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Abstract

The speed and quality of imaging cardiac structures

(coronary arteries, cardiac valves etc) in MR can be im-

proved by tracking and predicting their motion in MR im-

ages. The problem is challenging not only due to the com-

plex motion of these structures that significantly changes

the appearance of the region of interest, but also the abil-

ity to track at different spatial and temporal resolutions de-

pending on the application. We have developed a multiple-

template based tracking approach to track the cardiac

structures in MR images. The algorithm has two novel fea-

tures. First a bidirectional coordinate-descent algorithm is

derived to improve accuracy and performance of tracking.

Second we propose a method for choosing an optimal set

of templates for tracking. The efficacy of the algorithm has

been validated by tracking the coronary artery and cardiac

valves reliably and accurately in thousands of high resolu-

tion cine and low-resolution real-time MR images.

1. Introduction

Heart-related diseases remain one of the major causes of

morbidity and mortality in the United States [1], making

noninvasive screening an important tool for early detection

of the disease. MRI is a good candidate for noninvasive

screening as it does not require the use of radiation. How-

ever, the speed of MR image acquisition is slow, because

MRI data is acquired in the spatial-fourier domain (known

as the k-space) in an incremental fashion. The image is then

reconstructed by taking the inverse fourier transform of the

k-space data. The extent or range of the acquired k-space

data governs the resolution of the reconstructed image, i.e.

the larger the range, the higher the spatial resolution and

the more time necessary for data acquisition. Thus, in MR

data acquisition there is a fundamental trade-off between

the speed of data acquisition and image resolution.

As a result, data acquisition in cardiovascular MR re-

lies on taking data over multiple heartbeats (known as cine

acquisition) either in a breath-hold (volunteer holding his

breath) or during free breathing. Cardiac structures like

the coronary arteries and valves undergo complex motion

induced by both respiratory and cardiac motion [9, 13].

The motion of the target being imaged during MR data ac-

quisition affects the resulting image quality by introducing

ghost-like artifacts, blur, and by reducing the image con-

trast. Furthermore, variability in respiratory and cardiac

motion cycles within and across patients makes it difficult

to gauge and predict the motion of the cardiac structures,

and to compensate for that motion during MR imaging. In

MR, when the motion of the object being imaged is not

known, motion compensation is done by acquiring data at

time points where the object is at (or almost at) the same

location. The current state-of-the-art methods thus com-

pensate for cardiac motion by filling the k-space data at

the same time point in the cardiac cycle over multiple heart

beats.

One of the advantages of MR imaging is that any plane

through the object can be chosen for image acquisition.

This can be useful for cardiac imaging applications where

the imaging plane can be adaptively changed to follow the

cardiac structure being imaged, provided the motion of the

cardiac structure can be estimated.

The goal of this paper is thus to develop motion track-

ing algorithms to track cardiac structures in MR images

to improve MR imaging speed, quality, and reliability. In

MR coronary angiography, our objective is to track coro-

nary artery in high speed, low-resolution MR images, and

to use the extracted motion information to “servo” the MR

imaging slice to compensate for motion, thereby acquiring

the data as if the structure was stationary [6]. In other ap-

plications, motion information can be estimated by tracking

in MR images acquired during an initial scan (pre-scan),

which can then be used to adaptively re-position the ac-

quisition slice during data acquisition. For example, Fig-
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Figure 1. Motion of the mitral (top row) and aortic (bottom row)

valves through the cardiac cycle in 4-chamber and coronal views

respectively. The overlaid cyan line indicates the valve plane.

ure 1 shows the extent of motion of the aortic and mitral

valve planes through the cardiac cycle. In order to image

the valve, the imaging plane should coincide with the valve

plane throughout the cardiac cycle. Thus, if the motion of

the valve plane through the cardiac cycle is extracted, it can

be used to move the imaging slice during data acquisition

such that the valve plane always lies in it. In each case, the

key to success lies in the ability to track the cardiac struc-

tures in motion-affected MR images across a spectrum of

temporal and spatial resolutions, from low-resolution real-

time to high-resolution cine images.

