
City-Scale Location Recognition

Grant Schindler

Georgia Institute of Technology

schindler@cc.gatech.edu

Matthew Brown Richard Szeliski

Microsoft Research, Redmond, WA

{brown,szeliski}@microsoft.com

Abstract

We look at the problem of location recognition in a large

image dataset using a vocabulary tree. This entails finding

the location of a query image in a large dataset containing

3 × 104 streetside images of a city. We investigate how the

traditional invariant feature matching approach falls down

as the size of the database grows. In particular we show

that by carefully selecting the vocabulary using the most

informative features, retrieval performance is significantly

improved, allowing us to increase the number of database

images by a factor of 10. We also introduce a generalization

of the traditional vocabulary tree search algorithm which

improves performance by effectively increasing the branch-

ing factor of a fixed vocabulary tree.

1. Introduction

The existence of large-scale image databases of the

world opens up the possibility of recognizing one’s loca-

tion by simply taking a photo of the nearest street corner or

store-front and finding the most similar image in a database.

When this database consists of millions of images of the

world, the problem of efficiently searching for a matching

image becomes difficult. The standard approach to image-

matching – to convert each image to a set of scale- and

rotation-invariant feature points – runs into storage-space

and search-time problems when dealing with tens of mil-

lions of feature points.

We adopt a vocabulary tree [9] to organize and search

these millions of feature descriptors without explicitly stor-

ing the descriptors themselves, a method previously used in

object recognition. Using vocabulary trees in the context

of location recognition allows us to determine which fea-

tures are the most informative about a given location and to

structure the tree based on these informative features. We

also present a generalization of the traditional search algo-

rithm for vocabulary trees that allows us to improve the per-

formance of the vocabulary tree at search time as well as

during construction of the tree.

Figure 1. We perform location recognition on 20 km of urban

streetside imagery, storing 100 million features in a vocabulary

tree, the structure of which is determined by the features that are

most informative about each location. Shown here is the path of

our vehicle over 20 km of urban terrain.

1.1. Related Work

Vision-based location systems [10, 11, 14] have gener-

ally focused on small databases (200-1000 images) taken by

human photographers. For example, [10] uses a database of

200 images, each of a different building facade, and requires

manual identification of lines in the database images. We

demonstrate results on an automatically captured 30,000

image database, consisting of over 100 million SIFT fea-

tures [7], and covering a continuous 20 kilometer stretch of

roads through commercial, residential, and industrial areas.

Searching for images in large databases was the focus

of [12] and later [9], which used a vocabulary tree of a

kind described in [2], and earlier in [3], for efficient search.

In [9], images are documents described by frequencies of

visual words in a latent semantic analysis (LSA) frame-

work, where visual words are defined by both leaf-nodes

and higher-level nodes in the tree, in a hierarchical fash-

ion. We use the same basic data structure of [9], but in

several fundamentally different ways. We use neither LSA,

nor hierarchical scoring, and we focus on building trees for

specific databases to be used for location recognition, rather

than generic trees for object recognition.

The idea of choosing a reduced set of informative fea-

1-4244-1180-7/07/$25.00 ©2007 IEEE

Figure 2. Vocabulary Trees of Varying Branching Factor and Depth. For branching factor k and depth L, we can produce seven trees with

kL
≈ 1, 000, 000 leaf nodes. Starting from top left, the trees are of size 220, 410, 106, 165, 324, 1003, and 10002. These nested Voronoi

diagrams show each tree projected onto two random dimensions of the 128-dimensional SIFT space. Gray values indicate the ratio of the

distances to the nearest and second-nearest node at each level of the tree (black=1).

tures [13, 6] has previously been used in location and object

recognition tasks. We show how to exploit the natural struc-

ture of vocabulary trees to define a feature’s information. In

contrast to previous work, rather than reducing the size of

the feature database, we propose using feature information

to guide the building of the vocabulary tree instead. The set

of features stored in the leaf nodes of the resulting vocabu-

lary tree remains the same. See [5] for a similar approach,

using information loss minimization to build nearest neigh-

bor quantizers for use as codebooks in bag-of-features im-

age classification.

