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Abstract

We propose a new multiple instance learning (MIL) al-
gorithm to learn image categories. Unlike existing MIL al-
gorithms, in which the individual instances in a bag are as-
sumed to be independent with each other, we develop con-
current tensors to explicitly model the inter-dependency be-
tween the instances to better capture image’s inherent se-
mantics. Rank-1 tensor factorization is then applied to ob-
tain the label of each instance. Furthermore, we formu-
late the classification problem in the Reproducing Kernel
Hilbert Space (RKHS) to extend instance label prediction
to the whole feature space. Finally, a regularizer is intro-
duced, which avoids overfitting and significantly improves
learning machine’s generalization capability, similar to that
in SVMs. We report superior categorization performances
compared with key existing approaches on both the COREL
and the Caltech datasets.

1. Introduction

With the proliferation of digital photography, automatic
image categorization becomes increasingly important. In
this paper, we define categorization as automatic classifi-
cation of images into predefined semantic concepts (cate-
gories). Before a learning machine can perform classifica-
tion, it needs to be trained first, and training samples need
to be accurately labeled. The labeling process can be both
time consuming and error-prone [17]. Fortunately, multiple
instance learning (MIL) allows for coarse labeling at the
image level, instead of fine labeling at pixel/region level,
which significantly improves the efficiency of image cate-
gorization. [12] [3] [19].

In the MIL framework, there are two levels of training
inputs: bags and instances. A bag is composed of multiple
instances. A bag is labeled positive if at least one of its in-
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stances falls within the concept, and it is labeled negative
if all of its instances are negative. The efficiency of MIL
lies in the fact that during training, a label is required only
for a bag, not the instances in the bag. In the case of image
categorization, a labeled image (e.g., a “beach” scene) is a
bag, and the different regions inside the image are the in-
stances [12]. Some of the regions are background and may
not relate to “beach”, but other regions, e.g., sand and sea,
do relate to “beach”. If we exam more carefully, we can
see that sand and/or sea do not appear independently in sta-
tistics, they tend to appear simultaneously in an image of
“beach” frequently. Such an co-existence or concurrency
can significantly boost the belief that an instance (e.g. the
sand, the sea etc.) belongs to a “beach” scene. Therefore, in
this “beach” scene, there exist order-2 concurrent relation-
ship between the sea instance (region) and the sand instance
(region). Similarly, in this “beach” scene, there also exist
higher-order (order-4) concurrent relationship between in-
stances, e.g., sand, sea, people, and sky.

To the best of our knowledge, all the existing MIL-based
image categorization algorithms assume that the instances
in a bag are independent and they have not explored such
concurrent relations. Although this independence assump-
tion significantly simplifies the modeling and computing
procedure, it does not take into account the hidden infor-
mation encoded in the semantic linkage among instances,
as we described in the above “beach” example.

To address this problem, in this paper, we propose a
novel Concurrent MIL (ConMIL) scheme to encode the
inter-dependency between instances. ConMIL has three
major contributions. First, ConMIL uses concurrent ten-
sor to model the semantic linkage between the instances.
In addition, based on the concurrent tensor, rank-1 super-
symmetric non-negative tensor factorization (SNTF) [10]
is applied to estimate the probability of each instance be-
ing relevant to a target category. Second, ConMIL for-
mulates the label prediction processes in a regularization



framework, which avoids overfitting, and significantly im-
proves learning machine’s generalization capability, simi-
lar to that in SVMs [5]. Third, ConMIL uses Reproducing
Kernel Hilbert Space (RKHS) to extend predicted labels to
the whole feature space based on the generalized represen-
ter theorem [15] to facilitate the testing process. In the ex-
periment section, we will show that ConMIL achieves high
classification accuracy on both bags and instances, is robust
to different datasets, and is computationally efficient.

The rest of the paper is organized as follows. We review
related work on MIL-based image categorization in Sec-
tion 2. Section 3 gives detailed description of the proposed
ConMIL algorithm, including the concurrent tensor and its
factorization, the kernelization framework, as well as Con-
MIL’s interesting relationship to existing MIL algorithms.
Experimental results and comparisons on both COREL and
Caltech are reported in Section 4. We give concluding re-
marks in Section 5.

