
Parameter Sensitive Detectors

Quan Yuan, Ashwin Thangali, Vitaly Ablavsky, and Stan Sclaroff
Computer Science Department

Boston University
111 Cummington Street, Boston, MA 02215
{yq,tvashwin,ablavsky,sclaroff}@cs.bu.edu

Abstract

Object detection can be challenging when the object
class exhibits large variations. One commonly-used strat-
egy is to first partition the space of possible object varia-
tions and then train separate classifiers for each portion.
However, with continuous spaces the partitions tend to be
arbitrary since there are no natural boundaries (for exam-
ple, consider the continuous range of human body poses).
In this paper, a new formulation is proposed, where the de-
tectors themselves are associated with continuous parame-
ters, and reside in a parameterized function space. There
are two advantages of this strategy. First, a-priori parti-
tioning of the parameter space is not needed; the detectors
themselves are in a parameterized space. Second, the un-
derlying parameters for object variations can be learned
from training data in an unsupervised manner. In profile
face detection experiments, at a fixed false alarm number
of 90, our method attains a detection rate of 75% vs. 70%
for the method of Viola-Jones. In hand shape detection, at
a false positive rate of 0.1%, our method achieves a detec-
tion rate of 99.5% vs. 98% for partition based methods. In
pedestrian detection, our method reduces the miss detection
rate by a factor of three at a false positive rate of 1%, com-
pared with the method of Dalal-Triggs.

1. Introduction
There are two typical classification problems in object

recognition tasks:

1. Determine whether or not an image chip depicts a
view of the foreground object class. This is commonly
called detection, for instance, face detection, pedes-
trian detection, vehicle detection, etc.

2. Given an image chip that depicts a view of the fore-
ground class, determine the object parameters. This
is commonly called pose estimation or parameter esti-
mation, for instance, body pose estimation.

Solutions of these two problems are typically treated as
separate stages in an overall system, e.g., [1, 9]. On the
other hand, there has been recent work in multi-view face
detection that unifies detection and pose estimation [3, 5,
6, 11]; as a result, knowledge of the variations in the fore-
ground class can be used to improve the detection accuracy.
In [3, 5] the space of face view angles is hierarchically par-
titioned into sub-classes; thus, the pose class label is linked
to the classifier at the finest level in the hierarchy. Finally,
in [6] an input is mapped to a parameterized face manifold
for simultaneous detection and pose estimation.

For many objects like human hands, human bodies and
vehicles, the appearance can be quite different when the
view angle or parameter settings (e.g., joint angles of hu-
man body) vary. The advantage of providing different de-
tectors for different parameter variations is two-fold. First,
each individual detector can be simpler as the variation of
the object appearance for a fixed parameter setting is much
smaller. Second, the parameter estimate or pose class for
the object can be obtained almost for free.

However, despite the demonstrated benefits of such a
divide-and-conquer strategy, there are still two key prob-
lems that are not addressed in previous work: (a) The par-
titioning is arbitrary in a continuous space where there are
no natural boundaries (for example, consider the continuous
range of human body poses). (b) Labelling the parameters
of the training samples can be tedious for some applications.
For instance, there can be more than 20 degrees of freedom
for the human body or human hands.

One observation we have is that the detectors tuned to
different parameter settings are still correlated; in other
words, they are likely to share features, especially for those
whose parameters are close to each other. Therefore, we
propose to learn the detectors by modelling them in a pa-
rameterized function space and learn them jointly. In our
derivation, the classification functions of different parame-
ter settings boil down to a single “meta” binary classifica-
tion function that can be solved via standard learning meth-
ods like Support Vector Machines (SVMs) or Adaboost.

1-4244-1180-7/07/$25.00 ©2007 IEEE

In our work the detectors themselves are associated with
continuous parameters. Thus, partitioning the parameter
space is unnecessary. Because each detector has a coordi-
nate in the continuous parameter space, they can be used for
parameter estimation. Furthermore, the individual detectors
share features implicitly or explicitly and thus improve their
performance. As has been shown in [10], with feature shar-
ing the multi-class detectors achieve higher detection accu-
racy and keep the structure compact.