2. Vocabulary Trees

The vocabulary tree [9] is an effective data structure for

searching a large database in high-dimensional spaces. As

image databases increase in size, we run into several bar-

riers that prevent traditional feature matching techniques

from scaling up. For example, we may have too many

feature descriptors to store in memory (30,000 images ≈
100,000,000 SIFT features ≈ 12 GB) and far too many fea-

tures to exhaustively compare against a query feature. Even

kd-trees fail to solve the storage problem since approximate

k-nearest neighbor algorithms like Best Bin First [1] require

access to feature descriptors at search time. The vocabulary

tree solves this storage problem by throwing away the de-

scriptor for each database feature.

A vocabulary tree is a k-way tree of depth L such that

there are kL leaf nodes, or visual words, at the bottom of

the tree. It is best understood as the product of a hierarchical

k-means clustering of a number of descriptors, where each

node in the tree is a feature descriptor equal to the mean of

all the descriptors assigned to it. The tree is queried by com-

paring a query SIFT feature to all k nodes at the root level

to find the closest match, and then recursively comparing it

to all k children of that node. The database features corre-

sponding to any visual word will all cluster around a single

feature descriptor, and thus we can throw away the SIFT de-

scriptor for all features in the database and instead store a

6-byte pointer to each feature in the form of an image num-

ber (4-byte int) and feature number (2-byte short).

Note that the vocabulary tree is an instance of a metric

tree in the sense used by [8] to distinguish between two

classes of tree-based data structures: trees which organize

data in a vector space in which individual dimensions must

be accessed (e.g. kd-trees), and trees which organize data in

a metric space in which a metric distance between any two

points can be computed. In querying a vocabulary tree, we

only ever care about the distance between a query feature

and each node in the tree. Thus, the structure of the vocab-

ulary tree in the 128-dimensional SIFT space can be visu-

alized as a nested set of Voronoi cells as in Figure 2. Trees

are constructed with hierarchical k-means as described in

[9], where we use Gonzalez’s algorithm [4] to initialize the

cluster centers with points that are as far apart from each

other as possible.

(a) N=1 (b) N=2 (c) N=5 (d) N=9

Figure 3. Greedy N-Best Paths Search. From left to right, we increase the number of nodes N whose children are considered at each level

of the tree. Cells are colored from red to green according to the depth at which they are encountered in the tree, while gray cells are never

searched. By considering more nodes in the tree, recognition performance is improved at a computational cost that varies with N .

3. Greedy N-Best Paths Search

A popular search heuristic for approximate nearest

neighbors in kd-trees is the Best Bin First (BBF) algorithm

[1]. Bounds are computed on the nearest possible feature

residing in each path not followed as the search descends

down the tree, and a specified number of candidate features

are considered in succession. We propose an algorithm sim-

ilar in spirit to BBF which exploits the unique properties of

metric trees to allow us to specify how much computation

takes place during nearest neighbor search. We propose the

Greedy N-Best Paths (GNP) algorithm, which follows mul-

tiple branches at each level rather than just the branch whose

parent is closest to the query feature. This generalization of

the traditional vocabulary tree search method is described

in Algorithm 1.

For branching factor k and depth L, the normal search al-

gorithm for a metric tree performs k comparisons between

the query feature and the nodes of the tree at each of L lev-

els for a total of kL comparisons. Our algorithm performs

k comparisons at the top level, and kN comparisons at each

of the remaining L− 1 levels, for a total of k + kN(L− 1)
comparisons. This allows us to specify the amount of com-

putation per search by varying the number of paths followed

N . Note that traditional search is just the specific case in

which N = 1.

3.1. Branching Factor

For a fixed vocabulary size M , corresponding to the

number of leaf nodes in a tree, there are several ways to

construct a vocabulary tree. This is accomplished by vary-

ing the branching factor k and depth L of the tree such that

kL ≈ M for integer values of k and L. In previous work on

vocabulary trees[9], it was noted that increasing the branch-

ing factor for fixed vocabulary size tended to improve the

quality of search results. We claim that much of this im-

provement is due not to the fact that increasing branching

factor produces better-structured trees, but to the fact that

Algorithm 1 Greedy N-Best Paths

Given query feature q, and level ` = 1
Compute distance from q to all k children of root node

While (` < L){

` = ` + 1
Candidates=children of closest N nodes at level ` − 1
Compute distance from q to all kN candidates

}

Return all features quantized under closest candidate

more nodes are being considered in traversing a tree with

higher branching factor. As an example, using a 1 mil-

lion word vocabulary, consider that in a 106 tree only 60

nodes are ever examined while in a 10002 tree 2000 nodes

are considered during a traditional search. The GNP algo-

rithm offers a way to consider 2010 nodes in a 106 tree with

N = 40, and we show in Section 6 that comparable perfor-

mance is achieved with GNP on a tree with fewer branches.

