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Abstract

We introduce a new framework, namely Tensor Canon-

ical Correlation Analysis (TCCA) which is an extension of

classical Canonical Correlation Analysis (CCA) to multidi-

mensional data arrays (or tensors) and apply this for ac-

tion/gesture classification in videos. By Tensor CCA, joint

space-time linear relationships of two video volumes are in-

spected to yield flexible and descriptive similarity features

of the two videos. The TCCA features are combined with

a discriminative feature selection scheme and a Nearest

Neighbor classifier for action classification. In addition,

we propose a time-efficient action detection method based

on dynamic learning of subspaces for Tensor CCA for the

case that actions are not aligned in the space-time domain.

The proposed method delivered significantly better accu-

racy and comparable detection speed over state-of-the-art

methods on the KTH action data set as well as self-recorded

hand gesture data sets.

1. Introduction

Many previous studies have been carried out to catego-

rize human action and gesture classes in videos. Traditional

approaches based on explicit motion estimation require op-

tical flow computation or feature tracking, which is a hard

problem in practice. Some recent work has analyzed human

actions directly in the space-time volume without explicit

motion estimation [1, 4, 8, 7]. Motion history images and

the space-time local gradients are used to represent video

data in [4, 8] and [1] respectively, having the benefits of

being able to analyze quite complex and low-resolution dy-

namic scenes. However, both representations convey only

partial data of the space-time information (mainly motion

data) and are unreliable in cases of motion discontinuities

and motion aliasing. Also, the method in [1] has the draw-

back of requiring to manually set the positions of local

space-time patches. Importantly, it has been noted that spa-

tial information contains cues as important as dynamic in-

formation for human action classification [2]. In the study,

actions are represented as space-time shapes by the silhou-

ette images and the Poisson equation. However, it assumes

that silhouettes are extracted from video. Furthermore, as

noted in [2], the silhouette images may not be sufficient to

represent complex spatial information.

There are other important action recognition methods

which are based on space-time interest points and visual

code words [3, 6, 5]. The histogram representations are

combined with either a Support Vector Machine (SVM) [6,

5] or a probabilistic model [3]. Although they have yielded

good accuracy, mainly due to the high discrimination power

of individual local space-time descriptors, they do not en-

code global space-time shape information. Their perfor-

mance also highly depends on proper setting of the para-

meters of the space-time interest points and the code book.

In this paper, a statistical framework of extracting sim-

ilarity features of two videos is proposed for human ac-

tion/gesture categorization. We extend the classical canoni-

cal correlation analysis - a standard tool for inspecting linear

relationships between two sets of vectors [9, 11] - into that

of multi-dimensional data arrays (or high-order tensors) for

analyzing the similarity of video data/space-time volumes.

Note the framework itself is general and may be applied

to other tasks requiring matching of various tensor data.

The recent work (not published as a full paper) [12], which

was studied independently of our work, also presents a con-

cept of Tensor Canonical Correlation Analysis (TCCA) and

backs up our new ideas. The originality of this paper is ad-

vocated not only by the new TCCA framework but also by

new applications of CCA to action classification and effi-

cient action detection algorithms.

This work was motivated by our previous success [16],

where Canonical Correlation Analysis (CCA) is adopted

to measure the similarity of any two image sets for ro-

bust object recognition. Image sets are collected either

from a video or multiple still shots of objects. Each im-

age in the two sets is vectorized and CCA is applied to

the two sets of vectors. Recognition is performed based

on canonical correlations, where higher canonical correla-

tions indicate higher similarity of two given image sets. The

CCA based method yielded much higher recognition rates

than the traditional set-similarity measures e.g. Kullback
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Leibler-Divergence (KLD). KLD-based matching is highly

subjective to simple transformations of data (e.g. global in-

tensity changes and variances), which are clearly irrelevant

for classification, resulting in poor generalization to novel

data. A key of CCA over traditional methods is its affine in-

variance in matching, which allows for great flexibility yet

keeps sufficient discriminative information. The geometri-

cal interpretation of CCA is related to the angle between

two hyper-planes (or linear subspaces). Canonical correla-

tions are the cosine of the principal angles and smaller an-

gular planes are thought to be more alike. It is well known

that object images are class-wise well-constrained to lie on

low-dimensional subspaces or hyper-planes. This subspace-

based matching effectively gives affine-invariance, i.e. in-

variant matching of the image sets to the pattern variations

subject to the subspaces. For more details, refer to [16].