In our formulation the parameters can explicitly model
the state, like joint angles or view angles for objects like
the human body, faces, hands, vehicles, etc. They can also
be intrinsic parameters obtained via dimensionality reduc-
tion methods like Principal Component Analysis (PCA), or
Gaussian Process Latent Variable Models (GPLVMs) [4].
In the case of intrinsic parameters, the effort of parameter
labelling is saved. Note in this case the detection result does
not directly recover explicit parameters of the original ob-
jects. Nonetheless, association of classifiers with the in-
trinsic parameters still makes individual classifiers tuned to
different variations of the object appearance and therefore
improves detection accuracy. Furthermore, the technique
can be extended to non-metric spaces where only a similar-
ity measure exists.

Although multiple detectors of different parameters are
applied in the classification process, the complexity can be
reduced significantly via the cascade strategy used in the
Viola-Jones face detector [12], as is demonstrated in our
experiments. Experiments in profile face detection, hand
shape detection, and pedestrian detection demonstrate the
advantages of this new approach over past techniques.

2. Our Approach
Given a feature vector1 x ∈ R

m computed for an image
patch, our goal is to decide whether or not the correspond-
ing image patch depicts an instance of the object. Let the
variations of the object class be parameterized by θ ∈ R

n,
e.g., object poses, view angles. We aim to learn a function
C(x, θ) which tells us whether x is an instance of the object
with parameters θ,

C(x, θ)

{
> 0,x is an instance of the object with θ

< 0, otherwise.

(1)
We define

fθ(x) = C(x, θ),

where fθ(·) has x as a variable but θ is fixed. Intuitively,
learning an fθ that can identify object instances for a spe-
cific parameter θ is easier than learning a detector that
works for all possible parameter variations. For example,

1In this paper, all vector variables are column vectors.

in human hand detection, if the finger angles and view an-
gles are fixed, then a simple linear classifier may suffice.

The learning of C(x, θ) implies the learning of a fam-
ily Ω of functions fθ parameterized by θ. The underlying
mapping is from parameters θ to this family of functions,

w : R
n → Ω.

We propose two alternative ways to learn the mapping.
One is by SVM, and the other one is by Adaboost.

2.1. Learning the Mapping w(θ) by SVM

Assuming Ω is a family of linear functions, i.e.

fθ(x) = C(x, θ) =
[

1
x

]T

w(θ) (2)

where w(θ) is a vector of weights in the linear classifier,
we can use a linear function to approximate w(θ) given
training data. Suppose θ = [θ1, θ2, . . . , θn]T . The linear
approximation of w(θ) is

w(θ) =
n∑

i=1

viθi + v0 (3)

where the vectors vi ∈ R
m+1 are unknowns to be learned

via supervised learning. If we plug Eq.(3) into Eq.(2), the
classification function fθ of Eq. (2) becomes

fθ(x) =
[

1
x

]T

[vnθn + . . . + v1θ1 + v0]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
x
θ1

θ1x
...

θn

θnx

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v0

v1

...
vn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

During training, the goal is to find v0,v1 . . .vn, given
a training set of positive and negative samples of the form
(x, θ). The optimality of the learned vectors vi is mea-
sured by the classification performance of all the fθ over
the instances of x. In Eq. (4) the knowns (from data) and
unknowns are separated into two vectors. The problem
of learning the unknown v0,v1 . . .vn reduces to learning
a binary linear classifier in this augmented feature space.
Structural risk minimization strategies like those used in the
SVM can be applied. Also note that if only v0 is used (i.e.,
n = 0), then Eq. (4) reduces to a linear classifier – with-
out knowledge of θ. The vectors v1,v2, . . . ,vn can be re-
garded as correction terms that adjust the classifier vector
linearly with respect to θ. In training, each negative sample

is a background patch associated with a random parameter
or a foreground patch with a parameter far from the true
value.

During classification, we sample in the parameter space
to obtain detectors. Each sample comes with a linear clas-
sifier fθ. If any of these classifiers accepts the input x, then
x is classified as an instance of the object class, otherwise
it is not. Since we have the knowledge of variations in the
object class, sampling follows the prior distribution of θ to
make classification more efficient.

