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Abstract

Tracking of speckles in echocardiography enables the
study of myocardium deformation, and thus can provide
insights about heart structure and function. Most of the
current methods are based on 2D speckle tracking, which
suffers from errors due to through-plane decorrelation.
Speckle tracking in 3D overcomes such limitation. However,
3D speckle tracking is a challenging problem due to rela-
tively low spatial and temporal resolution of 3D echocar-
diography. To ensure accurate and robust tracking, high
level spatial and temporal constraints need to be incorpo-
rated. In this paper, we introduce a novel method for speckle
tracking in 3D echocardiography. Instead of tracking each
speckle independently, we enforce a motion coherence con-
straint, in conjunction with a dynamic model for the speck-
les. This method is validated on in vivo porcine hearts, and
is proved to be accurate and robust.

1. Introduction
The aging population in the much of the world has sur-

vived the risk of coronary disease as a cause of death and
now faces future health risks for ischemic or non-ischemic
cardiomyopathy and heart failure. Aggressive approaches
to pharmacological, surgical, and resynchronization thera-
pies for heart failure treatment require an improved under-
standing of myocardial motion the fundamental mechanics
which determine Left Ventricular function. Cardiac motion
is a combination of apex-to-base lengthening or shorten-
ing with simultaneous twisting, and study of heart function
needs to be able to capture such complex 3D deformations
which occur during left ventricular contraction and relax-
ation.

The vast majority of research on quantitative analysis of
heart deformation has been based on tagged MRI [10],
which provides superior image resolution and soft tissue

characterization. However, it is difficult to apply MR for
acute myocardium infarction or patients with peacemakers,
and tracking tags over the complete cardiac cycle is difficult
due to tag decay over time. Echocardiography provides an
attractive alternative for its portability, bedside applicabil-
ity, low cost, and safety. It has long been a popular modality
for cardiac imaging. Recently there has been increasing in-
terest in using echocardiography, specifically using speckle
tracking, as a tool to analysis heart deformation.

Speckles are formed by the interference of the backscat-
tered echoes produced by ultrasonic scatterers in tissue and
blood. The speckle at a given location is characterized by
an unique texture pattern. The speckles follow the motion
of the myocardium so when the myocardium moves from
one frame to the next, the position of this pattern will move
accordingly. The assumption for speckle tracking is that
when the myocardium undergo mild deformation and when
the temporal sampling rate is adequately high, the speckles
remaining fairly constant, and thus makes tracking possible.

Most of the current speckle tracking methods are based
on 2D echocardiography, where the speckles move in-plane
[1, 9, 6]. These methods are limited due to significant
speckle decorrelation when out of plane motion is involved.
With the recent development of 3D echocardiography, there
has been some effort to track speckles in 3D [3, 12]. How-
ever, 3D speckle tracking is a difficult problem since the
spatial and temporal resolutions, as well as signal noise ra-
tio, are lower for 3D echocardiography compared to 2D.
Thus the speckles are less well defined, exhibit more vari-
ability across volumes and more difficult to track.

One important aspect to improve the performance of 3D
speckle tracking is the incorporation of spatial and tempo-
ral constraints that regularizes the speckle motion, instead
of tracking each speckle independently and rely purely on
speckle intensities. Motion patterns of adjacent speckles on
the myocardium have innate coherence due to their physi-
cal proximity, and the heart cycle follows a distinct pseudo-
periodic dynamics. Taking advantage of such spatial and
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temporal priors is crucial for accurate and robust tracking.
In this paper we present a method for tracking speckle pat-
terns in 3D echocardiography sequences. Specifically, we
introduce Motion Coherence constraints to the velocity field
defined by the speckle motion. This, in conjunction with a
dynamics model, can greatly improve the accuracy of 3D
speckle tracking.

2. Tracking with Motion Coherence
There has been a long history of regularizing nonrigid

motion tracking. Typically elastic splines are used, which
uses either the bending energy (second order smoothness
constraints) [2, 4] or stretching energy (first order smooth-
ness constraint) or a combination of these two. Regulariz-
ing using bending energy leads to thin-plate spline solutions
[2]. It is known that in 3D the thin-plate spline solution is
not differentiable at point locations. In four or higher di-
mensions the generalization collapses completely [13].