Despite the success of CCA in image-set comparison, the

CCA is still insufficient for video classification as a video

is more than simply a set of images. The previous method

does not encode any temporal information of videos. The

new tensor canonical correlation features have many favor-

able characteristics :

• TCCA yields affine-invariant similarity features of

global space-time volumes.

• TCCA does not involve any significant tuning parame-

ters.

• TCCA framework can be partitioned into sub-CCAs.

The previous works on object recognition [16] based

on image sets can be seen as a sub-problem of this

framework.

The quality of TCCA features is demonstrated in terms

of action classification accuracy being combined with a

simple feature selection scheme and Nearest Neighbor (NN)

classification. Additionally, time-efficient detection of a tar-

get video is proposed by incrementally learning the space-

time subspaces for TCCA.

The rest of the paper is organized as follows: Back-

grounds and notations are given in Section 2 and the frame-

work and the solution for tensor CCA in Section 3. Sec-

tion 4 and 5 are for the discriminative feature selection and

the action detection method respectively. The experimental

results are shown in Section 6 and we conclude in Section 7.

2. Backgrounds and Notations

2.1. Canonical Correlation Analysis

Since Hotelling (1936), Canonical Correlation Analysis

(CCA) has been a standard tool for inspecting linear rela-

tionships between two random variables (or two sets of vec-

tors) [11]. Given two random vectors x ∈ R
m1 ,y ∈ R

m2 ,

P(Y|Z)P(X|Z)

Z
YX

Figure 1. Probabilistic Canonical Correlation Analysis tells

how well two random variables x,y are represented by a a com-

mon source variable z [9].

a pair of transformations u,v, called canonical transforma-

tions, is found to maximize the correlation of the two vec-

tors x′ = uT x,y′ = vT y as

ρ = max
u,v

E[x′y′T ]√
E[x′x′T ]E[y′y′T ]

=
uT Cxyv√

uT CxxuvT Cyyv

(1)

where ρ is called the canonical correlation and multiple

canonical correlations ρ1, ...ρd where d < min(m1,m2)
are defined by the next pairs of u,v which are orthog-

onal to the previous ones. A probabilistic version of

CCA [9] gives another viewpoint. As shown in Figure 1,

the model reveals how well two random variables x,y

are represented by a common source (latent) variable

z ∈ R
d with the two likelihoods p(x|z), p(y|z), which

comprises affine transformations w.r.t. the input variables

x,y respectively. The maximum likelihood estimation

on this model leads to the canonical transformations

U = [u1, ...,ud],V = [v1, ...,vd] and the associated

canonical correlations ρ1, ..., ρd, which are equivalent

to those of the standard CCA. See [9] for more details.

Intuitively, the first pair of canonical transformations

corresponds to the most similar direction of variation of the

two data sets and the next pairs represent other directions

of similar variations. Canonical correlations reveals the

degree of matching of the two sets in each canonical

directions.

Affine-invariance of CCA. A key of using CCA for

high-dimensional random vectors is its affine invariance

in matching, which gives robustness with respect to

intra-class data variations as discussed above. Canon-

ical correlations are invariant to affine transformations

w.r.t. inputs, i.e. Ax + b,Cy + d for arbitrary

A ∈ R
m1×m1 ,b ∈ R

m1 ,C ∈ R
m2×m2 ,d ∈ R

m2 .

This proof is straightforward from (1) as Cxy,Cxx,Cyy

are covariance matrices and are multiplied by arbitrary

transformations u,v.

Matrix notations for Tensor CCA. Given two data sets as

matrices X ∈ R
N×m1 , Y ∈ R

N×m2 , canonical correla-

tions are found by the pairs of directions u,v. The canon-

ical transformations u,v are considered to have unit size

hereinafter. The random vectors x,y in (1) correspond to



the rows of the matrices X,Y assuming N ≫ m1,m2.