1.1. Background ­ Tracking Methods

Figure 2. Comparison of high resolution cine (left) and realtime

low-resolution images (right) in 4-chamber (top row) and short

axis views (bottom row). The arrow indicates the location of the

left coronary artery. Note that the coronary artery is clearly visible

in the high resolution images but blurred out in corresponding real-

time images.

As discussed above, our tracking algorithms must be

able to track the cardiac structures in both high resolution

and low resolution images. One of the challenges of track-

ing in low-resolution, real-time images is that the coronary

arteries and the cardiac valves themselves are not visible

as shown in Figures 2 and 3, respectively. Thus, we in-

stead track a region containing the cardiac structure of in-

terest as a substitute for the motion of the structure itself.

Also, the magnitude of motion expected between frames is

small compared to the size of the template and the reso-

Figure 3. Mitral and aortic valves in high resolution cine (left) and

realtime low-resolution images (right) in 4-chamber (top row) and

coronal views (bottom row). The overlaid line indicates the valve

plane.

lution of the images. In this scenario, region-based track-

ing methods [2, 8] are usually preferred, as they provide

highly accurate (typically to small fractions of a pixel) mo-

tion estimates without depending on specific feature extrac-

tion or enhancement methods. In region-based tracking

approaches, one usually minimizes an objective function

that matches the appearance of an area of an image with a

stored reference window referred to as a ”template”. More

recently in region-based tracking, the kernel-based meth-

ods [5, 7] have become popular primarily due to their broad

range of convergence and robustness to small unmodelled

spatial deformations.

Another challenge is that, during the cardiac cycle, the

appearance of the target region undergoes significant, un-

predictable (but repeatable from beat to beat) deformations.

As a result, we have seen that a single template deformed

using commonly employed parametric models (e.g. affine

deformation [2, 3, 8]) is insufficient to track through an en-

tire cardiac cycle. An alternative is to use multiple tem-

plates. One simple way to extend the tracking using mul-

tiple templates is to run the conventional template track-

ing [2, 8] with each template and then select the solu-

tion that most effectively minimizes the objective function.

This approach usually fails in mid-systole and early dias-

tole when both the appearance change and motion are large

between frames. Another approach is to compute the ap-

pearance of the target using a linear combination of basis

images which are either a set of chosen templates, or an or-

thogonal basis thereof [3]).

When using a multiple template approach, there are two

important considerations. First, a large number of tem-

plates in a lot of different frames is required to capture the

appearance variation. In MR, this is usually done manu-

ally which is a time-consuming and error-prone process. A

semi-automatic/automatic learning-based algorithm could

be used for template selection, but we have found patient-

to-patient variability is large and as a result automated se-

lection is not very accurate. Second, it is important to note

that if some of the selected templates happen to be geo-



metric transformations of other selected templates, the al-

gorithm can (and will) compensate for motion using ap-

pearance variation. As a result, without careful choice of

templates, multiple template tracking can significantly un-

derestimate motion. We return to this point in section 2.3.

Therefore, we present a new tracking framework that

makes use of multiple templates but avoids the shortcom-

ings mentioned above. This method incorporates two novel

features. First, we derive a bi-directional, coordinate-

descent optimization that simultaneously computes the lo-

cation and affine mixture in each image. Second, we present

a semi-automated selection method for template selection,

which ensures that independent templates are chosen from

points where the target undergoes large changes. The details

of the tracking algorithm are presented in the next section.

2. Multiple-Template Tracking

In this section, we first formulate the multiple template

problem as a constrained optimization, and derive an initial

solution. We then show that this solution can be extended to

a bi-directional coordinate descent algorithm. Finally, we

present a method for template selection to ensure reliable

and accurate tracking.