It is shown that regularizers containing only the first and
the second order smoothness constraints are not the most
accurate for modeling human cardiac motion [14]. In [14],
an extended spline family, called Laplacian spline is used.
This spline family minimizes a smoothness constraint func-
tional composed of multiple-order derivative. These differ-
ent order of derivatives are weighted by some tunable pa-
rameters, controlling the amount of corresponding order of
smoothness. In [15], it is suggested to penalize an infinite
sum of squared all order derivatives of the velocity field to
enforce the coherent motion. The idea is that objects close
to each other tend to move coherently. In [11], the motion
coherence constraint is used for non-rigid point set regis-
tration. The regularization term, however, penalizes high
frequency content of the velocity field to enforce smooth
motion. It shows that the optimal velocity function lies in a
span of certain kernel functions defined by the low pass fil-
ter. It also shows that when the low pass filter is Gaussian,
the regularization term in [11] becomes equivalent to that
in [15]. In this paper, we follow the framework of [11] to
enforce motion coherence and define efficient algorithm for
speckle tracking.

3. Method
3.1. Motion-Coherent speckle tracking

Consider a 3D ultrasound image It at time t. We define a
speckle as a cubic patch centered at xn with intensity vector
an = It(xn) = [a1

n, . . . , aK
n ]T , where ak

n is the intensity
of the kth voxel in the patch; and K is the total number
of voxels in the patch. Assume the speckle patch moves
to a new position yn in image It+1, with intensity vector
being bn = It+1(yn) = [b1

n, . . . , bK
n ]T . The velocity of the

speckle motion is v(xn) = vn = yn − xn.

Similarly, we define a group of N speckles present
in the image It at time t as AN×K = [a1, . . . , aN ]T

(with coordinates of speckle patch centers at XN×3 =
[x1, . . . ,xN ]T ) and at time t + 1 in the image It+1 as
BN×K = [b1, . . . ,bN ]T (with coordinates of speckle
patch centers at YN×3 = [y1, . . . ,yN ]T ). The collective
velocity vector of all speckles in the group is VN×3 =
[v1, . . . ,vn]T . Clearly, Y = X + V.

Adopting a Bayesian formulation, we pose the problem
of speckle motion estimation between two images It and
It+1 as finding the velocity vector V that maximizes the
posterior probability p(V|B,A). From Bayes rule, we have

p(V|B,A) =
p(B|A,V)p(V|A)

p(B|A)
∝ p(B|A,V)p(V|A)

(1)
The maximum a posteriori (MAP) problem boils down to
modeling the likelihood p(B|A,V) and the prior p(V|A).
We, now, specify these two terms and motivate our choice.
We find it easier to start from the prior, which reflects our
belief on the speckle motion.

3.2. Coherence constraint on speckle motion
Physical properties of a cardiac tissue constrain speckles

motion to be coherent. For instance, two speckles located
close to each other perform similar motion. We formulate
such constraint as a smoothness regularization of the veloc-
ity field v, defined by the speckles motion. One way of con-
trolling smoothness is by regularizing the high frequency
content of the velocity field [11]. Thus, we define the prior
on velocity of the speckles motion as

p(V|A) = exp
−λ

R

R3
|ṽ(s)|2

G̃(s)
ds (2)

where ṽ indicates the Fourier transform of the velocity, λ
is a regularization weight and G̃ is real symmetric positive
function that approaches zero as ‖s‖ → ∞. In fact, G̃ rep-
resents a symmetric low-pass filter, so that its Fourier trans-
form G is real and symmetric [7]. In [11], it is shown that
for some choice of the likelihood function, the optimal ve-
locity field function v lies in the span of functions defined
by the kernel G. It also shows that when the kernel is cho-
sen to be Gaussian, the prior term in Eq.2 is equivalent to the
motion coherence theory introduced in [15], which suggests
penalizing a weighted version of all orders of derivative of
the velocity field v. Following [11], the optimal velocity
field v is of the form

v(z) =

N
∑

n=1

wnG(z − xn) (3)

This leads to reparametrization of the velocity vectors us-
ing the Gaussian radial basis function: V = GW. The
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. The Gaussian bandwidth parameter
σ controls the locality of the motion coherence constraint.
Smaller σ implies only points close to one another should
move coherently.

