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Abstract

This paper presents a method of learning and recogniz-

ing generic object categories using part-based spatial mod-

els. The models are multiscale, with a scene component that

specifies relationships between the object and surrounding

scene context, and an object component that specifies re-

lationships between parts of the object. The underlying

graphical model forms a tree structure, with a star topol-

ogy for both the contextual and object components. A par-

tially supervised paradigm is used for learning the mod-

els, where each training image is labeled with bounding

boxes indicating the overall location of object instances, but

parts or regions of the objects and scene are not specified.

The parts, regions and spatial relationships are learned au-

tomatically. We demonstrate the method on the detection

task on the PASCAL 2006 Visual Object Classes Challenge

dataset, where objects must be correctly localized. Our re-

sults demonstrate better overall performance than those of

previously reported techniques, in terms of the average pre-

cision measure used in the PASCAL detection evaluation.

Our results also show that incorporating scene context into

the models improves performance in comparison with not

using such contextual information.

1. Introduction

In this paper we investigate the use of scene context in

the recognition and localization of generic object classes in

images. The past few years have seen substantial advances

in the ability to classify images according to whether or not

they contain instances of generic categories of objects (see

related work in the next section). However many of these

techniques do not localize where the objects are in the im-

age. Rather these methods use a combination of cues in

order to classify an image according to whether it contains

instances of a given object, without explicitly determining

object location. While image classification is well-suited to

some tasks such as image retrieval, accurate object local-

ization is essential for applications that involve interacting

with the world such as navigation, surveillance, and visual

user interfaces.

There are a number of reasons for the recent focus on

image classification instead of localization. First, a broad

range of machine learning techniques are directly applica-

ble to the classification problem but less so to the localiza-

tion problem. Second, large-scale training and test sets that

provide object location information have not been available.

The latter issue has recently been addressed with the cre-

ation of the dataset for the PASCAL 2006 Visual Object

Classes Challenge (VOC) [7]. We address the same task us-

ing the same data and scoring as in the comp3 portion of

the competition. However we use a slightly different termi-

nology that we believe is less open to confusion, referring

to this task as localization rather than detection. This is be-

cause the term detection is often used in the literature to

refer to methods that do not actually determine the location

of objects in images (i.e., that perform what both we and the

VOC refer to as classification).

The main focus of this paper is on the use of scene con-

text to improve localization accuracy in comparison with

not using contextual information. Recently there have been

some impressive demonstrations of the power of scene con-

text for classification and to a lesser extent for localiza-

tion (e.g., [12, 15, 16, 17]). However, there has been rela-

tively little investigation of the use of scene context for rec-

ognizing object categories that are highly confusable with

one another, such as motorbikes and bicycles, and on large

scale datasets that have also been used for evaluating non-

context-based methods. Here we demonstrate that for our

method the addition of scene context yields significant im-

provement in localization results for the bicycle, motorbike,

car and bus categories of the PASCAL 2006 VOC dataset.

Moreover, our method achieves better overall accuracy on

these datasets than previously reported results from entries

in the 2006 VOC challenge.

In this work we represent objects using part-based sta-

tistical models similar to those developed in [1, 3, 9]. We

augment these models with scene context by creating a two-

level hierarchical model, where the spatial configuration of
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regions in the scene is represented at a coarse level, and

the multi-part object is represented at a finer level of detail.

We use a partially-supervised learning paradigm where the

scene and object components of the model are both learned

from training data that is annotated only with bounding

boxes of entire object instances. The subparts of the ob-

ject and the regions composing the scene, as well as spatial

relations between them, are determined automatically, as il-

lustrated in Figure 1.

2. Related work

Object recognition using models composed of image

patches with pairwise spatial relations between them dates

back at least to the Pictorial Structure models of Fischler

and Elschlager [11]. Recently there has been a resurgence

of such techniques, including constellation models (e.g.,

[2, 9]) as well as new techniques based on Pictorial Struc-

tures (e.g., [3, 10]). These lines of work have found that

simple star-shaped graph topologies work well for such spa-

tial models, and thus we employ star models here.

