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Abstract
Detection of objects of a given class is important for

many applications. However it is difficult to learn a general
detector with high detection rate as well as low false alarm
rate. Especially, the labor needed for manually labeling
a huge training sample set is usually not affordable. We
propose an unsupervised, incremental learning approach
based on online boosting to improve the performance on
special applications of a set of general part detectors, which
are learned from a small amount of labeled data and have
moderate accuracy. Our oracle for unsupervised learning,
which has high precision, is based on a combination of a set
of shape based part detectors learned by off-line boosting.
Our online boosting algorithm, which is designed for cas-
cade structure detector, is able to adapt the simple features,
the base classifiers, the cascade decision strategy, and the
complexity of the cascade automatically to the special ap-
plication. We integrate two noise restraining strategies in
both the oracle and the online learner. The system is evalu-
ated on two public video corpora.

1. Introduction
Detection of objects in images or videos is important

for many applications, such as visual surveillance, content
based image/video retrieval, etc. Recently, the boosting
based framework, first proposed by Viola and Jones [13],
has been successfully applied to detect some object cate-
gories, e.g. faces [13, 3] and pedestrians [2]. This frame-
work uses a supervised off-line learning approach. In or-
der to get a detector with good performance, tens of thou-
sands samples could be needed [3]. Manually labeling such
a huge amount of data is time-consuming. In some applica-
tions the environments considered are limited. For example,
a surveillance system with stationary camera only watches a
particular scene. In such a case, a specialized detector could
be better than a general detector in terms of both accuracy
and efficiency. With an off-line learning algorithm, to get
a specialized detector we have to rerun the whole training
procedure. Incremental learning, which adapts an existing

general detector to a special task, is more desirable here.
In this work we propose an unsupervised, online learn-

ing approach to improve the performance of boosted object
detectors learned from a small labeled training set, by us-
ing a large amount of unlabeled data. This online learning
framework requires less manual labeling work and achieves
better detection accuracy compared to the off-line learning.
Our online learning algorithm “grows” a set of specialized
part detectors from a set of general purpose seed part detec-
tors. Unlike many common approaches, our method does
not rely on motion segmentation techniques to detect the
objects. We demonstrate this general framework on the ob-
ject category of pedestrians.

1.1. Related work

The key components of unsupervised, online learning
algorithms are 1) an automatic labeler, called an oracle,
which segments and labels the objects from row data auto-
matically, and 2) an online learning algorithm, which mod-
ifies the existing classifiers based on one sample at a time
using the oracle’s results.

The design of the oracle is not trivial, as it is an object
detector itself. The difference of an oracle from a regular
detector is that the precision of the oracle should be high
while the detection rate could be low. Some existing work,
e.g. [8, 4], use motion segmentation as oracle. However,
motion based object detection is not robust due to many fac-
tors, such as shadows, reflections, merging and splitting of
blobs, illumination change, etc. In order to improve the pre-
cision of the motion based oracle, some appearance based
model can be used for verification, e.g. the PCA based rep-
resentation by Roth et al. [4]. When the oracle is relatively
weak, in order to get good precision, the labeling has to be
very conservative, which results in very low detection rate.

Instead of making a separate oracle, some methods use
the learning framework, called co-training [9], to improve
the performance of a couple of classifiers by unlabeled data.
The inputs of co-training are two classifiers and a set of un-
labeled data. The confidently classified samples by the clas-
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sifier A/B are used to update the classifier B/A. It has been
proved that when the two seed classifiers are not fully cor-
related, they can be improved by co-training on unlabeled
data [9]. Levin et al. [12] use co-training to improve the per-
formance of two vehicle detectors, which are learned from
original images and foreground images. The correlation of
these two types of inputs is relatively high, and the perfor-
mance of the final detectors is not good. Javed et al. [5]
apply co-training to boosted ensemble classifiers to classify
moving blobs into vehicle and pedestrian. The samples con-
fidently classified by a subset of the based classifiers in the
ensemble are used to update the rest base classifiers. How-
ever, the base classifier, which is based on one dimension of
a learned PCA model for vehicles and humans, is relatively
weak, resulting in an ineffective oracle.