The standard CCA can be written as

ρ = max
u,v

X′T Y′, where X′ = Xu,Y′ = Yv. (2)

This matrix notation of CCA is useful to describe the pro-

posed tensor CCA with the tensor notations in the following

section.

2.2. Multilinear Algebra and Notations

This section briefly introduces useful notations and con-

cepts of multilinear algebra [10]. A third-order tensor which

has the three modes of dimensions I, J,K is denoted by

A = (A)ijk ∈ R
I×J×K . The inner product of any two

tensors is defined as 〈A,B〉 =
∑

i,j,k(A)ijk(B)ijk. The

mode-j vectors are the column vectors of matrix A(j) ∈

R
J×(IK) and the j-mode product of a tensor A by a matrix

U ∈ R
J×N is

(B)ink ∈ R
I×N×K = (A×j U)ink = Σj(A)ijkujn (3)

The j-mode product in terms of j-mode vector matrices is

B(j) = UA(j).

3. Tensor Canonical Correlation Analysis

3.1. Joint and Singlesharedmode TCCA

Many previous studies have dealt with tensor data in its

original form to consider multi-dimensional relationships

of the data and to avoid curse of dimensionality when the

multi-dimensional data array are simply vectorized. We

generalize the canonical correlation analysis of two sets of

vectors into that of two higher-order tensors having multiple

shared modes (or axes).

A single channel video volume is represented as a third-

order tensor denoted by A ∈ R
I×J×K , which has the three

modes, i.e. axes of space (X and Y) and time (T). We

assume that every video volume has the uniform size of

I×J×K. Thus the third-order tensors can share any single

mode or multiple modes. Note that the canonical transfor-

mations are applied to the modes which are not shared. For

e.g. in (2), classical CCA applies the canonical transforma-

tions u,v to the modes in R
m1 , Rm2 respectively, having

a shared mode in R
N . The proposed Tensor CCA (TCCA)

consists of the different architectures according to the num-

ber of the shared modes. The joint-shared-mode TCCA al-

lows any two modes (i.e. a section of video) to be shared

and applies the canonical transformation to the remaining

single mode, while the single-shared-mode TCCA shares

any single mode (i.e. a scan line of video) and applies

the canonical transformations to the two remaining modes.

See Figure 2 for the concept of the proposed two types of

TCCA.

The proposed TCCA for two videos is conceptually

seen as the aggregation of many different canonical cor-

relation analyses, which are for two sets of XY sections

(i.e. images), two sets of XT or YT sections (in the

joint-shared-mode), or sets of X,Y or T scan lines (in the

single-shared-mode) of the videos.

Joint-shared-mode TCCA. Given two tensors X ,Y ∈
R

I×J×K , the joint-shared-mode TCCA consists of three

sub-analyses. In each sub-analysis, one pair of canonical

directions is found to maximize the inner product of the out-

put tensors (called canonical objects) by the mode product

of the two data tensors by the pair of the canonical trans-

formations. That is, the single pair (for e.g. (uk,vk)) in

Φ = {(uk,vk), (uj ,vj), (ui,vi)} is found to maximize

the inner product of the respective canonical objects (e.g.

X ×k uk, Y ×k vk) for the IJ, IK, JK joint-shared-modes

respectively. Then, the overall process of TCCA can be

written as the optimization problem of the canonical trans-

formations Φ to maximize the inner product of the canon-

ical tensors X ′,Y ′ which are obtained from the three pairs

of canonical objects by

ρ = max
Φ

〈X ′,Y ′〉, where (4)

(X ′)ijk = (X ×k uk)ij(X ×j uj)ik(X ×i ui)jk

(Y ′)ijk = (Y ×k vk)ij(Y ×j vj)ik(Y ×i vi)jk

and 〈, 〉 denotes the inner product of tensors defined in

Section 2.2. Note the mode product of the tensor by the

single canonical transformation yields a matrix, a plane as

the canonical object. Similar to classical CCA, multiple

tensor canonical correlations ρ1, ..., ρd are defined by the

orthogonal sets of the canonical directions.