2.1. Problem Formulation

Following [3, 8], the basic idea behind the tracking ap-

proach is to describe the current region of interest or the tar-

get as a geometric transformation of an affine combination

of a set of templates. Before expressing this in a mathe-

matical setting, we first define the notation and terminology

used. Let Gt be the target region defined at pixel locations

X = {xi}i=1...n in the current image It at time t. The image

It is defined on a larger set of pixel locations Y = {yi}i=1...N

such that X ⊆ Y. Here N and n are the number of pixels in

the image and target region respectively. Let Zi; i = 1...m
be the reference templates or target regions selected from a

given sequence of images Ii; i = 1...m. We express the cur-

rent target region in terms of the reference templates as

Gt = T (
m

∑
i=1

wiZi,τ) (1)

where wi is the weight corresponding to template Zi and

τ are the transformation parameters. The transformation T

is an operator defined on the locations of the image region

s.t. T (Zi,τ) = Zi(T (xi,τ)) ∀xi ∈ X. For example, for a

simple translational motion model, one can write T (Zi,u) =
Zi(xi +u) ∀xi ∈X , where the transformation parameter u is

the translation vector. In order to make the equation linear

in terms of the unknowns wi and τ , we can rewrite (1) as

follows

T̂ (Gt ,τ) =
m

∑
i=1

wiZi (2)

where T̂ (., .) = T−1(., .). It is well known that one can lin-

earize the expression T̂ (Gt ,τ) using Taylor series [2, 8] as

T̂ (Gt ,τ) = Gt(T̂ (x,τ)) ≈ Gt(x) + ∂Gt(T̂ (x,τ))
∂τ

∣
∣
∣
τ=0

τ . This

approximation is valid under the assumption that τ is small.

In practice, the current template is warped with the param-

eter value at the previous time step before the optimization

step, so effectively one solves for the change in parameter

value ∆τ [2, 8], which is usually small. Also, the affine

linear combination of templates constrains the weights s.t.

∑
m
i=1 wi = 1. Thus the Lagrangian optimization function that

needs to be minimized can be written as

L(w,τ ,λ ) =

∥
∥
∥
∥
∥

Gt(x)+ Dτ −
m

∑
i=1

wiZi

∥
∥
∥
∥
∥

2

+λ (
m

∑
i=1

wi−1) (3)

where D = ∂Gt(T̂ (x,τ))
∂τ

∣
∣
∣
τ=0

and λ is the lagrange multiplier.

One usually solves for the unknown parameters (w,τ) by

taking the partial derivatives of L(w,τ ,λ ) w.r.t w,τ and λ ,

and setting them to zero [4]. Note, w = (w1,w2, . . . ,wm)T is

a vector containing all the weights. After this step, followed

by a few rearrangements, one obtains

(Gt(x)−Zm + Rα)T Q = 0 (4)

where R = [D,Zm −Z1,Zm −Z2, . . . ,Zm −Zm−1]

α = (τ ,w1,w2, . . . ,wm−1)
T

Q = [D,A−Z1,A−Z2, . . . ,A−Zm−1]

A =
∑

m
i=1 Zi

m

Now, (4) can be easily solved to compute α , and hence

(τ,w)
α = −(QT R)−1QT (Gt(x)−Zm) (5)

For the solution in (5) to exist, the rank of the matrix QT R

should be full. The matrix QT R can drop rank under the

following two conditions
1. One or more templates are linearly dependent on the

remaining templates.

2. If two templates are related by the relation; Zi = Z j +
sD, for some vector s and i, j ∈ [1,m].

These conditions act as a guideline for selecting the tem-

plates (more discussion in section 2.3).