Given a sample collected by the oracle, some incremen-
tal learning algorithm is used to update the current classifier.
Oza and Russell [14] propose an online version of boost-
ing algorithm to learn ensemble classifier in an incremental
way. Recently, some variations of this algorithm have been
developed and applied to vision problems, including object
detection [4, 5, 1]. For object detection, the boosted detec-
tors [13] are very efficient because of their cascade struc-
ture. However, the existing online boosting algorithms are
designed for standard ensemble classifiers, where the num-
ber of the base classifiers is fixed, and the decision is made
only after all base classifiers are evaluated. An online learn-
ing algorithm for cascade detectors must be able to change
the complexity of the cascade structure and to refine the cas-
cade decision strategy adaptively.

The main issue of unsupervised learning is the oracle’s
errors, which can be categorized to two types for detection
tasks, alignment error and labeling error. When a positive
sample, i.e. a sub-window cut by the oracle, does include a
object, but the position or size of the object is not accurate,
we call this an alignment error. When the predicted label
of a sample is wrong, we call this a labeling error. These
errors make the learner over-fit, and must be restrained or
eliminated in the oracle part, in the learning part, or in both.
However none of the above efforts mention noise restrain-
ing strategies explicitly.

1.2. Outline of our approach
Our object detection system includes a set of cascade

structured part detectors. Following the our previous work
[2], we learn the seed part detectors by boosting edgelet fea-
ture based base classifiers. The size of the training set for
the seed detectors is relatively small and the samples are for
general purpose.

We design the oracle for unsupervised learning by com-
bining the body part detection results, like in [2]. The con-
fidence of samples are calculated from the part detection
responses. Only the samples with high confidence are used
for updating. To reduce the alignment errors, we learn a

linear regressor to align the object samples. This oracle has
high precision and unlike those in [8, 4, 5] it does not rely
on motion segmentation.

We extend the online boosting algorithm in [14] to the
case of cascade structured detectors. Our online boosting
algorithm starts from the general seed detectors learned off-
line. Although theoretically online learning can start from
scratch, Oza [15] has shown that the online boosting algo-
rithm is likely to suffer a large loss initially when the seed
model is too weak. Starting from some reasonable seed de-
tectors learned with labeled data will make the online learn-
ing procedure more efficient.

Each base classifier in the detector is based on one
edgelet feature. A shape affinity is defined to measure the
similarity between two edgelet features. For each base clas-
sifier, a small neighborhood of it is constructed based on
the shape affinity of edgelet. At each boosting iteration,
the best base classifier in the neighborhood is selected. The
decision strategy of the cascade is updated by looking at a
short history of the collected samples. The sample passing
rates of the base classifiers are estimated, based on which
the number of the base classifiers is adapted.

We analyze the components of our method quantitatively
on two public sets of surveillance videos. The experimental
results show the efficiency of our system. Our main contri-
butions are: 1) an oracle for unsupervised learning of object
detection based on a set of part detectors; 2) an online learn-
ing framework for cascade structured detectors; and 3) the
integration of noise restraining strategies in both the oracle
and the learning components.

The rest of the paper are organized as follows: first in
section 2, we introduce the data sets used for analysis and
experiments; section 3 gives the off-line boosting algorithm,
by which the seed detectors are learned; section 4 describes
the oracle algorithm; section 5 describes the online boosting
algorithm; the experimental results are given in section 6;
and some conclusions and discussions in section 7.

2. Experimental Data Set
We have three data sets: a general positive sample set, a

number of sequences from the CAVIAR video corpus [19],
and a number of sequences from the CLEAR-VACE video
corpus [20]. The general samples are collected from the
MIT pedestrian set [18] and the Internet. There are 1,000
positive samples, and 1,000 negative images. The positive
samples are normalized to pixel. Both the posi-
tive samples and the negative images are for general pur-
pose, without any bias for environment, illumination, etc.
The size of the general set is relatively small and labeling
it manually is affordable. We use this set to learn the seed
part detectors.