2.2. Learning by Adaboost

There is an alternative way to learn the mapping w(θ)
by Adaboost. The advantage of Adaboost training is that
the augmented feature space is not needed because of ex-
plicit feature sharing. Moreover, it works in cases when
parameters are not available.

We can denote a parameter-sensitive classifier in terms
of a combination of weak classifiers:

C(x, θ) =

⎡
⎣ h1(x)

. . .
hM (x)

⎤
⎦

T

w(θ) = hTw(θ), (5)

where hj is a weak classifier, usually a decision stump that
involves a single feature and a threshold. For each weak
classifier, we need to know: (a) what positive samples or
range of parameters would benefit from this weak classifier
for detection, and (b) what the weight of the weak classifier
should be.

The weights w(θ) are defined by weight vectors vi and
binary functions φi(θ) which indicate what range of param-
eters are sharing features.

w(θ) =
K∑

k=1

vkφk(θ) = Vφ, (6)

where V = [v1|v2| . . . |vK] ∈ R
M×K and φ =

[φ1(θ), φ2(θ), . . . , φK(θ)]T ,

φk(θ) =

{
1, θ ∈ Θk

0, otherwise.
(7)

Θk is a region of the parameter space, for instance, defined
as a hyper-rectangle or hyper-sphere. We call φk(θ) the
support of weak classifiers, and the size of φk is defined as
the size of the region of Θk in the parameter space. If we
plug Eq.(6) into Eq.(5), we have

C(x, θ) = hT Vφ =
M∑

j=1

hj(x)
K∑

k=1

vkjφk(θ). (8)

where vkj is the (k, j)-th entry of V. The learning of vkj is
achieved via AdaBoost, but in a way that allows sharing of

Given: Φ = {φk|φk(θ) = 0 or 1} are the supports,
H = {hj |hj(x) = ±1} are the weak classifiers,
X = {(xi, θi, li, wi)} are training samples, where

xi is a feature vector, θi is a parameter value, li = ±1 is
the class label, and wi is the training sample weight.

• Initialize:

1. wi = 1/N ,

2. {φ1, φ2, . . . , φK} are partitioned into disjoint
subsets Φi, such that all φk in each Φi are of the same
size. Φ1, Φ2, . . . , ΦT are sorted in decreasing order of
sizes of φk ∈ Φi.

• For t = 1 to T

1. Xt = {(xi, θi, li, wi)|φk(θi) = 1, φk ∈
Φt} ⊂ X .

2. Run AdaBoost [7] on Xt with H and Φt. In
each boosting iteration, we select a hj ∈ H and a
φk ∈ Φt that achieves the most reduction of training
sample weights. The classifier weight vkj is assigned
by Adaboost. The sum of wi is normalized to 1 after
each boosting iteration. The boosting iterations stop
when the termination condition is met.

Figure 1. Algorithm for parameter-sensitive detector training.

weak classifiers, similar as [10]. However, unlike [10], in
our work features are shared among samples of continuous
parameters instead of a number of discrete classes.

In training, a pool of supports φk with different Θk is
provided, where Θk are overlapping and

⋃
Θk covers the

parameter range of all training samples. Our goal is to se-
lect the supports and weak classifiers to minimize the train-
ing error via Adaboost. The joint optimization over all fea-
tures and all supports can be expensive for practical ap-
plications. Instead our algorithm employs a greedy strat-
egy. In each boosting iteration, it selects weak classifiers
always under supports of a fixed size, i.e., only one size of
φk is considered in each boosting iteration, starting from
the largest size. The algorithm optimizes with respect to
training samples within a selected support; normalization
in each boosting iteration keeps the total weight of train-
ing samples constant. Once the termination criterion is met
(validation accuracy does not increase or margin does not
improve), the algorithm moves to the subset of supports of
the second largest size, and so on. The heuristic of select-
ing large support first encourages feature sharing, which in
turn, leads to more parsimonious strong classifiers. We em-
ploy the discrete AdaBoost algorithm [7] with predefined
feature thresholds, which leads to much faster training. The

training algorithm is summarized in Fig. 1.
The main difference between our method and training of

a regular binary Adaboost classifier is that a weak classi-
fier may be selected because it reduces weighted error of a
subset of training samples, instead of all training samples
being taken into account in every iteration. After training
with our algorithm, for a parameter value θ̂, all the selected
tuples (hj , φk) can be partitioned into two non-overlapping
sets A and B,

A = {(hj , φk)|φk(θ̂) = 1}, (9)

B = {(hj , φk)|φk(θ̂) = 0}. (10)

All weak classifiers in A (with their weights vkj) are com-
bined into a strong classifier as the detector for the sample
θ̂. During classification, samples in the θ space are gen-
erated and corresponding strong classifiers are composed.
Given an input x, if one of the strong classifiers accepts it,
then the input is classified as an instance of the object class.

