
Dynamic 3D Scene Analysis from a Moving Vehicle

Bastian Leibe1 Nico Cornelis2 Kurt Cornelis2 Luc Van Gool1,2

1ETH Zurich 2KU Leuven
Zurich, Switzerland Leuven, Belgium

{leibe,vangool}@vision.ee.ethz.ch {firstname.lastname}@esat.kuleuven.be

Abstract

In this paper, we present a system that integrates fully
automatic scene geometry estimation, 2D object detection,
3D localization, trajectory estimation, and tracking for dy-
namic scene interpretation from a moving vehicle. Our sole
input are two video streams from a calibrated stereo rig on
top of a car. From these streams, we estimate Structure-
from-Motion (SfM) and scene geometry in real-time. In par-
allel, we perform multi-view/multi-category object recogni-
tion to detect cars and pedestrians in both camera images.
Using the SfM self-localization, 2D object detections are
converted to 3D observations, which are accumulated in a
world coordinate frame. A subsequent tracking module an-
alyzes the resulting 3D observations to find physically plau-
sible spacetime trajectories. Finally, a global optimization
criterion takes object-object interactions into account to ar-
rive at accurate 3D localization and trajectory estimates
for both cars and pedestrians. We demonstrate the perfor-
mance of our integrated system on challenging real-world
data showing car passages through crowded city areas.

1. Introduction
The task we address in this paper is dynamic scene anal-

ysis from a moving, camera-equipped vehicle. At any point
in time, we want to detect other traffic participants in the en-
vironment (cars, bicyclists, and pedestrians), localize them
in 3D, estimate their past trajectories, and predict their fu-
ture motion (as shown in Fig. 1). Such a capability has ob-
vious applications in driver assistance systems, but it also
serves as a testbed for many interesting research challenges.

Scene analysis of this sort requires multi-viewpoint,
multi-category object detection. Since we cannot control
the vehicle’s path, nor the environment it passes through,
the detectors need to be robust to a large range of light-
ing variations, noise, clutter, and partial occlusion. For 3D
localization, an accurate estimate of the scene geometry is
necessary. The ability to integrate such measurements over
time additionally requires continuous self-localization and
recalibration. In order to finally make predictions about fu-
ture states, powerful tracking is needed that can cope with a

Figure 1. Online 3D localization and trajectory estimation results
of our system obtained from inside a moving vehicle. The different
bounding box intensities correspond to our system’s confidence
level in its estimates.

changing background. On the other hand, each object will
typically persist in the vehicle’s field of view only for a few
seconds. It is thus not as important to uniquely track a per-
son’s identity as in classic surveillance scenarios.

In this paper, we present a system which addresses those
challenges by integrating recognition, reconstruction, and
tracking in a collaborative ensemble. Namely, SfM yields
scene geometry for each image pair, which greatly helps the
other modules. Recognition picks out objects of interest and
separates them from the dynamically changing background.
Tracking adds a temporal context to individual object de-
tections and provides them with a history supporting their
presence in the current video frame. Detected object tra-
jectories, finally, are extrapolated to future frames and are
constantly reevaluated in the light of new evidence.

The paper contains the following contributions. 1) We
present an integrated system for dynamic scene analysis
on a mobile platform. We demonstrate how its individual
components can benefit from each other’s continuous in-
put and how the transferred knowledge can be used to im-
prove scene analysis. 2) In particular, we present a multi-
view/multi-category object detection module that can reli-
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ably detect cars and pedestrians in crowded real-world traf-
fic scenes. We show how knowledge about the scene geom-
etry can be used in such a system both to improve recog-
nition performance and to fuse the outputs of multiple de-
tectors. 3) We demonstrate how the resulting 2D detections
can be integrated over time to arrive at accurate 3D localiza-
tion and orientation estimates of static objects. 4) In order
to deal with moving objects, we propose a novel tracking
approach which formulates the tracking problem as space-
time trajectory analysis followed by hypothesis selection.
This approach is capable of tracking a large and variable
number of objects through complex outdoor scenes with a
moving camera. In addition, it can model physical object-
object interactions to arrive at a globally optimal scene in-
terpretation. 5) Finally, we demonstrate the performance of
our integrated system on two challenging video sequences
of car passages through crowded city centers showing ac-
curate 3D localization and trajectory estimation results for
cars, bicyclists, and pedestrians.