2.2. Extension to Bidirectional Methods

It has been shown that bidirectional gradient meth-

ods [10, 11] significantly improve the rate of convergence

and convergence range. Therefore, in this section, we ex-

tend the multiple-template tracking described in section 2.1

to a bidirectional formulation. In order to do so, equation 1,

can be written symmetrically about τ as

T (Gt ,−τ/2) = T (
m

∑
i=1

wiZi,τ/2) (6)



Following the steps in section 2.1, the Lagrangian optimiza-

tion function becomes

L(w,τ ,λ ) =

∥
∥
∥
∥
∥
∥
∥
∥
∥

Gt(x)−Dτ/2−
m

∑
i=1

wi(Zi + DZi

︸ ︷︷ ︸

P

)

∥
∥
∥
∥
∥
∥
∥
∥
∥

2

+ λ (
m

∑
i=1

wi −1)

(7)

where D = ∂Gt(T (x,τ))
∂τ

∣
∣
∣
τ=0

and DZi = ∂Zi(T(x,τ))
∂τ

∣
∣
∣
τ=0

.

Taking partial derivatives of L(w,τ ,λ ) w.r.t. w,τ and λ , and

eliminating λ , one gets the partial derivatives w.r.t. wi’s and

τ as follows

∂L

∂wi

= PT
[

M− (Zi + DZi

τ

2
)
]

, i = 1, ...,m−1 (8a)

∂L

∂τ
= PT

[

−
D

2
−

m

∑
i=1

wiDZi

]

(8b)

where M =
∑

m
i=1 Zi+DZiτ/2

m
and P is the given by underbrace

in 7. It can be noted that the partial derivative w.r.t. wm is

not required as it is linearly dependent on the other m− 1

partial derivatives w.r.t. wi, i = 1, ...,m−1. Since the partial

derivatives in 8 are non-linear in wi’s and τ , the optimiza-

tion cannot be solved in closed form. Another way of solv-

ing the optimization is by iteratively solving each subequa-

tion in 8 separately by keeping the other variable constant,

also known as coordinate descent algorithm [4]. If the other

variable is kept constant, the solution now becomes

(w1, . . . ,wm−1)
T = (Q1T R1)−1Q1T E1 (9a)

τ = (JT J)−1JT (Gt −
m

∑
i=1

wiZi) (9b)

where E1 = Gt −
τ

2
D− (Zm +

τ

2
DZm)

J =
D+ ∑

m
i=1 DZi

2

and the ith column of R1 and Q1 are given by

[R1i] =
[

Zi −Zm +
τ

2
(DZi −DZm)

]

[Q1i] =
[

M− (Zi +
τ

2
DZi)

]

One of the limitations of the coordinate descent algorithm

is that it can get stuck in local minima if not properly initial-

ized. We initialize the algorithm with the τ value obtained

from 5 which is usually a good initialization.

2.3. Template Selection

In order to make sure the solution in 5 and 9 is non-

singular, the following matrix should be well conditioned

N = [Z1,DZ1,Z2,DZ2, . . . ,Zm,DZm] (10)

where DZi =
∂Zi(T (x,τ))

∂τ

∣
∣
∣
τ=0

. A large condition number in-

dicates a poor selection of templates indicating that a tem-

plate is a transformation of some other template or a com-

bination of templates. For the matrix QT R, this can also

happen when the target region in the current frame is close

to one of the two templates. An assumption made here is

that the derivative of the current region D will be close to

the linear combination of the derivative of templates. Al-

though, the matrix N indicates whether a given set of tem-

plates would ensure a non-singular solution of the optimiza-

tion but it does not tell you which templates to select from

a given set of templates.

If we take a closer look at the matrix N, the two columns

[Zi,DZi] corresponding to a template Zi constitute the

transformation tangent plane [14] of the template Zi. It is

easy to see that if the tangent planes of the selected tem-

plates that constitute the matrix N are well separated, the

matrix N will be well-conditioned. This notion can be cap-

tured by ’tangent distance’ [14], that is defined as the min-

imum distance between the two tangent planes. Thus, to

ensure a non-singular solution, one needs to find a set of

templates with well separated tangent planes and are a rep-

resentative set of all the templates. Hence, our algorithm is

based on clustering using the tangent distance. We use the

spectral clustering method proposed by Ng et. al. [12]. Each

entry in the affinity matrix is the tangent distance between

the two corresponding templates. The number of clusters

is chosen by the user from the eigenvalues of the normal-

ized eigenvector matrix generated from the affinity matrix.

