0 0 0 4 0 0

ring 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 99 0 0 0 0 0 0 0 0

scissors 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0

sheetofpaper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0

spider 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 99 0 0 0 0 0

stickytape 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0

stylus 0 100 0 0 0

thumbupside 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 99 0 0

thumbup 0 100 0

yellownote 0 100

 t
o

u
ch

 n
o

to
u

ch

touch 97.0 3.0

notouch 2.5 97.5

number of trees 1 3 5
class ER 8.8 1.1 0.8
touch/no touch 8.0 2.8 2.4

References
[1] L. Breiman. Random forests. Machine Learning, 45:5–32,

2001.
[2] W. Buxton. Multi-touch systems that I have known and

loved. http://www.billbuxton.com/multitouchOverview.html.
[3] A. Criminisi, J. Shotton, A. Blake, C. Rother, and P. H. Torr.

Efficient dense stereo with occlusion by four-state dynamic
programming. IJCV, 71(1):89–110, Jan. 2007.

[4] R. Fergus, P. Perona, and A. Zissermann. Object class recog-
nition by unsupervised scale-invariant learning. In CVPR,
pages 264–271, Blacksburg, VG, June 2003.

[5] R. I. Hartley and A. Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, 2. Ed. 2004.

[6] V. Kolmogorov, A. Criminisi, A. Blake, G. Cross, and
C. Rother. Bi-layer segmentation of binocular stereo video.
In CVPR, volume 2, page 1186, San Diego, CA, June 2005.

[7] V. Kolmogorov and R. Zabih. Graph cut algorithms for
binocular stereo with occlusions. In N. Paragios, Y. Chen,
and O. Faugeras, editors, The Handbook of Mathematical
Models in Computer Vision. Springer, 2005.

[8] V. Lepetit, P. Lagger, and P. Fua. Randomized trees for real-
time keypoint recognition. In CVPR, volume 2, pages 775 –
781, San Diego, CA, June 2005.

[9] R. Lockton and A. W. Fitzgibbon. Real-time gesture recogni-
tion using deterministic boosting. In BMVC, pages 817–826,
Cardiff, UK, Sept. 2002.

[10] F. Moosmann, B. Triggs, and F. Jurie. Fast discriminative
visual codebooks using randomized clustering forests. In
NIPS, in press, 2006.

[11] A. Opelt, A. Pinz, M. Fussenegger, and P. Auer. Generic
object recognition with boosting. TPAMI, 28(3):416–431,
Mar. 2006.

[12] J. Quinlan. Bagging, boosting, and C4.5. In National Con-
ference on Artificial Intelligence, pages 725–730, 1996.

[13] C. Rother, V. Kolmogorov, and A. Blake. “GrabCut”: inter-
active foreground extraction using iterated graph cuts. ACM
Trans. on Graphics, 23(3):309–314, Aug. 2004.

[14] D. Scharstein and R. Szeliski. A taxonomy and evaluation of
dense two-frame stereo correspondence algorithms. IJCV,
47(1–3):7–42, 2002.

[15] J. Schmidt, H. Niemann, and S. Vogt. Dense disparity
maps in real-time with an application to augmented reality.
In Workshop on Applications in Computer Vision (WACV),
pages 225–230, Orlando, Fl, USA, dec 2002.

[16] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Texton-
Boost: Joint appearance, shape and context modeling for
multi-class object recognition and segmentation. In ECCV
2006, LNCS 3951, pages 1–15, Graz, Austria, May 2006.

[17] J. Sun, N.-N. Zheng, and H.-Y. Shum. Stereo matching using
belief propagation. TPAMI, 25(6):1–14, July 2003.

[18] C. Tomasi, A. Rafii, and I. Torunoglu. Full-size projec-
tion keyboard for handheld devices. Communications of the
ACM, 46(7):70–75, 2003.

[19] O. Williams, A. Blake, and R. Cipolla. Sparse and semi-
supervised visual mapping with the S3GP. In CVPR, vol-
ume 1, pages 230 – 237, New York, June 2006.

[20] A. D. Wilson. PlayAnywhere: A compact tabletop computer
vision system. In Symposium on User Interface Software and
Technology (UIST), pages 83–92, Seattle, WA, Oct. 2005.

[21] A. D. Wilson and N. Oliver. Multimodal sensing for explicit
and implicit interaction. In HCII, 2005.

[22] J. Winn, A. Criminisi, and T. Minka. Object categorization
by learned universal visual dictionary. In ICCV, volume 2,
pages 1800 – 1807, Beijing, China, Oct. 2005.

[23] R. Yang and M. Pollefeys. Multi-resolution real-time stereo
on commodity graphics hardware. In CVPR, 2003.

[24] P. Yin, A. Criminisi, J. Winn, and I. Essa. Tree-based Clas-
sifiers for Bilayer Video Segmentation In CVPR, 2007.