The paper is structured as follows. The following sec-
tions discuss related work and give a general overview of
our system. After that, Sections 2, 3, and 4 describe our
scene geometry estimation, object detection, and tracking
approaches in detail. Section 5 presents experimental re-
sults. A final discussion concludes our work.

Related Work. Scene analysis with a moving camera is a
notoriously difficult task because of the combined effects of
egomotion, blur, and rapidly changing lighting conditions
[3, 6]. In addition, the introduction of a moving camera in-
validates many simplifying techniques we have grown fond
of, such as background subtraction and a constant ground
plane assumption. Such techniques have been routinely
used in surveillance and tracking applications from static
cameras (e.g. [2, 12]), but they are no longer applicable
here. While object tracking under such conditions has been
demonstrated in clean highway situations [3], reliable per-
formance in urban areas is still an open challenge [7].

In order to allow tracking with a moving camera, several
approaches have started to explore the possibilities of com-
bining tracking with detection [1, 8, 21, 23]. At the same
time, object detection itself has made tremendous progress
over the last few years [5, 15, 18, 22, 23], to an extent that
state-of-the-art detectors are becoming applicable in com-
plex outdoor scenes. [10] have shown that geometric scene
context can greatly help recognition and have proposed a
method to estimate it from a single image. More recently,
[13] have combined recognition and SfM, however only for
the purpose of localizing static objects.

In our approach, we integrate geometry estimation and
tracking-by-detection in a combined system that searches
for the best scene interpretation by global optimization. [2]
also perform global trajectory optimization to track up to
six mutually occluding individuals by modelling their posi-

tions on a discrete occupancy grid. However, their approach
requires static cameras, and optimization is performed only
for one individual at a time. In contrast, our approach mod-
els object positions continuously while moving through a
3D world and allows to find a combined optimal solution.

System Overview. Our input data are two video streams
from a calibrated stereo rig mounted on top of a vehicle.
From this data, an SfM module computes a camera pose
and ground plane estimate for each image. This informa-
tion is fed to an object detection module, which processes
both camera images to detect cars and pedestrians in the ve-
hicle’s field of view. The necessary reliability of the detec-
tion module is achieved by integrating multiple local cues,
fusing the output of several single-view detectors, and mak-
ing use of the continuously updated ground plane estimate.
Using the estimated camera pose, 2D detections are then
converted to 3D observations and passed to the subsequent
tracking module. This module analyzes the incoming 3D
observations to find plausible spacetime trajectories and se-
lects the best explanation for each frame pair by a global
optimization criterion.

2. Real-Time Scene Geometry Estimation
Real-Time Structure-from-Motion (SfM). Our SfM
module is based on the approach by [4], which is highly
optimized and runs at 26-30 fps. It takes the green channel
of each camera as input and extracts image feature points
by finding local maxima of a simple feature measure based
on average intensities of four subregions. The extracted fea-
tures are matched between consecutive images and then fed
into a classic SfM pipeline [9], which reconstructs feature
tracks and refines 3D point locations by triangulation. Bun-
dle adjustment is running in parallel with the main SfM al-
gorithm to refine camera poses and 3D feature locations for
previous frames and thus reduce drift.

Online Ground Plane Estimation. For each image pair,
SfM delivers an updated camera calibration. In addition, we
obtain an online ground plane estimate by computing local
normals on a set of trapezoidal road strips between the re-
constructed wheel contact points of adjacent frames and av-
eraging those local measurements over a larger window. In
order to do this reliably, it is necessary to find a good com-
promise for the window size this estimate is based on. We
experimentally found a window size of 3m, roughly corre-
sponding to the ground patch beneath the vehicle, to be opti-
mal for a variety of different cases. Note that this procedure
automatically adjusts for the driving speed. A lower driv-
ing speed leads to more accurate reconstruction, so that the
smaller strip sizes are sufficient. Conversely, higher speed
(or lower frame rate) reduces reconstruction quality, but this
is compensated for by the larger strip size between frames.