We use the 26 sequences of the “shopping center corridor
view”, containing 36,292 frames, from the CAVIAR video



corpus [19] to form our second data set. This set is captured
with a stationary camera, mounted a few meters above the
ground and looking down. We use six randomly selected se-
quences as a validation set for quantitative analysis; we use
another ten sequences as the training set for online learning
(we call this the burn-in set, in order to distinguish from
the training set for off-line learning); the remaining ten se-
quences are used for testing.

The third data set consists of 10 sequences, containing
30,250 frames, from the CLEAR-VACE surveillance corpus
[20]. The scene is an outdoor street. We use five sequences
for burn-in and the other five for testing. Fig.1 shows some
typical frames from the CAVIAR and the CLEAR-VACE
sets.

(a) CAVIAR set (b) CLEAR-VACE set

Figure 1. Example frames of CAVIAR and CLEAR-VACE sets.

3. Learning of Seed Detectors
The original cascade in [13] has three levels: a base clas-

sifier, a strong classifier (or layer), and a cascade classifier.
We modify the original structure to eliminate the concept of
layers. Let be the -th base classifier, which is a mapping
from the sample space to a real valued range . Let

be the partial sum of the first base classifiers. Our mod-
ified cascade consists of base classifiers, , and
threshold , a sample is classified as positive iff

(1)

This structure can be seen as a special case of the nested
cascade proposed in [11] and the soft cascade proposed in
[6]. One common advantage of these variations are the dis-
criminative information obtained by the base classifiers are
inherited along the cascade. Fig.2 gives our off-line learn-
ing algorithm, by which the part detectors are trained from
the general sample set.

4. Oracle Design by Combining Part Detectors
We design our oracle based on our previous work [2],

which combines the responses of part detectors to form ob-
ject hypotheses. A part response is represented by a 4-tuple

, where is the part type, is the image
position, is the size, and is a classification confidence.
For positive responses, is defined by

(5)

where is the image patch of the part response, and
is the maximum absolute value of . For nega-

tive responses, is defined by

(6)

where is the overall number of base classifiers in the cas-
cade, and is the number of base classifiers the sample
has passed. The negative confidence is designed based on
the filtering property of cascade classifiers. Intuitively, the
later in the cascade a sample is rejected, the more similar it
is to real objects.

A combined response is represented by the set of
its part responses and their visibility scores, ,

, where is the set of part labels. For hu-
mans, , where
represent full-body, head-shoulder, torso, and legs respec-
tively. The visibility score is obtained from the combined
detection algorithm as in [2].

4.1. Positive Sample Collection
Suppose we want to collected positive samples for part
, we define the panel confidence of a part response

in a combined response by

(7)

where is a visibility threshold (set to 0.7 in our exper-
iments). The above confidence is called panel confidence,
as it makes use of information from a set of part detectors;
oppositely, we call the self confidence. The panel confi-
dence of does not include the self confidence of , as
we want to see the sample from different “views”. When
the panel confidence is larger than a threshold, , we
consider the sample confidently positive. We use two met-
rics to measure the performance of the oracle, precision and
utility ratio. Suppose, there are positive responses in to-
tal, after thresholding are kept for online learning, in
which are good ones, then the precision and utility ratio
are respectively defined by

(8)

Fig.3 shows the curves of the two metrics with different
for the full-body detection on the CAVIAR validation set.
In our experiments, we set , which results in
a precision of and a utility ratio of . Fig.4 shows
examples of good and bad positive samples.