The parameter-sensitive detector learned by Adaboost is
a piece-wise approximation of the parameterized function
space. It is different from partition-based methods [3, 11]
in that supports in the piece-wise space are learned via
optimizing classification accuracy, instead of simply parti-
tioning the foreground class using within-class similarities
without a direct link to resulting classification accuracy.

2.3. Extension to Non-Metric Spaces

The definition of binary support functions φk can be eas-
ily extended to non-metric spaces. In practice, there are
applications where continuous parameterization of training
samples is difficult to obtain. In this case the partition based
methods and parameter sensitive detector using numeri-
cal parameters cannot be applied. However, the variations
among foreground objects can still be captured by similarity
measures, e.g., the Chamfer edge distance in the hand data
set of [1]. With small modifications, the Adaboost-trained
parameter sensitive classifier can still be applied. Note in
the previous section the parameters define which samples
are going to share features in training. A similarity measure
is enough to define the sharing among the training samples,
if the support of features is defined

φk(x) =

{
1, D(xk,x) ≤ Tk

0, otherwise
(11)

where xk and x are two samples, e.g., two hand images,
D is a similarity measure, e.g. Chamfer edge distance, and
Tk is a threshold. Given a sample xk as a center, the func-
tion φk specifies that those x within a certain distance from
xk share weak classifiers. Note the domain of φk is now
the training sample space, instead of the parameter space.
The size of φk is defined as the number of positive training

samples x that satisfies D(xk,x) ≤ Tk. During training,
each negative sample is associated with an index of positive
samples, instead of a numerical parameter. During classifi-
cation, the detectors are sampled from indices of the posi-
tive samples.

3. Implementation and Experiments
We demonstrate the parameter sensitive classifiers in

three detection problems. The detection accuracies are
compared with previous methods [2, 6, 11].

3.1. Profile Face Detection

Profile face detection tends to be more difficult than
frontal face detection, due to the variations of head poses
and fewer discriminative features. Detection rates reported
in the literature are lower than that for frontal face detec-
tion [6, 11]. Our positive training samples and features are
the same as [11]. The test set is CMU-PROFILE data set [8]
which has 208 images with 353 profile faces.

Pose parameters are not provided with the training data.
Instead, we learn a PCA space of the intensities from pos-
itive training samples. The intensity variations of face im-
ages are normalized to reduce illumination effects before
applying PCA. The first two PCA components account for
70% of the variance and are used as parameters for the pa-
rameter sensitive classifier, i.e., θ ∈ R

2.
A nine-level cascade detector is constructed via boot-

strap, in a similar manner to [11]. The first eight levels
are standard Adaboost classifiers which reject trivial back-
ground patches. The last level is trained by linear SVM
parameter-sensitive classifier (Sec. 2.1) with 3300 binary
features selected from sixth to eighth levels. The feature
values are corresponding weak classifiers outputs, which
are 1 or -1. The negative training samples are the false
positive training samples passing through the first eight lev-
els. During testing, a sample is first projected onto the PCA
space to get the two PCA coordinates. No sampling in the
parameter space is needed.

Table 1. Correct detection rates at two false alarms levels on the
CMU profile face data set.

False alarms 90 700
Our method 75% 86%

Viola-Jones[11] 70% 83%
Osadchy et al. [6] 67% 83%

Schneiderman-Kanade [8] 86% 93%

The comparison result is shown in Table. 1. The
parameter-sensitive detector improves the detection rate
over Viola-Jones detector by 5% and 3% at 90 and 700 false
alarms respectively. The detection rate of [8] is the best
among the four methods but with a large penalty in speed,
as is reported in [11].