Note that changing the branching factor of a vocabulary

tree requires time-consuming offline re-training via hierar-

chical k-means. However, varying the number of nodes

searched is a decision that can be made at search time based

on available computational power. Thus, we should con-

centrate not on the relationship between performance and

branching factor, but between performance and number of

comparisons per query feature, a measure which GNP al-

lows us to optimize (see Figure 6).

4. Informative Features

One of the goals of [9] was to show that acceptable

recognition performance is possible using a generic vocab-

ulary tree trained on data unrelated to the images eventu-

ally used to fill the database. This is important when the

database is expected to change on the fly. However, if the

database consists of a fixed set of images, we should instead

aim to build the vocabulary tree which maximizes perfor-

mance of queries on the database.

For a fixed vocabulary of 1 million visual words, we can

not only vary the branching factor and depth of the tree, but

also choose training data such that the capacity of the tree is

spent modeling the parts of SIFT space occupied by those

features which are most informative about the locations of

the database images. This becomes even more important

when the database becomes so large that the hierarchical

k-means process used to build the vocabulary tree cannot

possibly cluster all the data at once, but must instead build a

tree based on some subset of the database. In selecting the

subset of data for training, we can either uniformly sample

the database, or choose those features which are most infor-

mative, which we explain here.

4.1. Information Gain

The images in our database contain considerable overlap,

such that we end up with a number of images of each loca-

tion from slightly different viewpoints (see Figure 8). Intu-

itively, we want to find features which occur in all images of

some specific location, but rarely or never occur anywhere

outside of that single location. This intuitive concept is cap-

tured well by the formal concept of information gain.

Information gain I(X|Y) is a measure of how much un-

certainty is removed from a distribution given some specific

additional knowledge, and it is defined with respect to the

entropy H(X) and conditional entropy H(X|Y) of distri-

butions P (X) and P (X|Y). By definition:

H(X) = −
∑

x

P (X = x) log[P (X = x)] (1)

H(X|Y) =
∑

y

P (Y = y)H(X|Y = y) (2)

I(X|Y) = H(X) − H(X|Y) (3)

In our case, information gain I(Li|Wj) is always com-

puted with respect to a specific location `i and a specific

visual word wj . Li is a binary variable that is true when

we are at location `i, and Wj is a binary variable that is true

when the visual word wj is in view (i.e., one of the images at

location `i contains a feature which falls under visual word

wj when quantized according to the vocabulary tree). Thus,

the information gain of visual word wj at location `i, as

defined in Equation 3, is:

I(Li|Wj) = H(Li) − H(Li|Wj) (4)

Remember that we are interested in finding those visual

words at location `i that maximize this information gain

value. Since the entropy H(Li) is constant across all vi-

sual words at location `i, then according to Equation 4, the

visual word that maximizes the information gain I(Li|Wj)
also minimizes the conditional entropy H(Li|Wj).

0

5

10

15

20

0

2

4

6

8

10

−0.03

−0.02

−0.01

0

b = # word not at locationa = # word at location

in
fo

rm
at

io
n

Figure 4. Information gain measures how informative a visual

word is about a specific location `i, and it is computed as a func-

tion of a and b, the number of occurrences of a visual word at lo-

cation `i and at all other locations, respectively. The graph shows

that information gain is maximized when a visual word occurs of-

ten at the location `i and rarely at any other location.

We can calculate this conditional entropy H(Li|Wj) as a

function of just four terms: NDB , NL, NWjLi
, and NWjLi

.