Assuming conditional independence of intensities of the
speckle patches given their locations and using Eq. 3, the
MAP problem in Eq. 1 is equivalent to minimizing the en-
ergy function (for details see [11]):

E(W) = −
N

∑

n=1

ln p(bn|an,vn) + λ tr
(

WT GW
)

(4)

where bn = It+1(yn) = It+1(xn +G(n, ·)W), WN×3 =
(w1, . . . ,wN )T is a matrix of the Gaussian kernel weights
in Eq. 3, and G(n, ·) denotes the nth row of G. Now, we
define the likelihood function based on our noise model as-
sumption.

3.3. Noise model
A common noise model is additive Gaussian noise, in

which case the likelihood term is equivalent to sum of
squared distance. Such a noise model is inaccurate for ultra-
sound images, where the speckle noise is believed to obey
Rayleigh distribution [8, 5]. We adopt the model used in
[5], where multiplicative Rayleigh noise model is assumed.
The noise model states:

bk
n = sk

n · nk(1)
n ; ak

n = sk
n · nk(2)

n (5)

where elements sk
n denotes noiseless value of kth voxel in-

tensity in nth speckle patch, and n
k(1)
n and n

k(2)
n are two

independent noise elements with the Rayleigh density func-
tion:

p(n) =
πn

2
exp

−πn2

4
, n > 0 (6)

It follows that

bk
n = ak

n · ηk
n, where ηk

n =
n

k(1)
n

n
k(2)
n

(7)

The noise term ηk
n is a division of two Rayleigh distributed

random variables. Taking the natural logarithm out of both
sides of Eq. 7, we obtain logarithm scaled noise model [5],
which gives rise to the conditional probability

p(bk
n|a

k
n,vn) =

K
∏

k=1

2(bk
n/ak

n)2

((bk
n/ak

n)2 + 1)2
(8)

Substituting Eq. 8 back to the energy function in Eq.4, we
obtain the energy function

E(W) =

N
∑

n=1

K
∑

k=1

(−2 ln bk
n + 2 ln[(ak

n)2 + (bk
n)2])

+ λ tr
(

WT GW
)

(9)

Motion-Coherent Speckle Tracking

• Given speckle center positions in It: X

• Initialize parameters λ, σ and α

• Construct affinity matrix G, initiate W = 0,Y = X

• Iterate until convergence

– Construct an = It(xn),bn = It+1(yn)

– Compute P matrix (Eq. 11))
– Find W = W − αG(λW + P)

– Update Y = X + GW

• Final speckle center positions in It+1: Y

Figure 1. Pseudo-code of 3D speckle tracking between two vol-
umes: from It to It+1.

3D Speckle Tracking in Full Sequence

• Given speckle centers in the first volume I1 : X

• Initialize state s1 = [X; 0]

• For t = 2 : T (through all volumes):

– extract current positions of speckles X from
the state vector st−1

– find new speckle positions Y in It using the
motion-coherent tracking algorithm (Fig. 1),
given the speckle positions X in It−1

– use Y as the observation zt = Y

– update the state st using the Kalman filter.

Figure 2. Pseudo-code of 3D speckle tracking through the full se-
quence of volumes.

3.4. Optimization
By taking the derivative of the energy function E in Eq.9

with respect to W and equating it to zero, we obtain

∂E(W)

∂W
=

N
∑

n=1

K
∑

k=1

∇bk
n

bk
n

·
(bk

n)2 − (ak
n)2

(ak
n)2 + (bk

n)2
GT (n, ·) + λGW

= GP + λGW = 0 (10)

where matrix PN×3 is defined with elements

pnd =
K

∑

k=1

∇db
k
n

bk
n

·
(bk

n)2 − (ak
n)2

(ak
n)2 + (bk

n)2
(11)



Figure 3. Illustration of two tracked speckles. The first three column shows the 2D slices of the 3D image taken at point coordinate, parallel
to the axes. The last column shows all points projected on one plane and with the point of interest emphasized in solid black circle.