Single-shared-mode TCCA. Similarly, the single-shared-

mode tensor CCA is defined as the inner product of

the canonical tensors comprising of the three canoni-

cal objects. The two pairs of the transformations in Ψ =
[{(u1

j ,v
1
j ), (u

1
k,v1

k)}, {(u2
i ,v

2
i ), (u

2
k,v2

k)}, {(u3
i ,v

3
i ), (u

3
j ,

v3
j )}] are found to maximize the inner product of the re-

sulting canonical objects, by the mode product of the data

tensors by the two pairs of the canonical transformations,

for the I, J,K single-shared-modes. The tensor canonical

correlations are

ρ = max
Ψ

〈X ′,Y ′〉, where (5)

(X ′)ijk = (X×ju
1
j×ku

1
k)i(X×iu

2
i×ku

2
k)j(X×iu

3
i×ju

3
j )k

(Y ′)ijk = (Y×jv
1
j×kv

1
k)i(Y×iv

2
i×kv

2
k)j(Y×iv

3
i×jv

3
j )k

The canonical objects here are the vectors and the canonical

tensors are given by the outer product of the three vectors.



Figure 2. Conceptual drawing of Tensor CCA. Joint-shared-mode TCCA (left) and single-shared-mode TCCA (right) of two video

volumes (X,Y) are defined as the inner product of the canonical tensors (two middle cuboids in each figure), which are obtained by

finding the respective pairs of canonical transformations (u,v) and canonical objects (green planes in left or lines in right figure).

Interestingly, in the tasks of action/gesture classification,

we have observed that the joint-shared-mode TCCA de-

livers more discriminative features than the single-shared-

mode TCCA, maybe due to the good balance between the

flexibility and the descriptive powers of the features in the

joint-shared space. Generally the single-shared-mode has

more flexible (by two pairs of free transformations) and

less data-descriptive features in matching. The plane-like

canonical objects in the joint-shared-mode seem to main-

tain sufficient discriminative information of action video

data while giving robustness in matching. Note that only

a single-shared-mode was considered in [12] (similarly to

the proposed single-shared-mode TCCA). The previous re-

sults [16] also agree with this observation. The CCA ap-

plied to object recognition with image sets is identical to

the IJ joint-shared-mode of the tensor CCA framework of

this paper.

3.2. Alternating Solution

A solution for both types of TCCA is proposed in a

so-called divide-and-conquer manner. Each independent

process is associated with the respective canonical ob-

jects and canonical transformations and also yields the

canonical correlation features as the inner products of

the canonical objects. This is done by performing the

SVD method for CCA [13] a single time (for the joint-

shared-mode TCCA) or several times alternatively (for the

single-shared-mode TCCA). This section is devoted to ex-

plain the solution for the I single-shared-mode for exam-

ple. This involves the orthogonal sets of canonical di-

rections {(Uj ,Vj), (Uk,Vk)} which contain {(uj ,vj ∈
R

J), (uk,vk ∈ R
K)} in their columns, yielding the d

canonical correlations (ρ1, ...ρd) where d < min(K, J) for

given two data tensors, X ,Y ∈ R
I×J×K . The solution is

obtained by alternating the SVD method to maximize

max
Uj ,Vj ,Uk,Vk

〈X ×j Uj ×k Uk, Y ×j Vj ×k Vk〉. (6)

Given a random guess for Uj ,Vj , the input tensors X ,Y

are projected as X̃ = X ×j Uj , Ỹ = Y ×j Vj . Then, the

best pair of U∗

k,V∗

k which maximizes 〈X̃ ×k Uk, Ỹ ×k Vk〉
are found. Letting

X̃ ← X̃ ×k U∗

k, Ỹ ← Ỹ ×k V∗

k, (7)

then the pair of U∗

j ,V
∗

j are found to maximize 〈X̃ ×j

Uj , Ỹ ×j Vj〉. Let

X̃ ← X̃ ×j U∗

j , and Ỹ ← Ỹ ×j V∗

j (8)

and repeat the procedures (7) and (8) until convergence.