The first two terms are constant for a given database: NDB

is the number of images in the database, and NL is the num-

ber of images at each location. The last two terms vary

with each location and visual word: NWjLi
is the number

of times visual word wj occurs at location `i, and NWjLi
is

the number of times visual word wj occurs at other database

locations. For clarity, we substitute the variables a and b for

NWjLi
and NWjLi

in what follows. Note that H(Li|Wj)
depends upon just six probabilities whose values follow

trivially from the definitions of NDB , NL, a, and b:

P (Li|Wj) =
a

a + b
P (Li|Wj) =

NL − a

NDB − a − b

P (Li|Wj) =
b

a + b
P (Li|Wj) =

NDB − NL − b

NDB − a − b

P (Wj) =
a + b

NDB

P (Wj) =
NDB − a − b

NDB

Substituting these probabilities into Equation 2 above, we

arrive at the conditional entropy

H(Li|Wj) =

−
a + b

NDB

[
a

a + b
log(

a

a + b
) +

b

a + b
log(

b

a + b
)]

−
NDB − a − b

NDB

[
NL − a

NDB − a − b
log(

NL − a

NDB − a − b
)

+
NDB − NL − b

NDB − a − b
log(

NDB − NL − b

NDB − a − b
)] (5)

The significance of this equation is that the information gain

of a visual word is captured by a simple function of the

values a and b as shown in Figure 4.

Note that for a given location, we only need to compute

this conditional entropy for visual words which actually oc-

cur in the images at that location. In theory, it is possible

that there may exist some visual word which occurs at every

location except one, in which case this visual word which

does not occur at the given location is nevertheless very in-

formative about that location. In practice, we assume no

such features exist, which is supported by the observation

that each visual word generally occurs in some small frac-

tion of the images. Thus, for visual words not present at

some location the conditional entropy H(Li|Wj) ≈ H(Li)
and the information gain I(Li|Wj) ≈ H(Li)−H(Li) ≈ 0,

meaning that for any location there is negligible informa-

tion gain associated with visual words which do not appear

there.

Since the above definition of information gain depends

upon having already clustered the data into visual words,

we bootstrap the process by constructing a number of vo-

cabulary trees for relatively small subsets of the data. We

define information with respect to these smaller subsets, se-

lect the most informative features from each image, and fi-

nally construct a tree using only these informative features.

5. Voting Scheme

To find the best-matching database image for a given

query image, we match each feature in the query image to a

number of features in the database using a vocabulary tree.

We use a simple voting scheme in which matched features

from the database vote for the images from which they orig-

inate. To achieve better performance, we normalize the vote

tallies by Ni (the number of features in a given database im-

age i) and NNk (the number of near neighbors returned for

a given query feature fk). In addition, we average the tallies

over a local neighborhood of NL images. Thus, the num-

ber of votes Cd for a database image d can be computed by

looping over every feature in each image in a local neigh-

borhood, and comparing it against each of the Nq features in

the query image, producing the following triple-summation:

Cd =
1

NL

d+
NL
2∑

i=d−
NL
2

1

Ni

Ni∑

j=1

Nq∑

k=1

δmatch(fj , fk)
1

NNk

where δmatch(fj , fk) = 1 when database feature fj and

query feature fk are both quantized to the same visual word

in the vocabulary tree, and δmatch(fj , fk) = 0 otherwise.

The number of near neighbors returned for each query fea-

ture fk can be similarly computed as:

NNk =

NDB∑

i=1

Ni∑

j=1

δmatch(fj , fk) (6)

In practice, we do not explicitly perform these computa-

tions for every image, instead using the vocabulary tree to

5000 10000 15000 20000 25000 30000
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Images in Database

P
er

fo
rm

an
ce

 (
%

 B
es

t
M

at
ch

 a
t

C
o

rr
ec

t
L

o
ca

ti
o

n
)

info−gain

uniform

Figure 5. By building a tree using only the most informative fea-

tures in each database image, we are able to improve performance

over a tree built with training data uniformly sampled from the

database. In all figures, performance is defined as the percentage

of query images for which the top match in the database is within

10 meters of the ground truth location of the image.

efficiently compute the sums in time linear in the number of

features Nq in the query image.

6. Results

We have a database of 10 million images automatically

acquired by driving a vehicle through a large city. Each im-

age measures 1024x768 pixels and has an associated GPS

coordinate (latitude and longitude), and a compass heading.

In these experiments we use a 30,000 image subset cor-

responding to 20 kilometers of streetside data as depicted

in Figure 1. We evaluate the performance of our location

recognition method using a set of 278 query images ac-

quired more than one year after the image database. All

query images were captured with a 3.2 mega-pixel handheld

consumer digital camera and labeled by hand with the lati-

tude and longitude of the capture location. In these exper-

iments, performance is defined as the percentage of query

images for which the top match in the database is within 10

meters of the ground truth location of the image.