The past few years have also seen a resurgence of work

on context-based recognition, which similarly is an area

where research dates back to the 1970’s. Whereas much of

the early work on scene context sought to parse the scene,

accounting for all the objects and relations between those

objects, more recent work is generally aimed at using con-

textual information to improve recognition. For instance,

information about the locations of sidewalks, roads or the

horizon has been shown to improve localization of automo-

biles and pedestrians (e.g., [12, 17]) and the mutual pres-

ence of objects in an office scene can aid in recognition

(e.g., [15]).

Thus far there has been relatively little evaluation of

context-based recognition techniques on standard object

recognition test sets that are also widely used for non-

context-based methods. For example [12] consider the task

of detecting cars using the PASCAL VOC 2005 data, but

do not obtain state of the art results, achieving an average

precision (APR) of 0.423 compared to 0.613 and 0.489 for

the top two methods reported in that challenge. There has

also been relatively little work on the use of scene context

for multi-part spatial models. In contrast, previous work

has tended to focus on rigid template object models (e.g.,

[12, 15]) or on pixel-level classification (e.g., [16]).

Finally we note that the dominant paradigm for research

in object category recognition over the past several years

has been classification – determining whether an image con-

tains instances of specified categories – as opposed to local-

ization. As an illustration, the PASCAL VOC 2006 had 23

entries in the comp1 classification task and most of those

entries gave results for all the object categories. In con-

trast, there were only 6 entries in the comp3 localization

task and only 2 of those gave results for all the categories.

This is in part because the range of techniques applicable to

classification is considerably broader than those applicable

to localization; for instance bag models (e.g., [5]) do not

incorporate spatial relations. While classification is an im-

portant task, localization is also highly important but less

well studied, and hence the focus of this paper.

3. A Part-Based Object and Scene Model

Our approach is based on the probabilistic part-based

models developed in [1, 3], where an object is represented in

terms of a set of patches and spatial relations between those

patches. As in the Patchwork of Parts (POP) model [1] we

explicitly model overlapping patches, whereas most part-

based models do not account for such overlap. We also con-

strain the underlying undirected graphical model defined by

the parts and relations, so that the topology of the graph

yields factored distributions for efficient computation (fol-

lowing the development in [3] more than [1]).

As our primary interest here is the use of scene context

in object localization, we use a part-based model not only

to represent an object in terms of constituent parts but also

to represent the surrounding scene context. The form of the

object and scene components of our model are the same,

differing only in the types of parts that are used for the ob-

ject versus the scene. More formally, a model consists of an

object component and a scene component, each of which

is composed of a collection of patches and spatial relations

between pairs of those patches. Let V O = (vO
1 , . . . , vO

n )
be the set of patches in the object model with pairwise spa-

tial relations EO ⊆ V O × V O among those parts. Sim-

ilarly let the set of scene patches be V S = (vS
1 , . . . , vS

m)
with pairwise spatial relations ES ⊆ V S × V S . In addi-

tion to the spatial relations between pairs of object patches

and those between pairs of scene patches, there are also spa-

tial relations between pairs that consist of one scene patch

and one object patch, which we denote EOS ⊆ V O × V S .

A model thus consists of the object and scene patches,

the spatial relations within those sets of patches and the

spatial relations between the two sets of patches M =
(V O, V S , EO, ES , EOS).

A configuration L of a model M with respect to an

image I specifies a location in the image for each of

the object and scene patches of the model; that is, L =
(lO1 , . . . , lOn , lS1 , . . . lSm) where each lSi specifies the location

of scene patch vS
i and lOi the location of object patch vO

i .

Note that these locations are mappings from a model co-

ordinate frame to the image coordinates, and may involve

transformations more complicated than simply a transla-

tion. While a configuration L specifies locations for each

scene patch as well as each object patch, we consider only

the locations of the object patches in localizing an instance

of an object in an image (i.e., in placing a bounding box

around the instance). The scene patches serve to constrain



the configuration of object patches via the spatial relations

of the model, but are not themselves part of the object loca-

tion.