2. Related Work

In this section, we will review representative MIL-based
image categorization approaches. In general, they can be
divided into two paradigms according to their classifica-
tion levels (bag level vs. instance level). The bag-level
approaches aim at predicting the bag label directly. For ex-
ample, in [7], a standard support vector machine (SVM) is
used to predict bag label with so-called Multi-Instance ker-
nels which are designed for bags. DD-SVM [4] selects a
set of prototypes from the local maxima of DD function,
and then a SVM was trained based on the bag features sum-
marized by these selected prototypes. In [3], bags are em-
bedded into a feature space defined by instances and then
1-norm SVM is applied to construct bag classifiers. How-
ever, the bag-level approaches do not try to gain insight into
instance label.

The instance-level approaches first attempt to infer the
hidden instance label and then to predict the bag label. For
example, Yang et al. [19] proposed an Asymmetric Sup-
port Vector Machine-based MIL algorithm (ASVM-MIL)
by introducing asymmetric loss function for false positives
and false negative to exploit the instance label while the di-
verse density (DD) approach [12][20] takes a scaling and
gradient search algorithm to find the prototype points in
the instance space with the highest DD value. However,
both of these algorithms have not considered the relation-
ship among instances when inferring their label. Further-
more, the DD-based algorithm is computationally expen-
sive, because it searches for globally optimal points in the
feature space, and overfitting may occur for the lack of a
regularization term in the DD measure. Ray et al. [14] ex-
tended the DD framework, where they seek p(y; = 1|B; =
{Bi1,Bi2, -+, Bin}) , i.e., the conditional probability of
the label of the i-th bag being positive, given the instances
in the bag. They use the Logistic Regression (LR) algo-
rithm to estimate the equivalent probability for an instance,

p(yi; = 1|Bi;), and then a combination function softmaz

is used to combine p(y;; = 1|B;;) in a bag to estimate
p(yi = 1|By):
p(yi = 1|BZ) = softmamW(Sil, S»;Q, ey Szn)

22, Sijexp(y - Sij) W
> exp(y - Sij)

where S;; = p(yi;; = 1|B;;). The combining function en-
codes the multiple instance assumption in this MIL algo-
rithm. In [17], MILBoost is proposed to adopt MIL into the
AdaBoost framework, where the combination function In-
tegrated Segmentation and Recognition (ISR) or noisy-or is
used to combine instance labels into bag labels.

To summarize, regardless being bag-based or instance-
based, all the existing MIL algorithms assume that the in-
stances independently occur in an image and they do not
take into account the hidden information encoded in the se-
mantic linkage among instances. For example, DD func-
tion is based on statistical independency assumption of all
instances [12], and mi/MI-SVM [1] did not consider the
concurrent relations of instances when maximizing instance
and bag margins. For the bag-level MIL, DD-SVM [4] dose
not select the set of prototypes based on the instance inter-
dependencies, and MILES [3] do not investigate the seman-
tic relations among the instances either when embedding
bags into a feature space defined by these instances. To
address these issues, we propose the ConMIL algorithm,
which will be described in the next section.

3. The Proposed Approach - ConMIL

In Section 3.1, we illustrate that the concurrent relations
among instances can be naturally described in a concur-
rent hypergraph. In Section 3.2, we will develop a statisti-
cal measure of the concurrent relations quantitatively which
will be used as entries in the proposed concurrent tensors.
Based on the concurrent tensor representation, in Section
3.3, we will use tensor factorization for label inference. Fi-
nally in Section 3.4, we will formulate the label inferring
processes into a kernelization framework.

Let B; denote the i-th bag, B;" a positive bag and B,
a negative one. Let bag set B = {B;}, positive bag set
B* = {B;} and negative bag set B~ = {B; }. LetZ
denote the set of instances and n; = |Z| the number of all
instances. An instance I; € Z (1 < j < ny) is denoted I;r

when it is positive and is denoted by I~ when negative. We
also denote an instance by B;; to emphasize it is the j-th
instance in the i-bag. Let p([;) and p(B;;) denote the prob-
ability of I; and B;; being a positive instance respectively.
p(B;j;) is equivalent to p(y;; = 1|B;;) in Eq. (1).