The templates that are closest to the cluster mean centers

are selected for tracking.

The algorithm was run on manually selected templates

chosen at the left end of the mitral valve in the 4-chamber

view. In this case, the number of clusters was chosen to be 3,

as the first three eigenvalues of the normalized eigenvector

matrix were most significant. Figure 4 shows the optimal

templates selected at frames 5, 17 and 36. The tracking

was performed using these templates. To compare it with

a non-optimal choice of templates, the tracking was also

run with equally spaced templates at frames (5,20,35) and

(1,20,40) respectively. The tracking results are compared

in Figure 5. The tracking result for optimal templates was

found to be visually the best. It is important to note that the

manual selection is not ground truth as it is very difficult

to select templates with continuous motion. The tracking

results for ’equal-spaced 1’ and optimal templates are close

as the templates lie in similar clusters. Another point to

note is that in the current formulation, we pick the template



Figure 4. Optimal Templates selected (enclosed in rectangle) from

the manually selected 40 templates.
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Figure 5. Tracking comparison with optimal and non-optimal tem-

plates. The templates used for equal-spaced 1 and 2 are (5,20,35)

and (1,20,40) respectively.

closest to the mean as the optimal template in that cluster

which might not be the best template corresponding to that

cluster. Also, increasing the number of optimal templates

can further improve the tracking.

3. Demonstrations

3.1. Data and Parameters

The left coronary artery is visible in the 4-chamber, short

axis and coronal views whereas the mitral and aortic valves

are visible in 4-chamber and coronal views (see Figure 1)

respectively. Thus, the acquired data consisted of both

low-resolution real-time and high resolution cine images in

the short axis, 4-chamber and coronal views taken from 5

volunteers. The high resolution cine data had the follow-

ing parameters: In-plane reconstructed resolution = 1.6 -

1.92mm, Slice thickness = 6mm, Acquisition matrix size =

120× 192− 156× 192 pixels, Temporal resolution = 21-

33msec, on a 1.5T scanner (Espree, Siemens). The real-

time SSFP images were acquired during both free-breathing

and breath-hold with the following parameters: In-plane re-

constructed resolution = 2.76 - 2.89mm, Slice thickness = 6

Figure 6. Process flow for the proposed cardiac valve imaging ap-

proach

- 8mm, Acquisition matrix size = 50×128−68×128 pix-

els, Interpolated matrix size = 88×128−112×128 pixels.

The breath-hold real-time data was acquired with the sub-

jects holding their breath at end-expiration over a duration

of 6-8 cardiac beats (≈ 130 frames). It is important to note

that the high resolution cine images are acquired by filling

the fourier k-space over multiple heart beats whereas the

low resolution real-time images are acquired by filling the

k-space in a single heart beat. For the tracking results pre-

sented in the next subsections, a 2D translation model was

found to be sufficient for modeling the transformation.

3.2. Tracking in High­Resolution

Valve Tracking: As discussed in the introduction sec-

tion, if the location of the valve plane is estimated at differ-

ent time points in the cardiac cycle, the imaging plane can

be repositioned to lie in the valve plane. Figure 6 gives the

different steps involved in the approach. Note that the third

step involves tracking in real-time images. We will defer

discussion regarding this step until the next section.

The valve planes through the cardiac cycle are estimated

by tracking the region around the end-points of the valve.

The valve is then localized by the line segment joining

the end-points (center of the tracked region) of the valve.