For the object localization problem, we are interested in

finding good configurations L of a particular model M with

respect to an image I . That is, we seek configurations L that

have high posterior probability, P (L|I, M). A single best

configuration can be found by identifying a configuration

L∗ that maximizes the posterior. However, more generally

we seek high probability configurations. By Bayes’ rule the

posterior is proportional to the product of the prior proba-

bility over configurations and the likelihood of seeing the

image given a configuration of the model,

P (L|I, M) ∝ P (L|M)P (I|L, M). (1)

Since we are seeking high posterior probability configu-

rations, we do not need to consider the P (I) term which

would be in the denominator of Bayes’ equality. We thus

refer to P (L|I, M) as the posterior even though it is only

proportional to the actual posterior distribution.

This general form of distribution is intractable to com-

pute even for a relatively small number of parts, particularly

because the number of possible locations per part is quite

large. Following the approach taken in [1] and [3] we con-

sider a restricted form of problem such that both the likeli-

hood P (I|L, M) and the prior P (L|M) factor into products

of low-dimensional distributions. If the underlying graphi-

cal model G = (V, E), with vertices V = V O ∪ V S and

edges E = EO ∪ES ∪EOS , forms a tree, the prior factors

according to

P (L|M) =

∏
eij∈E P (li, lj |M)

∏
vi∈V P (li|M)deg(vi)−1

.

In the current setting, we are modeling only relative loca-

tions of pairs of parts and not absolute part location. Thus

the prior probability of individual part locations, P (li|M),
is uniform and the denominator can be omitted so that

P (L|M) is simply the product of the pairwise priors cor-

responding to the edges of the tree.

For the image likelihood it is common to simply assume

that the appearances of the individual parts are independent

from one another, such that the likelihood P (I|L, M) fac-

tors into a product over parts. This yields an overall factor-

ization of the posterior in (1) into

P (L|I, M) ∝
∏

eij∈E

P (li, lj |M)
∏

vi∈V

P (I|li, M). (2)

For the combined object and scene models used here, this

factorization applies to both the scene and object compo-

nents of the model, yielding a factorization of the posterior

into

P (LO|M)P (LS |M)P (LOS |M)P (I|LO, M)P (I|LS, M)
(3)

where

P (LO|M) =
∏

eij∈EO

P (lOi , lOj |M)

P (LS|M) =
∏

eij∈ES

P (lSi , lSj |M)

P (LOS |M) =
∏

eij∈EOS

P (lOi , lSj |M)

P (I|LO, M) ∝
∏

vi∈V O

P (I|lOi , M)

P (I|LS, M) ∝
∏

vi∈V S

P (I|lSi , M).

That is, the posterior distribution factors into products over

the spatial priors of the scene model, spatial priors of the

object model, and spatial priors between the scene and ob-

ject models, as well as products over the part appearance

likelihoods of the scene model and of the object model.

Each pairwise spatial model P (li, lj) is represented as

a Gaussian over relative location of the two corresponding

parts. These Gaussians can be over more complex configu-

ration spaces than simply relative translation, for example

including scale, orientation or other transformations. As

discussed in more detail in Section 4 below, the appearance

models for the object and the scene patches are different,

yielding different forms of image likelihood. The object

patches are high-resolution edge-based models whereas the

scene patches are low-resolution color, edge and surface ori-

entation models.

In the experiments reported below, we consider a some-

what limited form of the models introduced in this section.

We learn object models and scene models that each form

a star graph (a tree of depth one) rather than more general

tree structures. In practice star graphs have been found to be

quite powerful for modeling objects (e.g., [3, 10]). We also

limit the form of the spatial relationship between the scene

and object components of the model to a single edge be-

tween the root part of the object model and a special distin-

guished part in the scene model. The root part of the object

model is learned automatically whereas the distinguished

part of the scene model is the bounding box of the object

rather than an arbitrary patch in the scene. In the future we

plan to investigate other forms of tree structured models for

both the object and scene. The simplified form used here

was chosen because it is relatively straightforward to learn

without much supervision, as discussed further in Section 6

below.

A given object category may consist of more than one

model of the form described in this section. For instance,

there may be models corresponding to different viewpoints,

to distinctive sub-categories of objects, or even to different

scene contexts. In the experiments reported in this paper,



we used one scene context model per object category, with

one object model per viewpoint as defined by the labels in

the training data.

4. Part Appearance Models

We use a simple probabilistic framework for modeling

patch appearance that is general enough to handle a broad

range of different types of image features. This approach is

a generalization of the patch models in [3], which used only

edges. In this framework a preprocessor is first run on the

image to assign one of a small set of labels to each pixel.