The positive samples not only need to be labeled cor-
rectly, but also must be aligned spatially. However, the spa-
tial accuracy of the samples cut by the oracle is very good.
We developed an automatic alignment method based on lin-
ear regression to improve the spatial accuracy. The input of



Given the initial sample set , where , and a negative images set;
Set the algorithm parameters: the maximum base classifier number , the positive passing rates , the target false alarm rate

, and the threshold for bootstrapping ;
Construct the base classifier pool, , from the edgelet features;
Initialize the sample weights , the current false alarm rate , and ;
while and do

1. For each base classifier in , calculate as a histogram of its edgelet feature value :

(2)

where is the bin number of the histogram, , and is a smoothing factor [17];

2. Select by

(3)

3. Update sample weights by
(4)

and normalize to a p.d.f.

4. Select the threshold for the partial sum , so that a portion of positive samples are accepted; and reject as many negative
samples as possible;

5. Remove the rejected samples from the sample set. If the remaining negative samples are less than percent of the original,
recollect the negative samples by bootstrapping on the negative image set;

6.
Output as the cascade classifier.

Figure 2. Off-line learning algorithm of cascade classifier. In our experiments, , , and . The setting
of is similar to the original cascade’s layer acceptance rates. The cascade is divided into 30 segments, the lengthes of which grow
gradually. The base classifiers at the end of the segments have positive passing rate of , and the other base classifiers have passing
rate of .

the regressor is a vector of the first 200 feature values of the
detector, and the output is the positions of the head and feet.
We learn the regressor from 500 labeled samples. Before
alignment, the standard deviation of the head/feet positions
is 1.73 pixels; after alignment, it reduces to 0.65 pixels.
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Figure 3. Performance of positive sample collection.

4.2. Negative Sample Collection
The collection of negative samples is similar to that of

positive. Suppose we have a part response which does
not correspond to any combined response. We calculate the
panel confidence of by Equ.7. If is smaller than
a threshold , we consider the sample confidently nega-
tive. We set , which results in a precision of

and a utility ratio of .
As no quantitative analysis of the oracle is reported in

previous work, it is difficult to compare our oracle with the
existing methods directly. But one advantage of our method
is that we do not rely on motion segmentation. Our oracle
can be seen as an extension of the co-training framework.
Instead of two classifiers dancing together, we have a group
dance of multiple classifiers, which is much more reliable.

5. Online Boosting for Cascade Classifier
With video sequences as input, a series of samples are

collected by the oracle and then fed into an online learning
algorithm. We integrate the real valued classification func-
tion of real AdaBoost [17], the noise restraining techniques
of ORBoost [7] and AveBoost2 [10], and the learning of



cascade decision strategy into the online boosting [14].

(a) Good positive (b) Bad positive

Figure 4. Examples of positive samples collected.

5.1. Online Updating Base Classifiers
From the off-line training, we record the base classifier

pool , and the weight distribution . Given a new sam-
ple and its current weight (the weight compu-
tation is described in section 5.2), we update of a base
classifier and then recompute by Equ.2. As is a his-
togram, online updating of it is straightforward; formally,

(9)

where is the weight updating rate. In our experiments,
we set and as negative samples are
more redundant.

To achieve some variability at the feature level, we con-
struct a small neighborhood of , based on its edgelet
feature. Denote an edgelet feature by ,
where is the number of points, and are the image
position and normal of the -th point. The shape affinity
between two edgelets and is defined by

(10)
where is the mean of . We only consider the edgelets
with the same length. The size of the neighborhood is set
to . Fig.5 shows the features in the neighborhood of the
first base classifier of the full-body detector. It can be seen
that they cover a good variety. Given a new sample, we
update all the base classifier in , and select the best one
according to Equ.3. This optimization strategy is similar to
feature selection in [1]; however, our neighborhood is local
and much smaller, because it is constructed not randomly,
but based on the shape affinity of edgelets.

Figure 5. Features in the first neighborhood for full-body.

5.2. Weight Updating
The on-line boosting algorithm [14] imitates the weight

evolution procedure of the off-line boosting. The weight up-
dating strategy makes the learning procedure focus on the
difficult instances, but, this also makes the boosting algo-
rithms susceptible to labeling errors [16]; this is inevitable

for un-supervised learning. We integrate the noise restrain-
ing strategies of AveBoost2 in [10] and ORBoost in [7] into
our online boosting algorithm.