The solutions for the steps (7), (8) are obtained as follows:

SVD method for CCA [13] is embedded into the pro-

posed alternating solution. First, the tensor-to-matrix and

the matrix-to-tensor conversion is defined as

A ∈ R
I×J×K ←→ A(ij) ∈ R

(IJ)×K (9)

where A(ij) is a matrix which has K column vectors in

R
I×J which are obtained by concatenating all elements of

the IJ planes of the tensor A. Let X̃ → X̃(ij) and Ỹ =

Ỹ(ij) in (7). If P1
(ij),P

2
(ij) denote two orthogonal basis

matrices of X̃(ij), Ỹ(ij) respectively, canonical correlations

are obtained as singular values of (P1)T P2 by

(P1)T P2 = Q1ΛQT
2 , Λ = diag(ρ1, ...ρK). (10)

The solutions for the mode products in (7) are given as

X̃ ×k U∗

k ← G1
(ij), Ỹ ×k V∗

k ← G2
(ij) accordingly where

G1
(ij) = P1Q1, G2

(ij) = P2Q2. The solutions for (8) are

similarly found by converting the tensors into the matrix

representations s.t. X̃ → X̃(ik), Ỹ → Ỹ(ik). When it

converges, d canonical correlations are obtained from the

first d correlations of either (ρ1, ...ρK) or (ρ1, ...ρJ), where

d < min(K, J).



Figure 3. Example of Canonical Objects. Given two sequences

of the same hand gesture class (the left two rows), the first three

canonical objects of the IJ ,IK,JK joint-shared-mode are shown

in the top, middle, bottom row respectively. The different canonical

objects explains data similarity in different data dimensions.

The J and K single-shared-mode TCCA are performed

in the same alternating fashion, while the IJ, IK, JK joint-

shared-mode TCCA by performing the SVD method a sin-

gle time without iterations.

4. Discriminative Feature Selection for TCCA

By the proposed tensor CCA, we have obtained 6 × d

canonical correlation features in total. (Each of the joint-

shared-mode and single-shared-mode has 3 different CCA

processes and each CCA process yields d features). In-

tuitively, each feature delivers different data semantics in

explaining the data similarity. For example in Figure 3,

the canonical objects computed for the two hand gesture

sequences of the same class are visualized. One of each

pair of canonical objects is only shown here, as the other

is very much alike. The canonical objects of the IJ joint-

shared-mode show the common spatial components of the

two given videos. The canonical transformations applied to

the K axis (time axis) deliver the spatial component which

is independent of temporal information, e.g. temporal or-

dering of the video frames. The different canonical objects

of this mode seem to capture different spatial variations of

the data. Similarly, the canonical objects of the IK, JK

joint-shared-mode reveal the common components of the

two videos in the joint space-time domain. Canonical corre-

lations indicating the degree of the data correlation on each

of the canonical components are used as similarity measures

for recognition.

In general, each canonical correlation feature carries a

different amount of discriminative information for video

classification depending on applications. A discriminative

feature selection scheme is proposed to select useful ten-

sor canonical correlation features. First, the intra-class

and inter-class feature sets (i.e. canonical correlations ρi,

i = 1, ..., 6× d computed from any pair of videos) are gen-

erated from the training data comprising of several class ex-

amples. We use each tensor CCA feature to build simple

weak classifiers M(ρi) = sign [ρi − C] and aggregate the

weak learners using the AdaBoost algorithm [14]. In an iter-

Figure 4. Detection Scheme. A query video is searched in a large

volume input video. TCCA between the query and every possi-

ble volume of the input video can be speeded-up by dynamically

learning the three subspaces of all the volumes (cuboids) for the

IJ, IK, JK joint-shared-mode TCCA. While moving the initial

slices along one axis, subspaces of every small volume are dynam-

ically computed from those of the initial slices.

ative update scheme classifier performance is optimized on

the training data to yield the final strong classifier with the

weights and the list of the selected features. Nearest Neigh-

bor (NN) classification in terms of the sum of the canonical

correlations chosen from the list is performed to categorize

a new test video.