The preprocessor is chosen according to the type of image

features of interest. For example, one preprocessor might be

an edge detector that produces a binary edge map, while an-

other preprocessor might examine local texture features and

mark each pixel with one of a small set of possible texture

labels. We use both the color quantization method in [14]

and the surface orientation method in [13], illustrating the

flexibility of this approach for handling a variety of image

descriptors.

More formally we assume that the output J of the pre-

processor is one of a small set of labels at each pixel, such

that J(p) ∈ {1, 2, ..., r} for each pixel location p. The fore-

ground appearance model for object or scene patch i con-

sists of a small template Ti that gives the probability of ob-

serving each possible label at each location within the tem-

plate. That is, for part i the foreground appearance model

is a function fi(p)[u] for all p ∈ Ti and u ∈ {1, 2, ..., r}
specifying the probability of observing label u at location p

within the template when the patch is centered over a true

part location in an image. Another function b[u] gives the

probability of observing label u at a background pixel (i.e.

a pixel in an image region not corresponding to an object

part). Assuming that background pixels are independent,

the probability that an image is composed entirely of back-

ground pixels (which we call hypothesis w0) is,

P (J |w0, M) =
∏

p

b[J(p)].

For a given configuration of parts L in which no two patches

overlap one another, we can write,

P (J |L, M) = P (J |w0, M)
∏

vi∈V

∏

p∈Ti

hi(p + li, li), (4)

where

hi(p, li) =
fi(p − li)[J(p)]

b[J(p)]
. (5)

Note that this likelihood function is a true probability

distribution (it sums to one over all possible images) as long

as no patches overlap in the configuration L. For part con-

figurations with overlap, equation (4) overcounts some pix-

els and thus gives only an approximation. In Section 5 we

describe how part overlap can be handled.

In using the appearance models for recognition, we com-

pute the likelihood for each part vi of the model at ev-

ery possible configuration li. In other words we can think

of each appearance model template Ti as a feature oper-

ator that when applied to an image produces a likelihood

map over the entire configuration space. In contrast, many

recognition techniques use feature detectors that first detect

sparse feature or part locations and then only consider those

locations. The approach that we take here does not make

any such intermediate decisions, rather computing the entire

factored posterior distribution in (3) using the full likelihood

functions for all the parts. This complete approach was

shown in [3, 10] to produce better results than approaches

based on intermediate detection of features for models sim-

ilar to the ones developed here.

We use low-resolution patches for the scene context

models and high-resolution patches for the object models.

Because the goal for the scene models is to represent gen-

eral characteristics of the scene and not details of individual

objects, the images are downsampled by a factor of 8 for the

scene models.

The patch models make use of three different types of

features that all fit into the appearance model framework

just described. These features are:

• Oriented edges: Oriented edges are used both for the

object models and for the scene models. In the ob-

ject models, edges tend to capture local features such

as corners and boundaries of object regions, while in

scene models they capture features like the horizon,

roads, buildings, etc. We use the Canny edge detec-

tion algorithm, apply morphological dilation with a ra-

dius of 2.5, and then quantize edge direction into four

bins: north-south, east-west, northeast-southwest, and

northwest-southeast. Thus in the general framework

above, oriented edge models have five possible labels

per pixel (four edge directions and the absence of an

edge).

• Color: Color is an important feature for establishing

scene context. For examples, bicycles are often ob-

served above an area of green (grass) or gray (pave-

ment) but rarely appear above an area of blue (sky or

water). The color quantization algorithm in [14] is ap-

plied to label each pixel with one of ten basic color

clusters, yielding ten possible labels for each pixel.

• Surface orientation: The surface orientation of re-

gions around an object often provides useful contex-

tual cues. For example, many objects like cars and

bicycles are usually observed resting on a horizontal

support surface such as a road. We use the surface

orientation classification algorithm in [13] to classify

each image pixel as one of three labels: ground, sky,



or vertical surface, yielding three possible labels for

each pixel.