The algorithm requires user input for the selection of tem-

plates that can be time-consuming and tedious. If the user is

guided through a few frames (key frames) to select the tem-

plate or reference locations of the valve end-points, the tem-

plate selection process can be significantly simplified and

sped up. These key frame locations (in terms of percent

cardiac cycle length) should contain optimal/near optimal

templates and should be invariant over different volunteers.

In order to find such key frames, we use the template se-

lection process described in section 2.3 for every volunteer.

The valve end-points were manually located in all frames

for all volunteers. The manual locations were smoothed

by filtering and chosen as center locations for the templates

with size 25x25 pixels. The number of clusters was set to 5.

All the templates for each volunteer were segmented into 5

clusters using the algorithm in section 2.3. The key-frames



Figure 8. Error between tracked and manually selected locations

across all volunteers.

Figure 9. Process flow for the proposed coronary imaging ap-

proach.

were picked such that they span all the 5 clusters in all vol-

unteers. For the mitral valve, the key-frames were selected

at 0, 17.5, 37.5, 52.5 and 87.5 percent of the cardiac cycle.

The key-frames for the aortic valve were at 0,17.5, 37.5, 60,

and 82.5 percent of the cardiac cycle. The tracking of both

mitral and aortic valves was then performed in all volunteers

using templates selected just from these key frames.

Figure 7 shows the valve tracking results and its compar-

ison to manual selection in one volunteer. It is easy to see

that the tracking results match very closely with the man-

ual selection. As the orientation of the heart is volunteer-

specific, the valve motion data from all volunteers in the

4-chamber view was transformed into a consistent heart co-

ordinate system (see Figure 7), that was computed using the

4-chamber and short axis slice orientations. The error be-

tween the tracked and manually selected mid-point of the

valves was also computed. Figure 8 shows the mean and

standard deviation of the total error between the tracked and

manually selected location of the mid-point of the valves in

all 5 volunteers. The isotropic pixel dimension in these high

resolution images range from 2.5-2.7mm across all volun-

teers. Thus, the error is well within sub-pixel accuracy.

3.3. Tracking in Low­Resolution

Coronary Artery Tracking: As mentioned in introduc-

tion, an approach was recently proposed by [6] to reduce

Figure 10. Tracked positions of left coronary artery in 4-chamber

(1st row), short axis (2nd row) and coronal (3rd row) views at dif-

ferent points in the cardiac cycle. The cyan box represents the

region being tracked and the green dot denotes the coronary loca-

tion.

the effects of motion variability by tracking the coronary

artery in low-resolution realtime images in each heart cy-

cle, and then using the motion information to guide the high

resolution image acquisition (see Figure 9). The feasibility

of the approach relies on the ability to track the coronary

motion reliably in low-resolution MR images taken during

free-breathing. The tracking of the coronary artery was per-

formed in 4-chamber, short axis and coronal views. As the

number of templates per cardiac cycle is low (10-15), the

templates were chosen at end-systole, mid-diastole and end-

diastolic time points in the cardiac cycle. It was made sure

that these templates satisfied the full rank condition. Fig-

ure 10 shows the tracked position of the left coronary artery

in free breathing low resolution MR images in all the three

views.

Validation with high resolution: The variability in the

cardiac component of the coronary motion can be attributed

to three factors: a) cardiac cycle length (heart rate) variabil-

ity, b) cardiac motion variability and c) motion hysteresis

between beats. This makes it difficult to obtain ground truth

motion of the coronary arteries on a beat-to-beat basis and

hence validate the tracked coronary motion. We therefore

validated the tracking by comparing the coronary motion in

’high resolution cine’ with tracked coronary motion in ’low

resolution real-time’ images, both taken during breath-hold.

The tracked coronary motion in the real-time breath hold

images in all three views was segmented into systolic and

diastolic periods for each cardiac cycle. The first and second

order derivatives were used to detect end-systolic (ES) and

end-diastolic (ED) time points in each cardiac cycle. Note

that the motion data obtained by tracking was not filtered.