5. Action Detection by Tensor CCA

The proposed TCCA is time-efficient provided that ac-

tions or gestures are aligned in the space-time domain.

However, searching non-aligned actions by TCCA in the

three-dimensional (X,Y, and T) input space is computation-

ally demanding because every possible position and scale

of the input volume needs to be scanned. By observing

that the joint-shared-mode TCCA does not require the it-

erations for the solutions and delivers sufficient discrimina-

tive power (See Table 1), time-efficient action detection can

be done by sequentially applying joint-shared-mode TCCA

followed by single-shared-mode TCCA. The joint-shared-

mode TCCA can effectively filter out the majority of sam-

ples which are far from a query sample then the single-

shared-mode TCCA is applied to only few candidates. In

this section, we explain the method to further speed up the

joint-shared-mode TCCA by incrementally learning the re-

quired subspaces based on the incremental PCA [15].

The computational complexity of the joint-shared-mode

TCCA in (10) depends on the computation of orthogonal

basis matrices P1,P2 and the Singular Value Decompo-

sition (SVD) of (P1)T P2. The total complexity trebles

this computation for the IJ, IK, JK joint-shared-mode.

From the theory of [13], the first few eigenvectors corre-

sponding to most of the data energy, which are obtained by

Principal Component Analysis, can be the orthogonal basis

matrices. If P1 ∈ R
N×d,P2 ∈ R

N×d where d is a usually

small number, the complexity of the SVD of (P1)T P2

taking O(d3) is relatively negligible. Given the respective

three sets of eigenvectors of a query video, time-efficient

scanning can be performed by incrementally learning

the three sets of eigenvectors, the space-time subspaces



Figure 5. Hand-Gesture Database. (top) 9 different gestures gen-

erated by 3 different shapes and 3 motions. (bottom) 5 different

illumination conditions in the database.
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Figure 6. Feature Selection. (left) The weights of TCCA features

learnt by boosting. (right) The number of TCCA features chosen

for the different shared-modes.

P(ij),P(ik),P(jk) of every possible volume (cuboid) of an

input video for the IJ, IK, JK joint-shared-mode TCCA

respectively. See Figure 4 for the concept. There are three

separate steps which are carried out in same fashion, each

of which is to compute one of P(ij),P(ik),P(jk) of every

possible volume of the input video. First, the subspaces

of every cuboid of the initial slices of the input video are

learnt, then the subspaces of all remaining cuboids are

incrementally computed while moving the slices along one

of the axes. For example, for the IJ joint-shared-mode

TCCA, the subspaces P(ij) of all cuboids in the initial IJ-

slice of the input video are computed. Then, the subspaces

of all next cuboids are dynamically computed from the

previous subspaces, while pushing the initial cuboids along

the K axis to the end as follows (for simplicity, let the size

of the query video and input video be R
m3

, RM3

where

M ≫ m) :

The cuboid at k on the K axis, X k is represented as

the matrix Xk
(ij) = {xk

(ij), ...,x
k+m−1
(ij) } (See the defini-

tion (9)). The scatter matrix Sk = (Xk
(ij))(X

k
(ij))

T is writ-

ten w.r.t. the scatter matrix of the previous cuboid at k − 1
as Sk = Sk−1 + (xk+m−1

(ij) )(xk+m−1
(ij) )T − (xk−1

(ij) )(xk−1
(ij) )T .

This involves both incremental and decremental learning.

A new vector xk+m−1
(ij) is added and an existing vector

xk−1
(ij) is removed from the (k − 1)-th cuboid. Based on
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Figure 7. (left) Convergence graph of the alternating solution for

TCCA. (right) Confusion matrix of hand gesture recognition.

Joint-mode Dual-mode

Number of features 01 05 20 60 60

Accuracy (%) 52 72 76 76 81

Table 1. Accuracy Comparison of the joint-shared-mode TCCA

and dual-mode TCCA (using both joint and single-shared mode).

the previous study on incremental PCA [15], the sufficient

spanning set Υ = h([Pk−1
(ij) ,xk+m−1

(ij) ]) , where h is a vector

orthogonalization function and Pk−1
(ij) is the IJ subspace of

the previous cuboid, can be efficiently exploited to compute

the eigenvectors of the current scatter matrix, Pk
(ij). For the

detailed computations, refer to [15].