3.2. Detecting Hands with Bending Index Finger

In the second experiment, a parameter sensitive detec-
tor trained by Adaboost is used to detect a hand shape class
that has the index finger extended, with variations of index
finger angles and in-plane orientations as shown in Fig. 2.
There are two degrees of freedom in the hand shapes: in-
plane orientation, and angle of the index finger with respect
to the palm. Each angle is within the range [0,90] degrees.
In total 3394 real hand images from several subjects are la-
belled and separated into positive training (70%) and test-
ing samples(30%). Negative training samples are cropped
from real background images or hand images of other hand
shapes, as shown in Fig. 3. There are 5500 negative training
samples and 50000 negative testing samples.

Histogram of Gradients (HOG) [2] features are em-
ployed. The hand window is of size 48 by 48 pixels, which
is divided into 64 cells of size 6 by 6. For each cell, nine
edge orientation bins are evenly spaced between 0 to 180
degrees (“unsigned” gradient). The edges are detected by a
Sobel edge detector, and each pixel votes for its orientation
bin by edge magnitude. Bins in each cell are normalized
with the surrounding 3 by 3 cells using the 2-norm as in [2].
There are 576 features extracted from each image patch.

Figure 2. The hand shape with two degrees of freedom.

Figure 3. Example negative training and testing image patches.

0 1 2 3 4 5

x 10−3

0.8

0.85

0.9

0.95

1

False Positive Rate

D
et

ec
tio

n
R

at
e

Our method
9 partitions
25 partitions
no partition

Figure 4. The ROC curves of parameter-sensitive detectors, regular
Adaboost detector and partition-based detectors.

There are 600 supports for training of the parameter-
sensitive detector. The smallest support covers a 15 de-
gree by 15 degree region in the parameter space of (θ1, θ2).
The detection accuracy is compared with that of an Ad-
aboost classifier with no partition, and partition-based meth-
ods where each parameter dimension is evenly divided into
three and five partitions. As shown in the ROC curves
of Fig. 4, the parameter-sensitive detector outperforms the
best comparing method by 1.5% at a false positive rate of
0.1%. Among the 4490 weak classifiers combined in the
parameter-sensitive detector, 945 of them have supports that
cover more than 80% of all the positive training samples,
and 1830 of them have supports that cover fewer than 50%
of all the positive training samples. Clearly there exists
strong feature sharing among different parameters, yet the
classifiers with smaller supports make a difference.

A parameter estimator is learned in a similar way as the
detector. We should note that following Eq. (1) and Eq. (5)
detection and parameter estimation can be accomplished in
one step. In practice, we found it advantageous to employ
a two level cascade. The first level of our cascade is op-
timized for detection (foreground vs background classifi-
cation) by selecting negative training patches from back-
ground images. The second level is optimized for parame-
ter estimation by including hand shape images with random
parameter values as negative training samples. Feature shar-
ing between different hand shapes decreases in the second
level. The cascade structure however yields better perfor-
mance with little extra computation as described below.

During training of the parameter estimator, the positive
and negative samples are the same set of hand images as
in Fig. 2. Negative samples are assigned random parame-
ters that differ by ≥ 15 degrees from the true values. In
total, AdaBoost selects 227 weak classifiers for the param-
eter estimator. During classification, for a given test image,
all positive parameter samples in training data are used to
generate their corresponding classifiers. The parameter es-
timate is given by the classifier with the maximum score
for the test input. In our experiments with the cascade, the
mean absolute errors (MAE) for θ1 and θ2 (as in Fig. 2) are
9.045 and 5.303 degrees respectively. This is an improve-
ment compared to the MAE of 10.946 and 6.793 degrees
we obtain using the parameter values corresponding to the
highest scoring detectors from first level of the cascade.