Figure 2 highlights the importance of this continuous
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Figure 2. (top and right) Illustration for the importance of a con-
tinuous reestimation of scene geometry. The images show the ef-
fect on object detection when the vehicle hits a speedbump (top) if
using an unchanged ground plane estimate; (bottom) if using the
online reestimate. (bottom left) Training viewpoints used for cars
and pedestrians.

reestimation step if later stages are to trust its results. In
this example, the camera vehicle hits a speedbump, causing
a massive jolt in camera perspective. The top row of Fig. 2
shows the resulting detections when the ground plane esti-
mate from the previous frame is simply taken over. As can
be seen, this results in several false positives at improbable
locations and scales. The bottom image displays the de-
tections when the reestimated ground plane is used instead.
Here, the negative effect is considerably lessened.

3. Object Detection
The recognition system is based on a battery of single-

view, single-category ISM detectors [15]. This approach
lets local features, extracted around interest regions, vote
for the object center in a 3-dimensional Hough space, fol-
lowed by a top-down segmentation and verification step.
For our application, we use the robust multi-cue extension
from [14], which integrates local Shape Context descriptors
[19] computed at Harris-Laplace, Hessian-Laplace, and
DoG interest regions [17, 19]. The main contribution of
this section is how to fuse those different detectors and how
to integrate scene geometry into the recognition system.

Our system uses a set of 5 single-view detectors for the
different car orientations and one additional pedestrian de-
tector (Fig. 2). We do not differentiate between pedestri-
ans and bicyclists here, as they are often indistinguishable
from a distance and our detector responds well to both cate-
gories. We start by running all detectors in parallel on both
camera images and collect their hypotheses (without the fi-
nal verification step). For each such hypothesis h, we com-
pute two per-pixel probability maps p(p = figure|h) and
p(p=ground |h), as described in [15].
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Figure 3. Benefits of scene geometry for object detection. (left)
A ground plane significantly reduces the search volume for Hough
voting. A Gaussian size prior additionally “pulls” object hypothe-
ses towards the right locations. (right) The responses of multiple
detectors are combined if they refer to the same scene object.

Integration of Scene Geometry Constraints. Given the
camera calibration and ground plane estimate from SfM, we
can associate each image-plane hypothesis h with a 3D lo-
cation by projecting a ray from the camera center through
the base point of its detection bounding box. If the ray in-
tersects the ground plane, we can estimate the object’s real-
world size by projecting a second ray through the bound-
ing box top point and intersecting it with a vertical plane
through its 3D base. Using this information, we can ex-
press the likelihood for a real-world object H given image
I entirely by the image-plane hypotheses h according to the
following marginalization:

p(H |I)=
∑

h

p(H |h)p(h|I)∼
∑

h

p(h|H)p(H)p(h|I) (1)

The following paragraphs describe each of those three fac-
tors in detail and explain how they are used in our recogni-
tion system.

2D Recognition Score. The last term in eq. (1) is the likeli-
hood of hypothesis h given the image. Using the top-down
segmentation of h, we express this likelihood in terms of
the pixels h occupies:

p(h|I) =
∑
p∈I

p(h|p) ≈
∑

p∈Seg(h)

p(p = figure|h)p(h), (2)

where Seg(h) denotes the segmentation area of h, i.e. the
pixels for which p(p = figure|h) > p(p = ground |h).