3.1. Concurrent Hypergraph Representation

Figure 1 illustrates an example of concurrent hypergraph
G = {V, &} for the category “beach” discussed in Section
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Figure 1. A concurrent hypergraph describing concurrent semantic
linkage of different regions (instances) for a category “beach”.

1, where G and £ are the vertex and hyperedge set, respec-
tively. As shown in Figure 1, the vertices in this hypergraph
represent different instances and these instances are linked
semantically by hyperedges to encode any order of concur-
rent relationships between instances in G. A statistic quan-
tity is associated with each hyperedge in G to measure these
concurrent relationships which will be detailed in Section
3.2.

Based on the concurrent hypergraph G, tensor and its
corresponding algebra can naturally be used as a mathemat-
ical tool to represent and learn the concurrent relationship,
and the tensor entries are associated with the hyperedges in
G . As to be detailed in following sections, with the ten-
sor representation, rank-one super-symmetric non-negative
tensor factorization (SNTF) [10] can then be applied to ob-
tain p(y;; = 1|B;j), i.e., the probability of an instance B;;
being positive (cf. Section 2). Once the instance label is
obtained, the bag label can be directly computed from the
combination function (such as Eq. (1)) which encodes the
MIL assumption in it.

Before we move further, we next will give a brief intro-
duction to the tensor rank factorization. An n-order ten-
sor 7 of dimension [d;] x [d2] X ---[d,], indexed by n
indices i1, 1g,...,%, with 1 < i; < dj, is of rank-1 if it
can be expressed by the generalized outer product of n vec-
tors: 7 = v1 @ vy & --- @ v, where v; € R%. A tensor
T is called super-symmetric when its entries are invariant
under any permutation of their indices. For such a super-
symmetric tensor, its factorization has a symmetric form:
T =v®"=y®v®---®v. Some factorization algorithm

n terms

has been proposed such as High-Order SVD (HOSVD) [10]

which is an extent of Singular Value Decomposition (SVD),
however it cannot guarantee the factorization convergence
for high-order tensor. In this paper, we adopt a direct gra-
dient descent based approach, as to be detailed in Section
3.3.

3.2. Concurrent Relations in MIL

As illustrated in Figure 1, in images labeled as a specific
category (e.g. car, mountain, beach, etc.), there exists hid-
den information encoded in the concurrent semantic link-
age among different regions (instances). This observation
prompts us to incorporate these concurrent relations into the
process of inferring probability p([;). Therefore, we must
firstly answer the question what is an appropriate statistic to
measure such concurrent relations?

We use p(I;, AL, A---A1;, ) to denote the probability of
the concurrence of n instances I;,, I;,, - - - , I; in the same
bag labeled as a certain concept, where the notation “A”
means the logic operation “and”. Given the bag set B =
{B;}, we have the likelihood

p(Ill A [ig VANERIEAN [1W|B)
=[[pTi ALy A AL |B)

et Adiy Ao A1 BT @

J

Typically, the logic operation “A” in Eq. (2) can be esti-
mated by “min” [18], so we have

Adopting a noisy-or model [12], the probability that not all
points missed the target concept is

p(Iik |Bz+) = p(Iik|BiJia Biga o ) = 1_H (1_p(Iik |B:;))
J

“

and likewise

p(Li | By ) = p(Li,| By, By, +) = [[ (1 = p(I;, 1B;)))

J
)
Concatenating Eq. (2)~(5) together, we have

pLi, Ny A+ N1, | B)
~ [T~ [T (1 - o015}
i J

T mindTT (0= 5 1B5)) (©)

The causal probability of an individual instance on a po-
tential target p(I;, |B;;) can be modeled as related to the
distance between them, that is p(I;, | B;;) = exp(—||B;j —
i 1)



As p(Liy NIiy N+ N1,

B) is the likelihood over the
entire set B with m = |B| bags, and p(I;; AL, A---N1I;,)
is the probability that I;,, [;,,---,I;, occur at the same
time in a positive bag while not in a negative bag, we have
p(Liy ALy A - NL )™ =p(Liy Ny A--- A1, | B), then
the concurrent probability can be estimated as

p(Iiy ATig Ao AT = [p(Tiy Aig A= A B 7 (7)

