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Abstract

We present light fall-off stereo–LFS–a new method for
computing depth from scenes beyond lambertian reflectance
and texture. LFS takes a number of images from a station-
ary camera as the illumination source moves away from the
scene. Based on the inverse square law for light intensity,
the ratio images are directly related to scene depth from
the perspective of the light source. Using this as the in-
variant, we developed both local and global methods for
depth recovery. Compared to previous reconstruction meth-
ods for non-lamebrain scenes, LFS needs as few as two im-
ages, does not require calibrated camera or light sources,
or reference objects in the scene. We demonstrated the ef-
fectiveness of LFS with a variety of real-world scenes.

1. Introduction
Recovering depth information from 2D images is one of

the central problems in computer vision. Many different
cues in the images have been used, such as stereoscopic
disparity, shading, textures, focus and defocus. The vast
majority of these methods makes a strong assumption that
objects in the scene reflect light equally in all directions.
Such a diffuse or Lambertian surface assumption is violated
in almost all real-world objects, leading to incorrect depth
estimate. Although techniques that go beyond Lambertian
surfaces have been proposed, they typically require precise
calibration of cameras and/or light sources, sufficient sur-
face textures, or reference objects in the scene.
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Figure 1. An illustration of the light fall-off effect. Left: light
energy falls off as the square of the distance, e.g., the irradiance of
a unit area at distance 2r is one fourth of that at distance r. Right:
a real photograph showing the effect.

In this paper we exploit a different cue in the image for-
mulation process, namely the inverse square law for light
intensity. As illustrated in Figure 1 (left), the intensity of
light observed from a source of constant intrinsic luminos-
ity falls off as the square of the distance from the object. A
real example is provided in Figure 1 (right), the scene is il-
luminated with a flash light, objects further away appear to
be darker due to the fall-off of light intensity over distance.
It can be derived that

I(p) =
kp

r2
p

, or rp ∝ 1/
√

I(p), (1)

where I(p) is the pixel value of a scene point p, rp is the
distance between the light source and p, and kp is a constant
related to the intensity of the light source and the reflectance
and orientation of point p. In fact, in this ideal setup in
which the object is flat with a uniform color, we can almost
assume that kp is identical for all surface points, therefore
the pixel values directly provide a qualitative measure of
depth.

However, real-world objects are usually not flat and typ-
ically have spatially varying textures. To deal with these
practical issues, we can take an additional image under a
different lighting configuration. The new pixel intensity
then is

I ′(p) =
kp

r′2p
(2)

If we compute the ratio of I(p) and I ′(p), the impact of
reflectance cancels out, making the ratio only related to the
depth. Furthermore, if we measure the distance between the
two light positions (i.e., ∆r = r′p − rp), which is very easy
to do, we can compute the scene depth to the light source.

The above formulation, which we called light fall-off
stereo (LFS), holds for scenes with arbitrary bidirectional
texture function(BTF), and therefore can be used to design
a practical depth acquisition system with a single camera
and a moving light source. As we will show later, LFS is
easier to implement compared to existing depth acquisition
methods for arbitrary BRDF/BTFs. It only needs as few as
two images, making it possible to capture dynamic scenes.

The main contribution of this paper is a novel way to es-
timate depth information from scenes beyond lambertian re-

1
1-4244-1180-7/07/$25.00 ©2007 IEEE



flectance model. We also developed a global optimization-
based method that uses multiple light variations to further
improve the accuracy and robustness. The effectiveness of
LFS is demonstrated with a variety of real-world scenes ex-
hibiting complex reflectance and geometries.

2. Related Work
In the literature of computer vision, a vast number of

algorithms have been proposed to reconstruct the three-
dimensional shape of a scene from one or multiple pho-
tographs. The set of such techniques is called Shape-from-
X, where X can be Stereo, Shading, Focus/Defocus, etc.
In this section we briefly discuss some classic and modern
Shape-from-X methods which are mostly related to our pro-
posed algorithm.
Shape-from-Shading. Shape-from-Shading (SFS) deals
with the recovery of shape from a gradual variation of shad-
ing in the image [12, 15, 17]. Given one gray level im-
age and known light direction, the surface shape at each
pixel can be recovered by studying the image formation pro-
cess [13]. Since developed, most work in SFS makes sim-
plifying assumption, that is the recovered surface is Lam-
bertian and with constant or known albedo [16, 21, 31, 27].
Unfortunately this assumption is violated for nearly all real
world objects, leading to incorrect shape estimation. Al-
though several extensions have been proposed [18, 2, 1, 25],
satisfactory performance is still hard to achieve via SFS on
real images with arbitrary surface BTFs [37]. Very recently
Prados and Faugeras developed a more sophisticated imag-
ing model that takes into account the 1/r2 light fall-off
term [27]. This light term removes the fundamental con-
vex/concave ambiguity. They have demonstrated some ex-
cellent results, but their formulation is still limited by Lam-
bertian surfaces.
Photometric Stereo. Photometric Stereo methods recover
the shape and albedo of an object using multiple images
among which camera position is fixed, and only the light-
ing directions vary [33]. Although utilizing multiple light-
ing variations allows accurate results, classical methods
follow the same image formation assumption as made in
SFS [33, 3, 34]. As a result, most work cannot well handle
non-Lambertian surfaces. Several methods have been ad-
dressed to overcome this limitation. Some approaches re-
quire extra constraints on the number and positions of light
sources and allow only a class of diffuse non-Lambertian
surfaces to be handled [19, 32]. Some require an object with
BRDF similar to the unknown scene as a prior calibration
knowledge [11]. In contrast the method presented herein
allows depth recovery with complex BRDFs and does not
require any known reference object. The light fall-off prop-
erty has also been utilized in photometric stereo by [4].
This work relies on the controlled motion of a point light
source that is not at infinite but relatively close to the ob-

ject. However different from our approach, their depth esti-
mation is still based on multiple image measurements taken
over time.