We perform two separate experiments – one to evaluate

the effectiveness of using informative features to build vo-

cabulary trees and the other to evaluate the performance of

the Greedy N-Best Paths algorithm for vocabulary trees of

varying branching factor. In the first experiment, we use

a one million word vocabulary tree with branching factor

k = 10 and depth L = 6 and the tree is searched using GNP

with N = 50 paths. We build two different types of trees

– one is built by hierarchically clustering features sampled

uniformly from the database images, while the other is built

by hierarchically clustering only the most informative fea-

tures in the database. In both cases, a constant 7.5 million

points are used in building the tree as we gradually increase

the size of the database from 3000 images to 30,000 images,

training new trees for each size of database. The entire 3000

0 1000 2000 3000 4000 5000
0.45

0.5

0.55

0.6

0.65

0.7

0.75

Comparisons/Query Feature

P
er

fo
rm

an
ce

 (
%

 B
es

t
M

at
ch

 a
t

C
o

rr
ec

t
L

o
ca

ti
o

n
)

1000
2

100
3

32
4

16
5

10
6

4
10

2
20

kd−tree

Figure 6. Vocabulary trees of any depth and branching factor can

achieve comparable performance using GNP search. While vocab-

ulary trees perform below comparable kd-trees using traditional

N = 1 search, they can match and even exceed the performance-

per-computation of kd-trees by using GNP search with increasing

values of N . For each query feature, the number of comparisons

against nodes in a vocabulary tree is equal to k + kN(L − 1),

which varies with N the number of best paths searched using the

GNP algorithm. For the kd-tree, the number of comparisons per

feature is the number of bins considered in the BBF algorithm.

image database consists of only 7.5 million features, and so

both trees are identical at the beginning. As illustrated in

Figure 5, as images are added to the database, the perfor-

mance drops for both types of trees. However, the tree built

from informative features degrades much more slowly than

in the uniformly sampled case.

This result is significant because it suggests that the per-

formance of a vocabulary tree is largely dependent upon

its structure. Note that in both trees, the contents of the

database are exactly the same, so that the only difference

between the two trees is in the way they organize these

database features into visual words. This result tells us that

we would not want to use the same generic vocabulary tree

to perform location recognition in two distinct cities, but

rather that we should train such trees separately. This runs

counter to the conclusion reached in [9] that generic vocab-

ulary trees can be used as long as their leaf-nodes are filled

with new data for each situation.

In the second experiment, we built trees of varying

branching factor and depth as in Figure 2, all with approx-

imately one million leaf nodes. We consider a database

of 3000 images and compare the performance of each tree

against the set of 278 query images using the GNP search

algorithm with varying values for N , the number of paths

searched. As discussed in Section 3.1, we can see from

Figure 6 that performance varies with the number of nodes

searched more strongly than with the branching factor of

the tree. Though query time varies directly with the con-

trollable number of nodes visited in the search, these ex-

periments show that we can achieve close to maximum per-

formance in only 0.2 seconds per query (excluding feature

0 1000 2000 3000 4000 5000
0.55

0.6

0.65

0.7

0.75

0.8

0.85

Comparisons/Query Feature

P
er

fo
rm

an
ce

 (
%

 T
o

p
 M

at
ch

es
 a

t
C

o
rr

ec
t

L
o

ca
ti

o
n

)

Top 10

Top 5

Top 3

Top 2

Top 1

Figure 7. As we consider more than just the best matching result

for the each of the 278 query images, the percentage of results

within 10 meters of the ground truth location increases above 80%.

These results show the performance of a 324 vocabulary tree on a

3000 image database using GNP with varying N .

extraction) using a 324 tree and searching with 4-best paths.

In addition, in Figure 6 we compare the performance

of these vocabulary trees against traditional kd-tree search.

Because kd-trees using the Best-Bin First algorithm access

the descriptors of every searched database feature, while

vocabulary trees throw away this information, it is tempt-

ing to think that a kd-tree will naturally perform better at

location recognition tasks and that one must compromise

performance when using vocabulary trees. Just as GNP can

be used to vary the amount of computation in a vocabu-

lary tree search, the BBF algorithm can consider varying

numbers of database features. If we equate the number of

bins searched in the kd-tree with the number of nodes con-

sidered in the vocabulary tree, then we can directly com-

pare the performance-per-computation of the two types of

trees. While it is true that vocabulary trees using tradi-

tional N = 1 search perform below kd-trees that perform

the same amount of computation, Figure 6 shows that vo-

cabulary trees can match and even exceed the performance-

per-computation of kd-trees by using GNP search with in-

creasing values of N .