Consequently, p(l;; A I, A --- A I ) can be re-
garded a measure of n-order concurrent relations among
1,1 , 1

i1y Ligy " in*

3.3. High-Order Concurrent Tensor Inference

In this section, we represent concurrent relations in an
order-n tensor form, and a rank-1 tensor factorization pro-
cedure can be utilized to derive p(I;), the probability of I;
being a positive instance. The concurrent relations mea-
sured by p(I;; AL, A--- A, ) are used as the entry of high
order tensor. We name this tensor concurrent tensordenoted
by 7 to denote this tensor. From the Eq. (6)(7), the entry of
this tensor is given by

Tivigin, = DIy ALy Ao+ AT
= {TTmind1 - TTC - p(5 1B}
i J
[Tmin { [T~ (B ®
i J
where 1 < iy,149,...,%, < ns. Since the bag label and the

concurrent relation information have been incorporated into
T, this concurrent tensor is a supervised measure instead of
an unsupervised affinity measure in other works [16].

Given the concurrent tensor 7, we wish to estimate
p(I;). The desired probabilities form a nonnegative 1 x ny
vector P = [p(I1),p(I2),- -+ ,p(I,,)]", thus our goal is to
find P given tensor 7 .

As p(I“ A L, A A I;,) is equivalent to
mm{p( irs Lisy -+, I;, ) } according to logic operation “ A

, considering the concurrent tensor definition (8), we have
the following set of n;* equations with 1 < 41,42, -+ , iy <
nr:

Tivsigyeyin = min{p(li,),p(Liy), -+ ,p(Li,)} )

It is an over-determined problem to solve n; unknown vari-
ables p(I;),1 < j < nr, and itis computationally extensive
to find an optimal solution to probability vector P if we ex-
haustively search it in n; dimension space R™'.
Alternatively, we can relax the non-differentiable opera-
tion “min” to a differentiable function, and then a gradient
search algorithm can be adopted to give an efficient search
for the optimal solution to P. As discussed in [18], the logic
“A” can also been estimated by a kind of T-norm functions.

The multiplication operation has been proven to be such an
operator, and these two operators have the relation that the
“min” operator is an upper bound of the “multiplication”
operator:

p(Liy) - p(Liy) - p(Li,,) < min{p(Li,),p(Li), - -+, p(Lin)}

(10)
Therefore, an alternative solution is to use “multiplication”
to estimate the logic “A”

Tivsigyryin = i) - p(Liy) - p(Li,) 1)

In this form, the above set of n} equations can be repre-
sented in a compact tensor form:

T=PRQP® ---®P=pP°" (12)
—_——

n terms

This equation can be translated to the fact that 7 should
be a rank-1 super-symmetric tensor, and P can be calcu-
lated given the concurrent tensor 7. Eq. (12) is also an
over-determined multilinear system with n7 equations like
Eq. (11). This problem can be solved by a search for an
optimal solution P to approximate the tensor 7 in light of
least-squared criterion, and the obtained P can best reflect
semantic linkage of instances contained in 7 .

In order to find the best solution to P, we consider the
following least-squared problem:

mmC( ) = SIT P (13)
P> 0
where || - || is the squared Frobenious norm as ||K||2 =

(KK = X iy Kiiiy i, Since the super-
symmetric tensor dose not depend on the order of the in-
dices, we can only store a single representative of each n-
tuple and focus on the entries i1 < i2 < - -+ < 4y, this could
save a great deal of memory to store the tensor 7.

The most direct approach is to form a gradient descent
scheme. To that end, we derive the gradient function w.r.t. P

at first. Following that the differential commutes with inner-
product operation (-, -), i.e., d(IC, ) = 2(K, dK) and the

identity d(P®™) = (dP) @ P®"~Y ... 4 P21 g (4P),
we have
dC(P) = d(3{T P T~ P°"))
= (T —P%",d(T —P*"))
= (P"" =T, 4(P®"))
= (P®" —T,(dP) @ P*"V (14)

+o 4+ PP @ (dP))



Then the partial derivative w.r.t. p; (the j-th entry of P) is:
oC(P)
Op;
_ <P®n,€j ®P®(n—1) 4 +P®(”—1) ® €j>
(T, e; @PP D 4 PP g e