5. Handling overlapping parts

In the last section we assumed that part appearances

were independent, which allowed the likelihood function

P (I|L, M) to factor into a product over parts. However this

assumption is problematic for configurations where parts

overlap, because pixels under overlapping templates are

overcounted by equation (4). We address this issue with

the same strategy used by the POP model [1]. The idea is

that when an image pixel is covered by more than one patch,

the multiple likelihood ratios from equation (5) correspond-

ing to that pixel are averaged together. More formally, for a

pixel p and a configuration L of patches, let q(L, p) be the

set of all patches that overlap p,

q(L, p) = {vi | p ∈ (Ti ⊕ li)},

where Ti ⊕ li denotes the transformation of the i-th patch

Ti to location li, and let Q(L) be the set of pixels covered

by at least one patch,

Q(L) = {p | q(L, p) 6= ∅}.

Then the likelihood function in (4) can be rewritten in or-

der to average the likelihoods of pixels covered by multiple

patches,

P̂ (J |L, M) = P (J |w0, M)
∏

p∈Q(L)

∑
vi∈q(L,p) hi(p, li)

|q(L, p)|
,

(6)

where | · | denotes set cardinality. For configurations in

which no patches overlap, equation (6) simplifies to the fac-

tored likelihood function of equation (4).

We use this POP model separately for the object likeli-

hood P (I|LO, M) and the scene likelihood P (I|LS , M),
thereby accounting for overlap of object parts with one an-

other and of scene parts with one another. We do not, how-

ever, consider overlap of scene and object parts, as the scene

parts are quite coarse and can have substantial overlap with

the finer resolution object parts without measuring the same

attributes of the image (i.e., without overcounting).

There is no known way of performing inference effi-

ciently using the POP model. In [1] the maximum a poste-

riori (MAP) solution is estimated using the form of the pos-

terior in (2) with the simple likelihood function P (I|L, M)
that factors. Then a hill climbing technique is used to max-

imize the form of the posterior that incorporates the POP

likelihood P̂ (I|L, M). In this paper we instead sample

from the simpler factored posterior and then maximize the

posterior that uses the POP likelihood over those samples.

Sampling from the simpler form of the posterior can be

performed efficiently using convolutions and dynamic pro-

gramming [8].

6. Learning the Models

For learning both the scene and object context models

we use a modification of the approach described in [4].

This technique requires only a set of images, each of which

contains at least one exemplar of the object category. The

patch models and spatial relations between patches are de-

termined automatically.

We now briefly describe the learning procedure of [4].

There are four overall stages: (i) identifying candidate

patches, (ii) finding predictable pairwise spatial relations

between patches, (iii) forming an initial model from the

patches and pairwise spatial relations, and (iv) updating the

patch appearance and spatial models using an Expectation

Maximization (E-M) algorithm. In the first stage a large

number of patches of certain fixed sizes are sampled at ran-

dom from the training images. These patches are then cor-

related with all of the training images to find patches that

score well at some location in the vast majority of the im-

ages (i.e., patches that may be predictive of the category).

In the second stage, pairwise Gaussian spatial models are

formed from pairs of patches that are identified in the first

stage. This is done by considering the best location of each

patch in each image, and modeling pairs of relative loca-

tions. The quality of each such pairwise model is evalu-

ated using the posterior probability in equation (2) for just

the given pair of parts. In this manner each pair of patches

is scored according to how predictable its relative pairwise

spatial configuration is throughout the training data. In the

third stage, a star-shaped object model is formed by choos-

ing non-overlapping, high-likelihood pairs of patches using

a greedy procedure. Finally, this initial model is refined us-

ing an iterative E-M algorithm that attempts to increase the

likelihood of the training data given the model by updating

both the appearance and spatial models.

For this paper we made some improvements to the learn-

ing procedure just described. First we modified the E-M

step to handle part overlap more accurately by sampling

from a proposal distribution and then scoring samples using

the POP criterion, as discussed in Section 5. Second, in [4]

MAP estimation was used as an approximation to comput-

ing expectations in several steps of the algorithm. Instead

of using MAP estimates we draw samples from the distri-

bution, which we have found gives better results without in-

curring a substantial extra cost, especially when the number

of available training exemplars is small.