Ground Plane Constraints. The middle term p(H) ex-
presses a 3D prior for finding an object at location H , which
we split into separate priors for the object size and distance
given its category.

p(H) = p(Hsize |Hcateg)p(Hdist |Hcateg)p(Hcateg) (3)

In our application, we assume a uniform distance prior and
model the size prior by a Gaussian (similar to [10]). This
effective coupling between object distance and size through
a ground plane assumption has several beneficial effects.
First, it significantly reduces the search volume during vot-
ing to a corridor in Hough space (Fig. 3(left)). In addition,
the Gaussian size prior serves to “pull” object hypotheses
towards the correct locations, thus improving also recogni-
tion quality.



Multi-Detector Integration. The third factor in eq. (1),
finally, is a 2D/3D transfer function p(h|H), which relates
the image-plane hypothesis h to the 3D object hypothesis
H . This term is of particular interest in combination with
the sum over all h, since it allows to effectively fuse the
results of the different single-view detectors by clustering
the inferred world states. The intuition behind this step is
that two image-plane detections are consistent if they corre-
spond to the same 3D object (Fig. 3(right)). Thus, we can
disambiguate between overlapping responses from different
detectors on the basis of the world state they would infer,
which is done in the following global optimization step.

Multi-Category Hypothesis Selection. In order to obtain
the final interpretation for the current image pair, we search
for the combination of hypotheses that together best explain
the observed evidence. In [15], this is done by adopting
an MDL formulation and expressing the savings [16] of a
particular hypothesis h as

Sh = K0Sdata − K1Smodel − K2Serror , (4)

where Sdata corresponds to the number N of data points
or pixels that are explained this way; Smodel denotes the
model cost, usually a constant; and Serror describes a cost
for the error that is made by this representation. More gen-
erally, it can be shown that if the error term is chosen as the
sum over all data points x assigned to a hypothesis h of the
probabilities that the point assignment is wrong

Serror =
∑
x∈h

(1 − p(x|h)), (5)

then the savings reduce to the merit term

Sh = −κ1 +
∑
x∈h

((1 − κ2) + κ2p(x|h)) , (6)

which is effectively just the sum over the data assignment
likelihoods, together with a regularization term to compen-
sate for unequal sampling. When hypotheses overlap, they
compete for data points, resulting in interaction costs. As
shown in [16], the optimal hypothesis selection can then be
formulated as a Quadratic Boolean Optimization Problem

max
m

mTQm = max
m

mT

⎡⎢⎣ q11 · · · q1M

...
. . .

...
qM1 · · · qMM

⎤⎥⎦m (7)

with an indicator vector m = {m1, . . . , mM}, where mi =
1 if hi is selected and 0 otherwise; and an interaction ma-
trix Q. Here, we pursue a similar approach. In contrast
to [15], however, we perform the hypothesis selection not
over image-plane hypotheses hi, but over their correspond-
ing world hypotheses Hi. Combining eqs. (1) and (6), we
obtain the following merit terms

qii = SHi =−κ1 +
∑

k

p(hk|Hi)p(Hi)f(hk), (8)

f(hk) =
1

Aσ,v(hk)

∑
p∈Seg(h)

((1−κ2) + κ2p(p=fig.|hk))(9)

t

(a) (b) (c)

Figure 4. Visualization of example event cones for (a) a static ob-
ject with unknown orientation; (b) a holonomically moving object;
(c) a non-holonomically moving object.

where Aσ,v(hk) acts as a normalization factor expressing
the expected area of a 2D hypothesis at its detected scale
and aspect. Two 3D hypotheses Hi and Hj interact if their
supporting image-plane hypotheses hki and hkj compete
for the same pixels. In this case, we assume that the hypoth-
esis H∗ ∈ {Hi, Hj} that is farther away from the camera is
occluded and subtract its support in the overlapping image
area. The interaction cost then becomes

qij =−1
2

∑
k∗

p(hk∗ |H∗)p(H∗)f(hk∗). (10)

As a result of this procedure, we obtain a set of world
hypotheses {Hi}, together with their supporting segmenta-
tions in the image. At the same time, the hypothesis selec-
tion procedure naturally integrates the contributions from
the different single-view, single-category detectors. We per-
form the optimization separately for the two camera images
and pass the resulting detections to the following temporal
integration stage.