> > Tsioy I P (15)

r=1S5/i, m#r

= (P —T,e; @P®" Y 4 ... 4 PP D gey)

=n- P ||P|*"Y

where e; is the standard vector (0,0,...,1,0,...,0) with
1 in the j-th coordinate, and S represents an n-tuple index,
S/iy denotes {i1,- -+ ,ir—1,0r41, " ,in}, Si,—; the setof
indices S where the index i, is replaced by j. Hence, we
have the gradient function w.r.t. P, that is

aC(P) 9C(P) c’)C(P)}T

VrC(P) = [ Op1 ’ Ope " Opn,

e (16)
Consequently, a direct gradient descent scheme could be ap-
plied to form an iterative algorithm of search for the best so-
lution P. However, this solution to P is limited to the avail-
able set of instances instead of the whole feature space. In
the following section, we will develop an approach to ex-
tend the solution to the whole space in a natural way, i.e.,
find a function p(z) defined on the whole feature space from
RHKS to give the probability of any instance of being pos-
itive.

3.4. A Kernelization Framework

In this section, we will solve two problems. First, we ex-
tend the estimated posterior probability vector P by search-
ing for an optimal function defined over the whole feature
space on the basis of a kernelized representation of the ob-
jective problem Eq. (13). Second, in this kenelization form,
a regularization term will be adopted to generate a regu-
larized function p(z) over feature space, which is able to
avoid overfitting of the concurrent likelihood model and
high-order concurrent tensor model.

To start, we rewrite the objective cost function in prob-
lem Eq. (13). Given the function p(z), the prob-
ability vector P in Eq. (13) can be given as P =
[p(11),p(I2), -+ ,p(In,)]* where {I;}], is the training
set. Therefore, the cost function in Eq. (13) can be rewritten
as C(p(z), {L;}11,) = 3|7 — P®"||%.. Note that, Differ-
ent from Eq. (13), C(p(z), {I; };1,) is defined as a function
of p(z) instead of vector P, and this cost function will be
minimized w.r.t. the function p(z).

Secondly, as mentioned in 3.2, we use a multiplicative
noisy-or model in the multiple instance setting, which is
often sensitive to instances in negative bags for one well
placed negative instance could bring DD to near zero. In
addition, when the order of the concurrent tensor increases,
the complexity of the tensor model also increases, which
tends to overfit the concurrent likelihood in (6). To solve
this issue, a regularization term Q(||p(x)||7) is introduced

to control the complexity of the high-order tensor model by
penalizing the RKHS norm to impose smoothness condition
on possible solutions. Here H denotes RKHS, || - || the
norm in this Hilbert space, and €(+) is a strictly monoton-
ically increasing function. Combining the above two con-
siderations, the final optimization problem can be written
as

min F(p(z),{L:};1,) =

p(z)EH

Clp(x), {L:}i2) + X Qlp(@)[1#)

1 n
= 5I17 = PE" % + X - Q(llp(@)]17)

s.t. P:[p(ll) ( ) 7p([n1)]T
plr) > 4

where ) is a parameter that trades off the two components.

Since the objective function F'(p(x), {I; };2,) is point-
wise, which only depends on the value of p(x) at the data
points {1; };", according to the generalized representer the-
orem [15], the minimizer p*(z) exists in RKHS and admits
a representation of the form

)= aik(-, L). (18)
=1

where k(-,-) is a Mercer Kernel associated with RKHS H.

Let K = [k(I;,I;)]n;xn, denote ny x ny Gram ma-
trix with a kernel function k(I;,I;) = exp{— HI 1 I® }
(Gaussian Kernel) over instance features and coefﬁc1ent
vector a« = [a; ag -+ ap,|T in Eq.(18). Using
Qllp(x)lln) = 3llp(z)||3, and substitute Eq.(18) into Eq.
(17), we have the following optimization problem:

min F(a) = %H’T — (K- a)®" |7 + %)xaTKa
st. a>0 (19)

To solve it, we derive the gradient of F'(«) w.r.t. o

VaF(a) = VaC(p(a), {I:}%) + AVa(" Ko)
= K-VpC(P)+)K -« (20)

where VpC(P) is the gradient of cost function
C(p(x),{L;},) w.r.t. vector P derived in Eq. (15)(16).