Here ∇db
k
n denotes the gradient along direction d of the kth

voxel in the nth speckle patch. The explicit solution for
W can not be found, because P depends on W. However
any gradient based optimization method can be used to find
W iteratively. We use gradient descent algorithm with the
update rule being:

W = W − αG(λW + P) (12)

where α is the step size. Given the minimizing W, the
current position of speckle centers in It+1 can be found as
Y = X + GW. We summarize the algorithm for finding
the speckle positions in image It+1 given speckle positions
in It in Fig. 1.

3.5. Dynamic models for speckle tracking.
Tracking with motion coherence provides a way of en-

forcing spatial smoothness for the speckle motion. Speckle
motion is also subject to temporal constraint, characterized
by the dynamics of the heart motion. We assume a simple
process model given by

st = Fst−1 + nt−1. (13)

the state at time t − 1 is defined as speckles center
positions and their velocities for image It−1: st−1 =
[x1; . . . ;xN ;v1; . . . ;vN ] = [X;V]. Matrix F is defined
as

F6N×6N =

(

I3N×3N I3N×3N

03N×3N I3N×3N

)

Process noise nt−1 is assumed to have Gaussian distribution
p(n) ∼ N (0,R). We define the measurement model by

zt = Hst + µt (14)

Here the measurement (observation) is defined as loca-
tions of the speckle centers. Matrix H3N×6N is given by

[I3N×3N ;03N×3N ]. The measurement noise µt is assumed
to have Gaussian distribution with p(µ) ∼ N (0,Q).

The discrete Kalman filter can be used to update the
above system. The measurement at time t that is used to
update the predicted state. The measurement is obtained by
tracking the speckle locations from time t−1 using motion-
coherent tracking summarized in Fig. 1. We summarize
the 3D speckle tracking algorithm for the full sequence in
Fig. 2.

4. Results
We show the performance of 3D speckle tracking on a set

of 3D echocardiography sequences from open chest porcine
hearts. One of the hearts has severe ischemia. The scans are
acquired using Philips Sono 7500 with EKG gating. We use
detected post-scan converted images with echo envelop sig-
nals, represented in the Cartesian coordinates. The spatial
resolution is 160×144×192voxels. Ten different scans (3D
sequences) are taken. Each scan consists of ten 3D volumes.
We run the experiments for each of the scans individually.
For each scan, in the first volume, we manually initiate a set
of points (varying from 5-9) on the myocardium, and run
our speckle tracking method.

The algorithm is implemented in Matlab, and tested on
a Pentium4 CPU 3GHz with 4GB RAM. The value of
smoothness parameters are set to λ = 1, σ = 15. The
size of the speckle patch is 17 × 17 × 17. For the Kalman
filter, process and measurement noise covariance are set to
Q = 0.2 ∗ I, R = 0.01 ∗ I. The stopping condition for
the motion-coherent iterative process is either when the cur-
rent change in energy function drops below the threshold
of 1e-5 or the number of iterations reaches the maximum
of 100. On average the motion-coherent tracking algorithm
between two volumes converges in less than one minute and
requires around 30 iterations.
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Figure 4. Illustration of tracked speckles and their velocities for a complete scan of 10 volumes, by enforcing motion coherence.

volume 1 volume 2 volume 3 volume 4 volume 5

volume 6 volume 7 volume 8 volume 9 volume 10

Figure 5. Illustration of tracked speckles and their velocities for a complete scan of 10 volumes, without enforcing motion coherence.

To validate the results, we obtain the ground truth of
the speckle locations by manually tracking them across the
whole sequence. A cardiologist is asked to track the speck-
les manually, given its initial locations, using a tool to visu-
alize and select the points from arbitrary 2D cross sections
of 3D volume. We compare our automated speckle track-
ing using the described algorithm against the ground truth.
The tracking error for a speckle patch at a given volume in a
given scan is defined by the 3D Euclidean distance between
the tracked position and ground truth. The tracking error
(averaged over all scans, volumes and number of speckles)
is 0.3224± 0.1597 voxel.