Similarly, the subspaces P(ik),P(jk) for the IK, JK

joint-shared-mode TCCA are computed by moving the all

cuboids of the slices along the I, J axes respectively. By

this way, the total complexity of learning of the three kinds

of the subspaces of every cuboid is significantly reduced

from O(M3 × m3) to O(M2 × m3 + M3 × d3) as M ≫
m ≫ d. O(m3), O(d3) are the complexity for solving

eigen-problems in batch-mode and the proposed dynamic

way. Efficient multi-scale search is similarly plausible by

merging two or more cuboids.

6. Experimental Results

Hand-Gesture Recognition. We acquired Cambridge-

Gesture data base consisting of 900 image sequences of

9 hand gesture classes, which are defined by 3 primi-

tive hand shapes and 3 primitive motions (see Figure 5).

Each class contains 100 image sequences (5 different

illuminations×10 arbitrary motions of 2 subjects). Each

sequence was recorded in front of a fixed camera having

roughly isolated gestures in space and time. All video se-

quences were uniformly resized into 20 × 20 × 20 in our

method. All training was performed on the data acquired in

the single plain illumination setting (leftmost in Figure 5)

while testing was done on the data acquired in the remain-

ing settings.

The proposed alternating solution in Section 3.2 was per-

formed to obtain the TCCA features of every pair of the



Methods set1 set2 set3 set4 total

Our method 81 81 78 86 82±3.5

Niebles et al. [3] 70 57 68 71 66±6.1

Wong et al. [8] - - - - 44

Table 2. Hand-gesture recognition accuracy (%) of the four dif-

ferent illumination sets.

training sequences. The alternating solution stably con-

verged as shown in the left of Figure 7. Feature selection

was performed for the TCCA features based on the weights

and the list of the features learnt from the AdaBoost method

in Section 4. In the left of Figure 6, it is shown that about the

first 60 features contained most of the discriminative infor-

mation. Of the first 60 features, the number of the selected

features is shown for the different shared-mode TCCA in

the right of Figure 6. The joint-shared-mode (IJ, IK, JK)

contributed more than the single-shared-mode (I, J,K) but

both still kept many features in the selected feature set.

From Table 1, the best accuracy of the joint-shared-mode

was obtained by 20 - 60 features. This is easily reasoned

when looking at the weight curve of the joint-shared-mode

in Figure 6 where the weights of more than 20 features are

non-significant. The dual-mode TCCA (using both joint

and single-shared mode) with the same number of features

improved the accuracy of the joint-shared mode by 5%. NN

classification was performed for a new test sequence based

on the selected TCCA features. Note that the performance

of TCCA without any feature selection also delivered the

best accuracy as shown at 60 features in the Table 1.

Table 2 shows the recognition rates of the proposed

TCCA, Niebles et al.’s method [3], which exhibited the best

action recognition accuracy among the state-of-the-arts

in [3]), and Wong et al.’s method (Relevance Vector

Machine (RVM) with the motion gradient orientation

images [8]). The original codes and the best settings of the

parameters were used in the evaluation for the two previous

works. As shown in Table 2, the previous two methods

yielded much poorer accuracy than our method. They often

failed to identify the sequences of similar motion classes

having different hand shapes, as they cannot explain the

complex shape variations of those classes. Large intra-class

variation in spatial alignment of the gesture sequences

also caused the performance degradation, particularly for

Wong et al.’s method which is based on global space-time

volume analysis. Despite the rough alignment of the

gestures, the proposed method is significantly superior

to the previous methods by considering both spatial and

temporal information of the gesture classes effectively. See

Figure 7 for the confusion matrix of our method.

Action Categorization on KTH Data Set. We followed

the experimental protocol of Niebles et al.’s work [3] on

the KTH action data set, which is the largest public action

Figure 8. Example videos of KTH data set. The bounding boxes

(solid box for the manual setting, the dashed one for the automatic

detection) indicate the spatial alignment and the superimposed im-

ages of the initial, intermediate and the last frames of each action

show the temporal segmentation.