In the original real AdaBoost [17], the weights are up-
dated by Equ.4. The exponential increase makes the learner
over-fit on noises very fast. Oza [10] developed a boosting
algorithm, called AveBoost2, in which the weight updating
is smoothed by averaging the current weight with the pre-
vious one. It has been shown that AveBoost2 outperforms
AdaBoost with noisy input [10]. We modify their off-line
smoothing strategy so that

(11)

where is a constant smoothing factor. In our experi-
ments, we set .

Although a smoothing technique is used, the weights of
mislabeled samples tend to keep growing during boosting.
Karmaker and Kwek [7] developed an off-line boosting ap-
proach, ORBoost, in which a cut-off threshold , is used
as a ceiling of the weights. A sample is considered to be
an outlier, if its weight grows larger than (set to 10 in
our experiments). We integrate this technique into our on-
line boosting algorithm. When the weight of a new sample
hits the threshold, we stop updating, and take a “rollback”
action. Fig.6 shows a comparison between online learning
with and without noise restraining on the CAVIAR burn-in
set. It can be seen that the tendencies of the two curves are
similar, but the curve with noise restraining is more smooth
and outperforms the one without noise restraining.

5.3. Updating Cascade Thresholds
The cascade decision strategy, , learned from the

general training set may not be optimal for a particular ap-
plication. Online updating of the thresholds is necessary.
We keep a short history of the positive samples collected,

. For the positive passing rates that are less than
, we sort the values, , and then

choose the threshold. For the that are , we main-
tain the minimum value of .

5.4. Adaptation of Cascade Complexity
In the previous online boosting algorithm [14, 1] the

complexity of the classifier is fixed. However, similar to
the situation of decision strategy, the complexity need to
be adapted to the particular problem. We use the sample
passing rate to measure the discriminative power of the cas-
cade detector. When scanning an image, suppose there are

sub-windows passing the -th partial sum , then
the sample passing rate of is defined by

(12)



This passing rate reflects the contribution of the -th base
classifier . The later the base classifier is in the cascade,
the closer its is to . Suppose at the beginning, there
are base classifiers in total. Denote by the origi-
nal sample passing rate of the whole cascade. During on-
line learning, we keep updating all the sample passing rates

. If after learning with samples, there exists a ,
such that , we consider the base classifiers,

, unnecessary, and remove them from the cas-
cade. If after learning with samples, , we
consider the current cascade to be relatively weak, and add
more base classifiers to its end.

Now we put all the components together. Given a new
sample collected by the oracle, it is sent through the cur-
rent cascade. The base classifiers are updated and the sam-
ple weights are modified accordingly. For efficiency, the
thresholds of the cascade are updated every 100 samples
and the complexity of the cascade is adjusted every 1,000
samples. Fig.7 gives the full online boosting algorithm for
the cascade classifier.
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Figure 6. Performance of full-body detector learning on burn-in
set with and without noise restraining strategies.

6. Experimental Results
We apply our method on the problem of pedestrian de-

tection and evaluate our system on the CAVIAR set [19]
and the CLEAR-VACE [20] set. The parameters of the ora-
cle and the learner are determined based on the analysis on
the validation set from CAVIAR corpus. The burin-in set,
the test set, and the validation set have no overlap.

6.1. Results on CAVIAR set
We update the four seed part detectors online with the
burn-in sequences of CAVIAR set. For comparison we

manually label samples from the burn-in set and col-
lect negative images for in-door environments from the
Internet to form a specialized and “clean” training set, from
which four specialized part detectors are learned by off-line
boosting. The performance of the general seed detectors,

the online updated detectors, and the specialized detectors
are evaluated on the test sequences of CAVIAR set. Ta-
ble 1 gives the comparisons on performance and complexi-
ties of the detectors. It can be seen that by online learning
both the part detectors and the combined detector, which
serves as the oracle, are improved greatly. The average
detection rate of the individual part detectors is increased
by while the false alarm rate is reduced by per
frame. The combined detector’s detection rate is increased
by and its false alarm rate is reduced by per
frame.