Figure 3 illustrates the tracked locations of two example
speckles in a scan with a total of six speckles. The first row
shows speckle 1, and the second row shows speckle 5. First
three columns show the 3D location of each speckle in a
given volume projected onto three 2D planes, represented

by black circles. The last column show how speckles 1 and
5 relate to the rest of tracked speckles, all projected onto the
same 2D plane. As we can see the two example speckles lie
nicely on the heart wall as expected.

Figure 4 illustrates the tracking results of the full se-
quence of 10 volumes, showing the 3D velocity of all
tracked points projected onto a 2D plane for easy visual-
ization. The velocity vectors exhibit local smoothness, as a
result of enforcing motion coherence. To demonstrate the
effect of coherence constraint, we also track the speckles
without any regularization (Fig. 5). In this case the veloci-
ties of the speckle patches are tracked independently from
one another. We can clearly see that without motion coher-
ence constraint, the velocity vectors exhibit randomness in
both direction and amplitude, even for neighboring speck-
les, which is inaccurate. In fact, the average tracking error is
2.4508±2.2100voxel without motion coherence constraint,
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Figure 6. Illustration of tracked 3D trajectories of six speckles for
a complete scan of 10 volumes. Symbol ”+” denotes starting loca-
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Figure 7. Illustration of 3D trajectories of speckles from an is-
chemic heart region. The motion is limited.

much worse than that with the constraint.
In Fig. 6, we illustrate the 3D trajectories of tracked

speckles. The speckles demonstrate significant through-
plane motion, justifying for the need of tracking in 3D.
Speckle positions can be effectively used for strain estima-
tion. Strain is a geometrical expression of deformation, ex-
pressed as a relative change in length. Given the speckle
locations, the strain is measured by calculating the change
in distance between speckles in time, i.e., ε = l−l0

l0
= 4l

l0
,

where l0 and l are the initial and current distance between
speckle centers in 3D. Figure 8 and 9 illustrate the distance
and the strain between two speckles.

The algorithm can effectively identify the ischemic re-
gion of the heart. Figure 7 shows the trajectories of speck-
les that are placed on the ischemic region. Figure 10 shows
their velocities through the whole sequence. It is clear that
the motion is very limited for the ischemic heart tissue,
compared to the normal tissue (Fig. 6 and Fig. 4). In
fact, the average length of speckles motion for the whole se-
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Figure 8. Distance between 5th and 6th tracked speckles.
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Figure 9. Strain between 5th and 6th tracked speckles.

quence from the ischemic region is 3.2370± 0.9323 voxel.
In contrast, that of the normal tissue from the same heart is
14.3106± 2.4085 voxel.

5. Discussions and conclusions
We present a method for 3D ultrasound speckle tracking

and describe a framework to enforce motion coherence. The
motion coherence constraint helps the nearby speckles to
move coherently. For instance, if one of the speckles tends
to move incorrectly, as part of the group, it has to obey the
motion pattern of the other speckles. To force the coherent
motion, we regularize the velocity field to be smooth; we
follow the coherence regularization proposed for non-rigid
point set registration [11] and show how speckle tracking
benefits from such regularization. We also take advantage
of the dynamic model to assure the temporal smoothness of
the speckle trajectory.

We use a similarity function based on a multiplica-
tive Rayleigh noise model assumption, which is proved to
work better then sum-of-squared-differences and normal-
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Figure 10. Illustration of speckle motions from an ischemic heart region.

ized cross-correlation for the ultrasound data [5].
We use 3D ultrasound post-scan converted envelop im-

ages; the RF data may provide extra information in the axial
direction, however, the computational efforts increase sig-
nificantly due to the large amount of the data to process. We
demonstrate the performance of the method on 10 different
3D echocardiography scans from open chest porcine hearts.
The method shows accurate and robust performance.

Future directions include the adoption of more accurate
and sophisticated heart dynamics for speckle tracking and
the integration of speckle tracking with boundary motion to
better characterize heart deformation.
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