With this obtained gradient, L-BFGS quasi-Newton
method [11] is used to solve this optimization problem. By
building up an approximation scheme through successive
evaluation of the gradient in Eq. (20), L-BFGS can avoid
the explicit estimation of the Hessian matrix. It has been
proven L-BFGS has a fast convergence rate to learn the pa-
rameters « than traditional scaling learning algorithms.

4. Experiment

In this section, we will evaluate ConMIL along several
dimensions. First, we will compare ConMIL with key ex-
isting MIL approaches in image categorization on the most



Figure 2. Three sample images (top row), corresponding seg-
mented regions (middle row) and their probability(salience) map
based on the estimated posterior probability p(z) (bottom row) .

Avg. AUC for COREL dataset

EM-DD [20] 0.775
DD-SVM [4] 0.858
ASVM-MIL [19] 0.836
ConMIL 0.916

Table 1. Average AUC for COREL 5000 dataset by EM-DD, DD-
SVM, ASVM, ConMIL

widely used COREL 5000 benchmark dataset. Second, we
will apply ConMIL in one of the important branches of im-
age categorization: object class recognition, by using the
standard benchmark dataset from Caltech. Third, we will
analyze the influence of the concurrent tensor’s order on the
classification accuracy and computational cost.

4.1. Evaluation on COREL 5000

The COREL 5000 dataset has 50 semantically diverse
categories, with each category containing 100 images. For
the experiments, the images are first segmented using JSSEG
(see Fig. 2 for example segmentation results), and only re-
gions larger than 1/25 of original image are kept. As a
result, each image contains typically less than 10 regions.
A set of low-level features is extracted from each region
to represent an instance, including color correlogram, color
moment, region size, wavelet texture and shape (normalized
inertia of order 1, 2, 3)[4].

During the experiments, images within each category
are randomly partitioned into two halves to form the train-
ing and the testing sets. To determine the parameters o>
(Gaussian Kernel radius) and A in Eq.(17), we conduct a
twofold cross-validation on the training set. We choose o2
from 1 to 20 with step size 2, and A from 0.1, 1, 10, 100.
The pair of parameters that achieves the best performance

Algorithms Airplanes | Cars | Faces | Motorbikes
ConMIL 0.992 0.984 | 0.976 0.987
MILES [3] 0.980 0.945 | 0.995 0.967

Fergus et al. [6] 0.902 0.903 | 0.964 0.925

Opelt et al. [13] 0.889 0.901 | 0.935 0.922

Bar-Hillel et al.[2] 0.897 0.977 | 0917 0.931

Table 2. Comparison of object recognition performance using
ConMIL(n = 4) and other four algorithms. The number in the
table is the true positive rates at the EER point on the ROC Curve.

on the validation set is selected. To ensure a fair compari-
son with key existing MIL algorithms, their parameters are
determined using the same manner. Each experiment is re-
peated for 10 random splits, and the results reported are av-
erage over these runs.

There are various measurements for evaluating perfor-
mance, including ROC curve, precision-recall curve, etc.
The most widely measurement in recent years is AUC (area
under the ROC curve) [8]. We will use AUC in this paper.
The ROC curve plots the true positive rate (i.e. the recall)
as a function of the false positive rate, and AUC measures
the probability that a randomly chosen positive image will
be ranked higher than a randomly chosen negative image.

We next compare the performance of ConMIL with that
of both bag-based MIL, DD-SVM, and instance-based MIL,
EM-DD and ASVM-MIL, and results are summarized in
Table | and in Figure 4. The following observations can be
made:

e Overall, ConMIL achieves the best results at AUC =
0.916.

e ConMIL performs well on categories with complex
objects (e.g. see “building” in Figure 2) or with com-
plex scene (e.g. see “beach” in Figure 2). This is be-
cause ConMIL considers the semantic linkage of these
concurrent regions and encodes this information into
the inference of the instance labels.

e The proposed ConMIL can not only categorize an im-
age (bag) but also directly label the regions (instances).
That is, it can localize the target object in an image.
At the bottom row of Figure 2, we show the proba-
bility (salience) map of the localization results. The
pixel value in each map indicates the computed prob-
ability score of region being positive. As illustrated,
the algorithm has successfully localized the target re-
gions for each category. We also calculate the AUC
on the instance level to validate such localization abil-
ity, and the ground truth on these instances is manu-
ally labeled. The experiments prove our algorithm has
a competitive performance on instance level as well
(84.7%) compared with EM-DD (68.4%) and ASVM-
MIL (74.5%).
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Figure 3. Learning curves (AUC v.s. current tensor order n) for
tiger, beach, building and average over all 50 categories.