Finally, with respect to the overall performance results,

note that in the time between the collection of the database

and query images, many elements of the city had changed –

businesses had hung up new signs and residences had been

re-modeled, among many other changes, both major and

minor. In addition, much of the query data was taken in poor

lighting, leading to blurry and low-contrast images which

more accurately reflect the quality of images one might ex-

pect from an average person unsure of their location. Under

these circumstances, the greater than 70% recognition rate

we achieved exceeded our expectations. Figure 7 also sug-

gests that by employing a geometric consistency check on

the top 10 matches, we could achieve performance of more

than 80%.

Figure 8. Example database image sequences from commercial (top), residential (middle), and green (bottom) areas of a city. The signifi-

cant overlap between consecutive images allows us to determine which features are most informative about each location.

Figure 9. Typical examples of the 278 query images (left) and the

corresponding top matches returned from the database (right) us-

ing a 10002 vocabulary tree with N = 4.

7. Conclusion

In addition to demonstrating a system for large-scale lo-
cation recognition, we have shown two new results with re-
spect to vocabulary trees. First, we have found that the per-
formance of a vocabulary tree on recognition tasks can be
significantly affected by the specific vocabulary chosen. In
particular, using the features that are most informative about
specific locations to build the vocabulary tree can greatly
improve performance results as the database increases in
size. Second, we have shown that one can improve the
performance of a given vocabulary tree by controlling the
number of nodes considered during search, rather than by
increasing the branching factor of the vocabulary tree.

References

[1] J. Beis and D. Lowe. Shape indexing using approximate

nearest-neighbor search in highdimensional spaces. In IEEE

Computer Society Conference on Computer Vision and Pat-

tern Recognition, 1997.

[2] Sergey Brin. Near neighbor search in large metric spaces. In

Int. Conf. on Very Large Data Bases, pages 574–584, 1995.

[3] Keinosuke Fukunaga and Patrenahalli M. Narendra. A

branch and bound algorithms for computing k-nearest neigh-

bors. IEEE Trans. Computers, 24(7):750–753, 1975.

[4] T. F. Gonzalez. Clustering to minimize the maximum inter-

cluster distance. Journal of Theoretical Computer Science,

38(2-3):293–306, June 1985.

[5] S. Lazebnik and M. Raginsky. Learning nearest-neighbor

quantizers from labeled data by information loss minimiza-

tion. In International Conference on Artificial Intelligence

and Statistics, 2007.

[6] F. Li and J. Kosecka. Probabilistic location recognition using

reduced feature set. In IEEE International Conference on

Robotics and Automation, 2006.

[7] David G. Lowe. Object recognition from local scale-

invariant features. In Proc. of the International Conference

on Computer Vision ICCV, Corfu, pages 1150–1157, 1999.

[8] Andrew W. Moore. The anchors hierarchy: Using the trian-

gle inequality to survive high dimensional data. In Conf. on

Uncertainty in Artificial Intelligence, pages 397–405, 2000.

[9] David Nister and Henrik Stewenius. Scalable recognition

with a vocabulary tree. In IEEE Computer Society Confer-

ence on Computer Vision and Pattern Recognition, 2006.

[10] Duncan Robertson and Roberto Cipolla. An image-based

system for urban navigation. In BMVC, 2004.

[11] Hao Shao, Tomás Svoboda, Tinne Tuytelaars, and Luc J. Van

Gool. Hpat indexing for fast object/scene recognition based

on local appearance. In CIVR, pages 71–80, 2003.

[12] J. Sivic and A. Zisserman. Video google: A text retrieval ap-

proach to object matching in videos. In ICCV, pages 1470–

1477, 2003.

[13] M. Vidal-Naquet and S. Ullman. Object recognition with

informative features and linear classification. ICCV, 2003.

[14] W. Zhang and J. Kosecka. Image based localization in ur-

ban environments. In International Symposium on 3D Data

Processing, Visualization and Transmission, 2006.