For the experiments presented in this paper, the object

and scene context models were learned independently of

one another using the approach summarized above. In

learning the object model (V O, EO), only the regions in-

side object bounding boxes (as given by the ground truth)

are considered by the learning algorithm. In learning the

scene context model (V S , ES), whole images are pro-

cessed, but the algorithm is constrained to produce a model



that includes the bounding box of the object as one of its

patches. Finally the model for the edge connecting the ob-

ject and scene models, EOS , is learned by simply estimat-

ing a Gaussian on the relative location of the object model’s

reference part within the object bounding box. Since object

bounding boxes were used during training, we refer to our

learning procedure as partially supervised.

7. Localization experiments

In this section we present experimental results of our

scene and context models.

7.1. Image dataset

For our experiments we used the images and ground truth

data from the 2006 PASCAL Visual Object Classes (VOC)

challenge [7]. This is probably the largest and most chal-

lenging object class recognition database publicly available.

The database includes more than 5,000 images, mostly col-

lected from image sharing websites on the Internet, and con-

tains a variety of object categories in a wide variety of scene

types. Object scale and viewpoint are completely uncon-

strained and most images have multiple objects and clut-

tered backgrounds. Ground truth data is also provided giv-

ing labels and bounding boxes for objects of interest in the

image database. The ground truth also includes a rough

viewpoint label (e.g. left side, right side, front, back) for

some object instances. Ground truth is given for ten ob-

ject classes, but the evaluation here considers four classes

in particular: cars, buses, motorbikes, and bicycles.

7.2. Learning

For each object class we learned a single scene model

and several object models corresponding to different view-

points. For the bus, bicycle, and motorbike classes we

learned four models each, corresponding to front, back, left

and right views. For the car class we learned four additional

models for the front-left, front-right, rear-left and rear-right

inbetween views. The images and ground truth annotation

data from the VOC trainval image set were used as the

training set. As permitted by the VOC challenge rules, we

added missing viewpoint annotations to the ground truth

for some images. Object instances marked as “difficult” or

“truncated” in the ground truth were not used during train-

ing.

The object and scene context models were learned us-

ing the partially-supervised learning algorithm described in

Section 6. In learning the object models the training images

were first scale-normalized so that the width of the object

of interest was fixed. Candidate appearance model patches

for the object model were generated by sampling rectangu-

lar regions of size 24 × 24 pixels from the positive train-

ing data. For the scene model, patches were sampled for

each appearance model type (edges, colors, surface orienta-

tions) at three different patch sizes (12 × 12, 12 × 36, and

36×12 after subsampling). The background model for each

type of appearance model was learned from the negative im-

ages (those not containing the object of interest). Figure 1

presents some sample models learned by our algorithm.

7.3. Localization

As previously noted the likelihood function in equa-

tion (4) is only an approximation for configurations in

which the appearance model patches overlap. The POP

criterion in equation (6) gives a better approximation

P̂ (I|L, M) of the likelihood function but as noted above no

efficient inference algorithm is known. We therefore treat

the factored posterior distribution in (3) as a proposal dis-

tribution and sample likely configurations from that distri-

bution. Sampling from this distribution can be performed

efficiently in time O((m + n)h + (m + n)s) where n is

number of object parts, m is the number of scene parts, h

is the number of pixels in I and s is the number of samples

to be drawn [8]. For each sampled configuration we then

compute the posterior using the POP versions of the like-

lihood P̂ (I|LO, M) and P̂ (I|LS , M) rather than the fac-

tored versions P (I|LO, M) and P (I|LS , M) in (3). We

use the resulting posterior probabilities, which account for

patch overlap, in assessing the quality of each configuration.

Performing object localization on a given image I pro-

ceeds as follows. Recall that there are several object models

for each object category, corresponding to different view-

points. For each of these models Mi, we score samples

according to the posterior using the POP model as just de-

scribed. For the experiments reported here we used 20,000

samples per model and retained the top 10%. Because ob-

ject scale is unconstrained, this process is repeated at mul-

tiple image scales; we used 32 scales in our experiments.

For each image this produces a large set of candidate object

configurations for each object category. To avoid duplicate

and near-duplicate localizations, only the higher-likelihood

configuration is retained when configurations significantly

overlap. Note that this highlights an important advantage

of our probabilistic models: localization confidences across

different object and scene models are directly comparable.