The only previous online learning approach, which re-
ports quantitative results on CAVIAR set is that in [4]. Our
updated combined detector has a recall rate of and
a precision of , which is much better than the
recall and precision rates in [4]. In the four part detec-
tors, only the complexity of the legs detector increases; this
may be because the appearance variation of legs is larger
than the other parts. Also the other three part detectors have
better performance than the legs detector. Fig.8(a) gives
some detection results before and after online learning. The
specialized detectors can be seen as the upper limit of the
online learning algorithm. Although the accuracy of our
online updated detectors are comparable to the specialized
ones, the specialized detectors use many fewer base classi-
fiers.

Table 1. Comparison on the CAVIAR set (DR: detection rate in
percentage; FA: false alarm per frame; BC: base classifier; Com:
combined).

6.2. Results on CLEAR-VACE set
For the second set from CLEAR-VACE corpus [20],

we update the seed detectors online with the burn-in se-
quences, and evaluate on the test ones. Table 2 gives the
comparisons. This set is harder than the CAVIAR set, as
the scene is more cluttered. It can be seen that although we
achieve similar improvements on accuracy, more base clas-
sifiers are needed for this set than for the CAVIAR set. Both
the complexities of the legs detector and the torso detector
increase after online learning. The average detection rate of
the part detectors is increased by and the false alarm
rate is reduced by per frame. The combined detector’s
detection rate is increased by and its false alarm rate



Inherit from the off-line boosting procedure: the cascade detector , the base classifier pool , the weight distribution
, the neighborhood , the positive passing rate , and the training set ;

Set the algorithm parameters: the updating rate for positive/negative samples , the smoothing rate and the cut-off threshold
of weight updating ;
Compute the sample passing rate from the first frames of the burn-in set;
Initialization: populate the sample history and by , and .
For all frames in the burn-in set do

– Get a new frame, from which use the oracle to obtain a number of samples, ;
– Update the sample passing rate ;
– For all the samples collected from this frame do

++;

Initialize sample weight ;

For to do, where is the size of the current cascade

1. Update the weight distribution of every by Equ.9, and recompute ;

2. Find the best base classifier in by minimizing the criterion in Equ.3

3. Compute sample weight by Equ.11

4. If break updating and rollback;

5. Add to . If , update according to and ;

6. If , adapt the complexity of the cascade according to , and update .

Update the oracle.

Output as the cascade classifier.

Figure 7. Online learning algorithm of cascade classifier.

is reduced by per frame. Fig.8(b) gives some detection
results before and after online learning.

7. Conclusion and Discussion
We proposed an unsupervised, online learning approach

to improve the performance of a set of part detectors for ob-
jects of a known category. The oracle in our system, which
is based on the combination of part detection responses, has
very high precision and does not rely on motion segmenta-
tion. Our online learner, which is based on an online boost-
ing algorithm, adapts the local shape features, the base clas-
sifiers, the cascade decision strategy, and the complexity of
the classifier automatically. The experimental results show
that our method can greatly improve the performance on a
particular application of the seed detectors by learning from
a large amount of unlabeled data.

Table 2. Comparison on the CLEAR-VACE set (See Table 1 for
abbreviation).

In our experiments, we learned one cascade detector for
all view points and all poses. This enables us to focus our
analysis on the online learning algorithm. In practice, a
view based detector [11] or a tree structured detector [3]

could have better performance; our online learning algo-
rithm is easy to extend to these more complicated classi-
fiers.

Although the experimental videos used are captured by
stationary cameras, our system is able to work on mov-
ing/zooming camera as it does not rely on motion segmen-
tation. Also, even though we have shown results for one
class of objects (pedestrians) only, our methodology applies
to any type of objects for which reasonably component part
detectors can be constructed.

Besides detection, online learning can also be used to
improve the performance of object tracking methods, e.g.
the tracker in [1]. We plan to extend our current framework
to tracking problems in the future work.
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