4. Temporal Integration and Tracking
In order to present our tracking approach, we introduce

the concept of event cones. The event cone of an observa-
tion Hi,t = {xi,t, vi,tis the spacetime volume it can physi-
cally influence from its current position given its maximal
velocity and turn rate. Figure 4 shows an illustration for sev-
eral cases of this concept. If an object is static at time t and
its orientation is unknown, all motion directions are equally
probable, and the affected spacetime volume is a simple
double cone reaching both forwards and backwards in time
(Fig. 4(a)). If the object moves holonomically, i.e. without
external constraints linking its speed and turn rate, the event
cone becomes tilted in the motion direction (Fig. 4(b)). An
example for this case would be a pedestrian at low speeds.
In the case of nonholonomic motion, as in a car which can
only move along its main axis and only turn while mov-
ing, the event cones get additionally deformed according to
those (often nonlinear) constraints (Fig. 4(c)).

We thus search for plausible trajectories through the
spacetime observation volume by linking up event cones.
Starting from an observation Hi,t, we follow its event cone
up and down the timeline and collect all observations that
fall inside its volume in the adjoining time steps. Since we
do not know the starting velocity vi,t yet, we begin with the
case in Fig. 4(a). In all subsequent time steps, however, we



Figure 5. Detections and corresponding top-down segmentations
used to learn the object-specific color model.

can reestimate the object state from the new evidence and
adapt the growing trajectory accordingly.

It is important to point out that an individual event cone
is not more powerful in its descriptive abilities than a bidi-
rectional Extended Kalman Filter, since it is based on es-
sentially the same equations. However, our approach goes
beyond Kalman Filters in several important respects. First
of all, we are no longer bound by a Markovian assumption.
When reestimating the object state, we can take several pre-
vious time steps into account. In our approach, we aggre-
gate the information from all previous time steps, weighted
with a temporal discount λ. In addition, we are not re-
stricted to tracking a single hypothesis. Instead, we start
independent trajectory searches from all available observa-
tions (at all time steps) and collect the corresponding hy-
potheses. The final scene interpretation is then obtained by
a global optimization criterion which selects the combina-
tion of trajectory hypotheses that best explains the observed
data under the constraints that each observation may only
belong to a single object and no two objects may occupy
the same physical space at the same time. The following
sections explain those steps in more detail.

Color Model. For each observation, we compute an object-
specific color model ai, using the top-down segmentations
provided by the previous stage. Figure 5 shows an example
of this input. For each detection Hi,t, we build an 8× 8× 8
RGB color histogram over the segmentation area, weighted
by the per-pixel confidence

∑
k p(p = fig.|hk)p(hk|Hi,t)

in this segmentation. Similar to [20], we compare color
models by their Bhattacharyya coefficient

p(ai|A) ∼
∑

q

√
ai(q)A(q) (11)

Dynamic Model. Given a partially grown trajectory Ht0:t,
we first select the subset of observations which fall inside
its event cone. Using the simple motion models

ẋ = v cos θ
ẏ = v sin θ

θ̇ = Kc

and
ẋ = v cos θ
ẏ = v sin θ

θ̇ = Kcv
(12)

for holonomic and nonholonomic motion on the ground
plane, respectively, we compute predicted positions

xp
t+1 = xt + v∆t cos θ

yp
t+1 = yt + v∆t sin θ

θp
t+1 = θt + Kc∆t

and
xp

t+1 = xt + v∆t cos θ
yp

t+1 = yt + v∆t sin θ
θp

t+1 = θt + Kcv∆t
(13)

and approximate the positional uncertainty by an oriented
Gaussian to arrive at the dynamic model D

D : p

([
xt+1

yt+1

])
∼ N

([
xp

t+1

yp
t+1

]
, RT

[
σ2
mov 0
0 σ2

turn

]
R

)
p(θt+1) ∼ N (θp

t+1, σ
2
steer )

(14)

where R is the rotation matrix, Kc the path curvature, and
the nonholonomic constraint is approximated by adapting
the rotational uncertainty σturn as a function of v.