Methods (%) Methods (%)

Our method 95.33 Schuldt et al. [6] 71.72

Niebles et al. [3] 81.50 Ke et al. [7] 62.96

Dollar et al. [5] 81.17

Table 3. Recognition accuracy (%) on the KTH action data set.

data base [6]. The data set contains six types (boxing, hand

clapping, hand waving, jogging, running and walking) of

human actions performed by 25 subjects in 4 different

scenarios. Leave-one-out cross-validation was performed

to test the proposed method, i.e. for each run the videos

of 24 subjects are exploited for training and the videos of

the remaining subject is for testing. Some sample videos

are shown in Figure 8 with the indication of the action

alignment. In TCCA method, the aligned video sequences

were uniformly resized to 20 × 20 × 20. This space-time

alignment of actions was manually done for accuracy

comparison but can also be automatically achieved by the

proposed detection scheme. See Table 3 for the accuracy

comparison of several methods and Figure 9 for the con-

fusion matrix of our method. The competing methods are

based on histogram representations of the local space-time

interest points with SVM (Dollar et al [5], Schuldt et

al. [6]) or pLSA (Niebles et al. [3]). Ke et al. applied

the spatio-temporal volumetric features [7]. While the

previous methods delivered the accuracy around 60-80%,

the proposed method achieved impressive accuracy at 95%.

The previous methods lost important information in the

global space-time shapes of actions resulting in ambigu-

ity for more complex spatial variations of the action classes.

Action Detection on KTH Data Set. The action detec-

tion was performed by the training set consisting of the se-

quences of the five persons, which do not contain any test-

ing persons. The scale (also the aspect ratio of axes) of

actions were class-wise fixed. Figure 8 shows the proposed

detection results by the dashed bounding boxes, which are
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Figure 9. (left) Confusion matrix of our method for the KTH data

set. (right) The detection result for the input video which involves

continuous hand clapping actions: all three correct hand clapping

actions are detected at the highest three peaks, with the three in-

termediate actions at the three lower peaks.

close to the manually setting (solid ones). The right of Fig-

ure 9 shows the detection results for the continuous hand

clapping video, which comprises of the three correct unit

clapping actions defined. The maximum canonical correla-

tion value is shown for every frame of the input video. All

three correct hand clapping actions are detected at the three

highest peaks, with the three intermediate actions at the

three lower peaks. The intermediate actions which exhib-

ited local maxima between any two correct hand-clapping

actions had different initial and end postures from those of

the correct actions.

The detection speed differs for the size of input vol-

ume with respect to the size of query volume. The pro-

posed detection method required about 136 seconds on av-

erage for the boxing and hand clapping action classes and

about 19 seconds on average for the other four action classes

on a Pentium 4 3GHz computer running non-optimized

Matlab code. For example, the volume sizes of the input

video and the query video for the hand clapping actions are

120 × 160 × 102 and 92 × 64 × 19 respectively. The di-

mension of the input video and query video was reduced by

the factors 4.6, 3.2, 1 (for the respective three dimensions).

The obtained speed seems to be comparable to that of the

state-of-the-art [1] and fast enough to be integrated into a

real-time system if provided with a smaller search area ei-

ther by manual selection or by some pre-processing tech-

niques for finding the focus of attention, e.g. by moving

area segmentation.

7. Conclusions

We proposed a novel Tensor Canonical Correlation

Analysis (CCA) which can extract flexible and descriptive

correlation features of two videos in the joint space-time do-

main. The proposed statistical framework yields a compact

set of pair-wise features. The proposed features combined

with the feature selection method and a NN classifier sig-

nificantly improves the accuracy over current state-of-the-

art action recognition methods. Additionally, the proposed

detection scheme for Tensor CCA could yield time-efficient

action detection or alignment in a larger volume input video.

Currently experiments on simultaneous detection and

classification of multiple actions by TCCA are being carried

out. Efficient multi-scale search by merging the space-time

subspaces and will also be considered.
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