3.3. Pedestrian Detection

In the third experiment, we demonstrate the approach in
a pedestrian detection application, using the data set of [2].
There are no explicit parameters given for the positive sam-
ples. Substantial background regions included in positive
training samples make it difficult to learn a PCA space of
foreground appearance variations; nonetheless, histogram
distances can still be used to measure the similarity between

10−6 10−5 10−4 10−3 10−2 10−1 100
10−4

10−3

10−2

10−1

100

False Positive Per Window

M
is

s
R

at
e

Dalal−Triggs
Our method

Figure 5. Comparing our method with Dalal-Triggs[2] method.

positive training samples. We train the parameter sensitive
classifiers by Adaboost using the extension to non-metric
spaces of Sec. 2.3. The similarity measure D is the Ma-
halonobis distance with diagonalized covariance matrix. In
training, 300 supports φk are centered at 50 positive training
samples. The centers are selected sequentially from all fore-
ground training samples after removing the closest samples
around previous centers. The sizes of supports are between
50 and 2416, which is the total number of foreground train-
ing samples.

Our detector is a two-level cascade. The first level is
a regular binary classifier trained by Adaboost with 1000
weak classifiers using HOG features. The second level is a
parameter sensitive detector trained by Adaboost (Sec. 2.3),
which has 6000 weak classifiers in total. 200 individual
detectors are sampled from the second level and used dur-
ing classification. We implement the method of [2] and
our implementation matches their result. Another method
[13] reports an accuracy comparable to [2] but with a much
faster speed. The comparison between our method and [2]
is shown in Fig. 5. Compared with [2], our method reduces
the miss detection rate from 2.7% to 0.8% at a false posi-
tive rate of 1%, and reduces the false positive rate from 5%
to 0.9% at a miss detection rate of 1%. The speed of our
method is 1.3 times slower than [2] over the test set.

During testing, the detector with the highest score cor-
responds to the training sample that can be interpreted as
a “matching” sample for the test input. Twelve matching
pairs are displayed in Fig. 6. For each pair, on the left is a
test image, on the right is the training sample corresponding
to the detector of the highest score. As can be seen, there is
similarity between the images in each pair.

4. Conclusion and Future Work
We developed a framework for detection of objects with

large within-class variations. The proposed approach learns

Figure 6. The matching between testing and training samples. For
each pair, on the left is a test image, on the right is the training
image corresponding to the detector of the highest score.

a parameterized function space of detectors. Each sample
in the function space corresponds to a detector for a partic-
ular variation of the object class. When explicit parameters
are not available, the framework can make use of intrin-
sic parameters via unsupervised learning. Furthermore, the
method extends to non-metric spaces.

In future work, parameter-sensitive detectors can be de-
veloped into hierarchical detectors by combining weak clas-
sifiers of the same support into one component, which may
further improve classification speed.

References
[1] V. Athitsos and S. Sclaroff. Estimating 3d hand pose from a cluttered

image. In CVPR, pages 432 – 439, 2003.
[2] N. Dalal and B. Triggs. Histograms of oriented gradients for human

detection. In CVPR, 2005.
[3] C. Huang, H. Ai, Y. Li, and S. Lao. Vector boosting for rotation

invariant multi-view face detection. In ICCV, 2005.
[4] N. Lawrence. Gaussian process latent variable models for visualisa-

tion of high dimensional data. In NIPS, 2003.
[5] S. Li, L. Zhu, Z. Zhang, A. Blake, and H. Shum. Statistical learning

of multi-view face detection. In ECCV, 2002.
[6] R. Osadchy, M. Miller, and Y. LeCun. Synergistic face detection and

pose estimation with energy-based model. In NIPS, 2004.
[7] R. Schapire, Y. Freund, P. Bartlett, and W. Lee. Boosting the margin:

a new explanation for the effectiveness of voting methods. In ICML,
1997.

[8] H. Schneiderman and T. Kanade. A statistical method for 3d object
detection applied to faces and cars. In CVPR, 2000.

[9] G. Shakhnarovich, P. Viola, and T. Darrell. Fast pose estimation with
parameter-sensitive hashing. In ICCV, 2003.

[10] A. Torralba, K. Murphy, and W. Freeman. Sharing features: efficient
boosting procedures for multiclass object detection. In CVPR, pages
1441–1448, 2004.

[11] P. Viola and M. Jones. Fast multi-view face detection. In CVPR,
2003.

[12] P. Viola and M. Jones. Robust real time object detection. In IJCV,
volume 57, pages 137 – 154, 2004.

[13] Q. Zhu, S. Avidan, M. Yeh1, and K. Cheng. Fast human detection
using a cascade of histograms of oriented gradients. In CVPR, 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