Spacetime Trajectory Search. Each candidate observa-
tion Hi,t+1 is then evaluated under the covariance of D and
compared to the trajectory’s appearance model A (its mean
color histogram), yielding

p(Hi,t+1|Ht0:t) = p(Hi,t+1|At)p(Hi,t+1|Dt). (15)

After this, the trajectory is updated by the weighted mean
of its predicted position and the supporting observations:

xt+1=
1
Z

(
p(Ht+1|Ht0:t)x

p
t+1 +

∑
i

p(Hi,t+1|Ht0:t)xi

)
. (16)

with p(Ht+1|Ht0:t) = e−λ and normalization factor Z . Ve-
locity, rotation, and appearance model are updated in the
same fashion.

Static cars are treated as a special case, since their orien-
tation cannot be inferred from their motion direction and our
appearance-based detectors provide a too coarse orientation
estimate for our goal to estimate a precise 3D bounding box.
Instead, we accumulate detections over a longer time frame.
Using the observation that the main localization uncertainty
from our detectors occurs both along the car’s main axis
and along our vehicle’s viewing direction, we then estimate
the car orientation as the weighted mean between our detec-
tors’ orientation estimate and the cluster shape of all inlier
observations projected onto the ground plane.

Global Trajectory Selection. We express the support S of
a trajectoryHt0:t reaching from time t0 to t by the evidence
collected from the images It0:t during that time span:

S(Ht0:t|It0:t) =
∑

i

p(Ht0:t|Hi,ti)p(Hi,ti |Iti) (17)

= p(Ht0:t)
∑

i

p(Hi,ti |Ht0:t)
p(Hi,ti)

p(Hi,ti |Iti)

∼ p(Ht0:t)
∑

i

p(Hi,ti |Ht0:t)p(Hi,ti |Iti)

where p(Hi,ti) =
∑

j p(Hi,ti |Hj) is a normalization factor
that can be omitted, since we are only interested in relative
scores. Further, we define

p(Hi,ti |Ht0:t) = p(Hti |Ht0:t)p(Hi,ti |Hti) (18)

= e−λ(t−ti)p(Hi,ti |Ati)p(Hi,ti |Dti)

that is, we express the likelihood of an observation H i,ti

belonging to trajectory Ht0:t = (A,D)t0 :t by evaluating it
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Figure 6. Visualization of the estimated spacetime trajectories for
cars and pedestrians from the scene in Fig. 1. Blue dots show
pedestrian observations; red dots correspond to car observations.

under the trajectory’s appearance and dynamic model at that
time, weighted with a temporal discount.

In order to find the combination of trajectory hypothe-
ses that together best explain the observed evidence, we
again solve a Quadratic Boolean Optimization Problem
max

em m̃TQ̃m̃ with the additional constraint that no two ob-
jects may occupy the same space at the same time. With a
similar derivation as in Section 3, we arrive at

q̃ii = −κ̃1 +
∑

Hk,tk
∈Hi

((1−κ̃2) + κ̃2 gk,i) (19)

q̃ij = −1
2

∑
Hk,tk

∈Hi∩Hj

((1−κ̃2) + κ̃2 gk,∗ + κ̃3 Oij) (20)

gk,i = p(Hk,tk
|Hi)p(Hk,tk

|Itk
).

where again H∗ ∈ {Hi,Hj} denotes the weaker of the two
hypotheses and the additional penalty term O ij measures
the physical overlap between the spacetime trajectory vol-
umes of Hi and Hj given average object dimensions.

The hypothesis selection procedure always searches for
the best explanation of the current world state given all ev-
idence available up to now. It is not guaranteed that this
explanation is consistent with the one we got for the previ-
ous frame. However, as soon as it is selected, it explains the
whole past, as if it had always existed. We can thus follow
a trajectory back in time to determine where a pedestrian
came from when he first stepped into view, even though no
hypothesis was selected for him back then. Fig. 6 visualizes
the estimated spacetime trajectories for such a case.