The coronary locations in the ’high resolution cine’ images

were manually selected. To reduce the effect of cardiac cy-
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Figure 7. Valve tracking and its comparison to manual selection in a single volunteer. First and second rows correspond to the mitral valve

and aortic valves respectively. The blue and magenta lines corresponds to the tracked and manually selected valve planes. The first image

in the top row shows the heart coordinate system. The bottom row shows the comparison of motion of the mid-point of both mitral and

aortic valves.

Figure 11. Comparison of tracked coronary motion in realtime with the motion in high resolution images in coronal (left), four chamber (center) and short

axis views (right) respectively.

cle length variability the systolic and diastolic durations for

the motion data in both high resolution and low resolution

were normalized and interpolated before comparison. Also,

the motion data during each cardiac beat was made zero-

mean to reduce the effect of motion hysteresis. Figure 11

shows the comparison for one volunteer. The low resolution

motion tracking is in good agreement with the high resolu-

tion coronary motion except in transformed x direction of

both 4-chamber and short axis views, where the range of

motion is very small. In general, for all the volunteers, the

total error (error in both x and y directions) between high

resolution and average low resolution tracked motion during

the mid-diastolic to end-diastolic period where the image

acquisition is done was quite small. The total error across 5

volunteers is shown in Figure 12. The error is usually less

than 2-3 mm which is much less than a pixel of total error in

low resolution images (≈ 4mm). The isotropic pixel dimen-

sions in high resolution images and low-resolution images

varied from 1.77 to 1.9 mm and 2.76 to 2.9 mm respectively

for all 5 volunteers. Keeping in mind the variability in coro-

nary motion, manual coronary selection and tracking, the

error values are small and within acceptable limits.

Valve Tracking: As mentioned earlier, one of the steps

in the process flow for valve imaging (see Figure 6) involves

real-time tracking in one or two breath-holds before switch-

ing to the data acquisition. This is important because a dif-

ferent breath-hold is used for pre-scan and data acquisition,

and there could be an unknown offset in valve plane posi-

tioning due to either hysteresis effects or shift between dif-

ferent breath-holds, that can be corrected by real-time track-

ing. Thus, here we present the tracking of mitral and aor-

tic valve planes in low-resolution images in 4-chamber and



Figure 12. Total error between high resolution and average low resolution

realtime tracked motion

Figure 13. Tracking of mitral (top row) and aortic (bottom row) valves

in low-resolution real-time images. Three frames from the 128 frame long

sequence for each view are shown.

coronal views (see Figure 13) respectively. The template

selection was similar to that used for coronary artery track-

ing. The tracking accuracy in real-time images was assessed

visually and were found to be in good agreement.

4. Conclusions

We have presented a multiple template-based tracking

method to track the cardiac structures like coronary arteries

and cardiac valves reliably and accurately in MR images.

The tracking algorithm has been validated on MR images of

varying temporal and spatial resolution. The ability to track

these cardiac structures in MR images will help greatly im-

prove the speed and quality of imaging these structures in

MR.

The selection of a large number of multiple templates

is time-consuming and often error-prone that can lead to

underestimation of motion parameters. Thus, we present an

algorithm for selection of a few optimal templates where the

target undergoes significant appearance changes. We also

present a bidirectional gradient optimization that improves

the range of convergence and accuracy of tracking. The

approach also provides a framework for updating multiple

templates online and use a subset of templates depending

on the point in the cardiac cycle to further improve tracking

accuracy.

Currently, we are working on integrating the tracking ap-

proach into a MR Scanner and evaluate the effect of motion

compensation in human volunteers. In future, we plan to

further validate the approach using cardiac motion phan-

toms undergoing known motion transformations. In addi-

tion, we would like to integrate estimation techniques like

Kalman filter to remove jitter and further improve the track-

ing.
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