4.2. Evaluation on Caltech Dataset

While COREL 5000 contains both scenes, e.g., beach,
and objects, e.g., tiger, the Caltech dataset has mostly ob-
jects. The significant variation in color, pose and lighting
make this data set quite challenging. This data set was used
extensively by several different research teams, both MIL-
based [3] and non-MIL-based [6][2][13]. We will compare
ConMIL with all of them.

Caltech contains 4 sets of object classes: Faces (450 im-
ages), Motorbikes (800 images), Airplane (800 images),
Cars (800 images) and Background (900 general back-
ground and 1,370 road background). We follow the method-
ology in [6] for feature extraction. Salient regions are ex-
tracted using Kadir’s salient region detector [9], and a fea-
ture vector of 18 dimensions is obtained to represent each
salient region. The first 15 feature components are the first
principle components output by PCA and the last 3 compo-
nents are the scale and location of the extracted salient re-
gion. Similar to the COREL 5000 case, Caltech images in
each category are also partitioned in half to form a training
set and a testing set of equal size, and the two parameters
o2 and \ are determined by a twofold cross-validation on
the training set.

Table 2 reports the results compared to other 4 algo-
rithms. To ensure fair comparison and to be consistent with
the experiment setting in [3], the images in the object cate-
gory Airplane, Faces and Motorbikes are tested against the
general background while the Cars images are tested against
the road background. Just as in [3], the performance is
measured by the equal-error-rates (EER) point on the ROC
curve. Compared with the four existing algorithms, Con-
MIL again gives the most competitive overall result, vali-
dating its robustness to different data sets.

Order n 1 2 |3 4 5 6

ConMIL | 0.67 | 2.5 | 6 | 28 | 100 | 200
EM-DD [20] 65
DD-SVM [4] 78

ASVM-MIL [19] | 110

Table 3. Running time of ConMIL with different tensor order (top
table) and other 3 algorithms(bottom table) (min)

4.3. ConMIL Analysis

Figure 3 shows how performance changes when the ten-
sor order n changes. We plot the AUC results of three
COREL 5000 categories (tiger, beach, and building) and
the average AUC over all COREL 5000 categories versus
the tensor order from 1 to 6. We also give the running
time spent for different tensor orders from 1 to 6 in Table
3. The algorithms are run on a Pentium IV 3GHz PC. Com-
bining Figure 3 and Table 3, the following observations can
be made:

e When the order is 1, the concurrent tensor degrades to

a vector, and ConMIL degrades into a regular MIL.
Because the regular MIL does not model the inter-
dependency inside a concept, n=1 gives the worst re-
sults.

e Higher-order concurrent tensor gives better results, but
the performance saturates around n=4. This is be-
cause there rarely exists order-4 relationship in a well-
defined concept/category. n=4 also give a good trade-
off on the computation cost. n=4 is therefore our de-
fault setting in the experiments.

e ConMIL not only achieves good accuracy, but also is
computationally efficient. As shown in Table 3, at n=4,
it uses less time than all the other approaches.

5. Conclusion

To model the inter-dependency among regions in an im-
age concept/category, in this paper we have proposed a new
concurrent tensor-based MIL algorithm, ConMIL. It not
only models the semantic linkage between the instances,
but also avoids overfitting by formulating the label inferring
processes into a regularization framework. Furthermore, it
uses RKHS to extend predicted labels to any instances in
the whole feature space to facilitate the testing process. Us-
ing two widely studied datasets, we have demonstrated that
ConMIL achieves high classification accuracy on both bags
and instances, is robust to different datasets, and is compu-
tationally efficient.
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