Efficiency Considerations. The main computational cost
in this stage comes from three factors: the cost to find tra-
jectories, to build the quadratic interaction matrix Q̃, and to
solve the final optimization problem. However, the first two
steps can reuse information from previous time steps. Thus,
instead of building up trajectories from scratch at each time
step t, we merely check for each of the existing hypothe-
ses Ht0:t−1 if it can be extended by the new observations.
In addition, we start new trajectory searches down the time
line from each new observation Hi,t. Similarly, most entries
of the previous interaction matrix Q̃t−1 can be reused and
just need to be weighted with the temporal discount e−λ.

The cost of the optimization problem depends on the
connectedness of the matrix Q̃, i.e. on the number of non-
zero interactions between hypotheses. For static cars and
for the 2D case in Section 3, this number is typically
very low, since only few hypotheses overlap. For pedes-
trian trajectories, the number of interactions may however
grow quite large. In this paper, we therefore just com-
pute a greedy approximation for both optimization prob-
lems. However, a range of efficient relaxation techniques
have become available in recent years which can be used to
compute more exact solutions (e.g. [11]).

5. Experimental Results
Data Sets. In the following, we evaluate our integrated
approach on two challenging video sequences. The first
test sequence consists of 1175 image pairs recorded at 25fps
and a resolution of 360×288 pixels over a distance of about
500m. It contains a total of 77 (sufficiently visible) static
cars parked on both sides of the street, 4 moving cars,
but almost no pedestrians at sufficiently high resolutions.
The main difficulties for object detection here lie in the
relatively low resolution, strong partial occlusion between
parked cars, frequently encountered motion blur, and ex-
treme contrast changes between brightly lit areas and dark
shadows. Only the car detectors are used for this sequence.

The second sequence consists of 290 image pairs cap-
tured over the course of about 400m at the very sparse frame
rate of 3fps and a resolution of 384×288 pixels. This very
challenging sequence shows a vehicle passage through a
crowded city center, with parked cars and bicycles on both
street sides, numerous pedestrians and bicyclists travelling
on the side walks and crossing the street, and several speed
bumps. Apart from the difficulties mentioned above, this se-
quence poses the additional challenge of detecting and sepa-
rating many mutually occluding pedestrians at very low res-
olutions while simultaneously limiting the number of false
positives on background clutter. In addition, temporal inte-
gration is further complicated by the low frame rate.

In the following sections, we present experimental re-
sults for object detection and tracking performance on both
sequences. However, it would clearly be unrealistic to ex-
pect perfect detection and tracking results under such dif-
ficult conditions, which may make the quantitative results
hard to interpret. We therefore provide the result videos at
http://www.vision.ethz.ch/bleibe/cvpr07.

Object Detection Performance. Figure 7(left) displays
example detection results of our system on difficult images
from the two test sequences. All images have been pro-
cessed at their original resolution by SfM and bilinearly
interpolated to twice their initial size for object detection.
For a quantitative evaluation we annotated one video stream
for each sequence and marked all objects that were within
50m distance and visible by at least 30-50%. It is important
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Figure 7. (left) Example car and pedestrian detections of our system on difficult images from the two test sequences. (right) Quantitative
comparison of the detection performance with and without scene geometry constraints (the crosses mark the operating point for tracking).

to note that this includes many cases with partial visibility.
Fig 7(right) shows the resulting detection performance with
and without ground plane constraints. As can be seen from
the plots, both recall and precision are greatly improved by
the inclusion of scene geometry, up to an operating point of
0.34 fp/frame for cars and 1.65 fp/frame for pedestrians.

Tracking Performance. Figure 8 shows online tracking
results of our system (using only detections from previ-
ous frames) for both sequences. As can be seen, our sys-
tem manages to localize and track other traffic participants
despite significant egomotion and dynamic scene changes.
The 3D localization and orientation estimates typically con-
verge at a distance of 15-30m and lead to accurate 3D
bounding boxes for cars and pedestrians. A major challenge
for sequence #2 is to filter out false positives from incorrect
detections. At 3fps, this is not always possible. However,
false positives typically get only low confidence ratings and
quickly fade out again as they fail to get continuous support.