Finally object bounding boxes are computed for localiza-

tions with likelihoods above a threshold, which for the VOC

competition is varied in order to compute a precision-recall

curve.

7.4. Results

Figure 2 shows some sample localizations produced by

our object and scene context models on the VOC challenge

test dataset. In the figure, the configuration of the object

parts is shown with the green rectangles while the object



(a) (b) (c)

Figure 1. Sample models learned by our partially-supervised process: (a) motorbike side view, (b) car side view, (c) bicycle side view.

Patches are drawn at the mean configuration with ellipses showing spatial covariance (at a 2σ level set). Thick outlines designate the root

patches of the scene and object models. Simple illustrations of the appearance models are also shown. For the edge appearance models

the probability of an edge is shown, with brighter pixels indicating higher probabilities. For the color and surface orientation features the

mode (most probable label) is shown. For surface orientation patches, horizontal dashes represent ground, vertical lines represent vertical

surfaces and boxes represent sky. Note that the actual appearance models have full probability distributions at each pixel, not a single label

as is shown here for illustrative purposes.

bounding box is also shown. The color of the object bound-

ing box indicates the object class that was detected. The

images also illustrate the difficulty of the dataset, including

very small objects like the bicycle in image (e) and the car

in image (f) that contribute to the false negative rate.

We also conducted a quantitative evaluation of object lo-

calization performance using the rules of the 2006 PASCAL

VOC competition’s comp3 localization task. Under these

rules, a localization is considered correct if the detected ob-

ject category label matches the ground truth and

area(Bp ∩ Bgt)

area(Bp ∪ Bgt)
> 0.5,

where Bp is the localized bounding box and Bgt is the

bounding box specified in the ground truth.

The VOC image test set contains several thousand im-

ages that have instances of objects from a number of cat-

egories. Unlike other common recognition test datasets,

there are not separate sets for each object category. Each

image may have several instances of one or more differ-

ent object categories or may have no instances at all. Per-

formance is measured using the “average precision” metric

defined in the competition, which is the mean precision at

the operating points corresponding to 11 prespecified recall

values. As in the competition, object instances marked as

“difficult” in the ground truth were ignored (neither con-

tributing to false negatives nor false positives).

Table 1 presents average precision statistics on the chal-

lenge test data. As the table shows, including scene con-

text models improved localization performance for all four

classes when compared to using object models alone. To

judge the statistical significance of this difference we ran

the statistical test of DeLong et al. [6] on the area under

the ROC curve (AUC) statistics. The improvements when

adding scene context were statistically significant at a 99%

confidence level.

Table 1 also shows the best average precision obtained

by any of the entries in the 2006 PASCAL VOC challenge

for each object class as reported in [7]. The results from our

experiments are comparable to the VOC results because we

used the same training and test dataset and conducted our

experiments according to the rules of the competition. Our

combined scene context and object models outperformed

the best VOC results by a substantial margin for the bus,

car, and bicycle classes. For the motorbike class our aver-

age precision was slightly lower, but the difference is proba-

bly not statistically significant. A common error mode was

detecting a bicycle instead of a motorbike and vice-versa,

as the visual difference between these two classes is often

quite subtle. Moreover, unlike our method which performed

uniformly well, none of the other methods entered in the

competition performed well on all categories. For example,

the algorithm that performed best on buses gave relatively

poor results on bicycles and motorbikes.
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Figure 2. Sample output of our method on the VOC test dataset using object and scene context models: correct localizations in (a)-(d),

correct localizations and false negatives in (e)-(g) (small bicycle in (e), distant car in (f) and motorbike at an unusual perspective in (g)),

and a false positive and two false negatives in (h). Individual part localizations are shown by small green boxes and object bounding boxes

are color-coded according to the localized object class: yellow for cars, red for buses, white for bicycles, purple for motorbikes.

Obj. model Scene + Best VOC

Object class only obj. model result

Bicycle 0.421 0.498 0.440

Bus 0.172 0.185 0.169

Car 0.429 0.458 0.444

Motorbike 0.342 0.388 0.390

Table 1. Results of localization experiments in terms of average

precision (higher is better) on test images from the 2006 Pascal

VOC challenge. For comparison, the third column shows the high-

est performance reported by any participant in the challenge [7].
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