6. Conclusion
In this paper, we have presented an integrated system for

dynamic 3D scene analysis from a moving platform. We
have proposed a novel method to fuse the output of mul-
tiple single-view object detectors and to integrate continu-
ously reestimated scene geometry constraints. In order to
aggregate detections over time, we have further proposed a
novel tracking approach that can localize and track a vari-
able number of objects with a moving camera and that ar-
rives at a consistent scene interpretation by global optimiza-

tion. The resulting system obtains an accurate analysis of
dynamic scenes, even at very low frame rates.

One of the key points we want to make here is conver-
gence. The different fields of Computer Vision have ad-
vanced tremendously in recent years. While all modalities
considered in this paper, SfM, object detection, and track-
ing, are far from being solved yet individually, all three have
become sufficiently mature to be useful in combination with
the others. As we have demonstrated here, the individual
tasks can benefit considerably by the integration and the
close collaboration with the other modalities. and novel ca-
pabilities can emerge as a consequence. Many more such
cross-links can be exploited. For example, stereo depth es-
timates can directly be used to extract foci of attention for
object detection [6]. Similarly, results from tracking could
be used to guide feature extraction and speed up recognition
considerably. It is reasonable to expect that those additions
will increase system performance, and we will investigate
them in future work.
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for multi-cue 3d object tracking. In ECCV’04, 2004.

[8] H. Grabner and H. Bischof. On-line boosting and vision. In
CVPR’06, pages 260–267, 2006.

[9] R. Hartley and A. Zisserman. Multiple view geometry in
computer vision. Cambridge University Press, 2000.

[10] D. Hoiem, A. Efros, and M. Hebert. Putting objects into
perspective. In CVPR’06, 2006.

[11] J. Keuchel. Multiclass image labeling with semidefinite pro-
gramming. In ECCV’06, pages 454–467, 2006.

[12] D. Koller, K. Daniilidis, and H.-H. Nagel. Model-based ob-
ject tracking in monocular image sequences of road traffic
scenes. IJCV, 10(3):257–281, 1993.

[13] B. Leibe, N. Cornelis, K. Cornelis, and L. V. Gool. Integrat-
ing recognition and reconstruction for cognitive traffic scene
analysis from a moving vehicle. In DAGM’06, 2006.

[14] B. Leibe, K. Mikolajczyk, and B. Schiele. Segmenta-
tion based multi-cue integration for object detection. In
BMVC’06, 2006.

[15] B. Leibe, E. Seemann, and B. Schiele. Pedestrian detection
in crowded scenes. In CVPR’05, 2005.

[16] A. Leonardis, A. Gupta, and R. Bajcsy. Segmentation of
range images as the search for geometric parametric models.
IJCV, 14:253–277, 1995.

[17] D. Lowe. Distinctive image features from scale-invariant
keypoints. IJCV, 60(2):91–110, 2004.

[18] K. Mikolajczyk, B. Leibe, and B. Schiele. Multiple object
class detection with a generative model. In CVPR, 2006.

[19] K. Mikolajczyk and C. Schmid. A performance evaluation
of local descriptors. Trans. PAMI, 27(10), 2005.

[20] K. Nummiaro, E. Koller-Meier, and L. Van Gool. An adap-
tive color-based particle filter. Image and Vision Computing,
21(1):99–110, 2003.

[21] K. Okuma, A. Taleghani, N. de Freitas, J. Little, and
D. Lowe. A boosted particle filter: Multitarget detection and
tracking. In ECCV’04, 2004.

[22] P. Viola, M. Jones, and D. Snow. Detecting pedestrians using
patterns of motion and appearance. In ICCV’03, 2003.

[23] B. Wu and R. Nevatia. Tracking of multiple, partially oc-
cluded humans based on static body part detections. In
CVPR’06, 2006.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