Stereopsis with Active Illumination. Nearly all existing
methods for stereo reconstruction assume that scene re-
flectance is Lambertian, and make use of color constancy
as a matching invariant [29]. More recently there are spe-
cial metrics proposed to handle non-Lambertian cases. For
example Helmholtz stereopsis allows matching of arbitrary
BRDFs and uses reflectance function reciprocity as an in-
variant [38, 39]. By collocating point light sources with
each camera it is possible to record reciprocal pairs using
two different lighting conditions. However, this method re-
quires the light sources be collocated with the optical center
of each camera while ours does not require the position of
camera to be even known. Some works make use of illu-
mination variation as a correspondence aid. For instance,
Spacetime stereo [6, 35] and BRDF invariant stereo [7]
formulate stereo matching in the presence of illumination
variation and achieves good results. While our work also
builds on lighting variations, those variations come from the
1/r2 fall-off term of the illumination, and we only require a
single un-calibrated camera.

Shape-from-Focus/Defocus. Classic Shape-from-Focus
/Defocus methods collect images at multiple lens settings
and define metrics that evaluate sharpness or blurring over
a small spatial area surrounding the pixel [5, 20, 26, 30].
Most of these approaches follow the equalfocal assump-
tion, i.e. the surface depth is constant within that spatial
window, therefore suffers from poor performance across
depth discontinuities. To alleviate this problem, Hasinoff
et al. [10] and Zhang and Nayar [36] have presented new
methods which allow per-pixel focus/defocus analysis to be
applied and can achieve much sharper, more accurate geo-
metric details. While nearly all Shape-from-Focus/Defocus
methods have difficulty dealing with textureless regions due
to focus ambiguity, illumination patterns can be projected to
provide scene texture at the expenses of light source calibra-
tion [9, 36].

The idea of using the inverse-square law to recover 3D
shape has been explored in two previous papers [22, 24].
However both methods proposed by these papers require
multiple images with precisely controlled light source or
calibrated camera. In fact [24] only presented some basic
concepts without any result. Compared to their work, our
approach requires a much simplified setup, i.e. one LCD
projector on a linear stage together with an un-calibrated
camera. And what is more, our paper demonstrates more
convincing experimental results to support our LFS algo-
rithm.



3. Methods
In this section we first present the radiometric model

used in LFS and show how it can be used to provide depth
estimate. We discuss the assumptions made and the associ-
ated issues in designing a practical range sensor system.

3.1. Depth Recovery for a Pivot Point

Here we define pivot point as the intersection between
the line connecting the two lighting positions and the sur-
face in the scene. We first discuss how to recover depth
for the pivot point. Let us recall the image formation pro-
cess. As shown in Figure 2 (left), the scene is illuminated
by a single point light source L. The irradiance of the pivot
point p in the scene is

E(p) = W
cos(ωL)

r2
p

(3)

where W is the light radiance, rp is the distance between
point p and the light, and ωL is the incident angle. p will
reflect light toward the observation camera C. The reflected
radiance value is defined as

L(p) = R(p, ωL, ωC)E(p), (4)

where ωC is the viewing direction, and R(p, ωL, ωC) is the
spatially varying bidirectional reflectance function (a.k.a.,
bidirectional texture function–BTF). It takes into consider-
ation of surface albedo variations. Finally, the imaging sys-
tem measures the irradiance value on the camera’s sensor,
which is

I(p) = ρL(p) (5)

where ρ is a constant parameter determined by the imag-
ing optics (details can be found in [14]). For the scope of
this paper, we assume that the camera has a linear response,
in other word, the camera is measuring relative irradiance
directly. To deal with cameras with non-linear responses,
standard radiometric calibration procedures (e.g. [23, 8])
should be applied to correct the pixel values.
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Figure 2. The pivot point illuminated by a point light source at the
first (left) and the second (right) positions.

Combing equations 3, 4 and 5, we get

I(p) = ρW
cos(ωL)

r2
p

R(p, ωL, ωC). (6)

This is how equation 1 is derived.
As shown in Figure 2 (right), With both camera position

and light intensity fixed, we move the point light along the
direction of ωL to a new position. In this process, every pa-
rameter in equation 6 remains the same except the distance
to the light changes to r′p. The new observed intensity I ′(p)
measured by the camera is:

I ′(p) = ρW
cos(ωL)

r′2p
R(p, ωL, ωC) (7)

Computing the ratio of I ′(p) and I(p) cancels out all the
terms but the distance to the light source, that is

I ′(p)
I(p)

=
r2
p

r′2p
(8)

With ∆r = r′p − rp measured using a ruler, we can com-
pute rp as

rp =
∆r√

I(p)/I ′(p) − 1
(9)

It should be noted that the depth is actually from the per-
spective of the light source, not from that of the camera.

In the above LFS formulation, the camera position is
fixed, both the BTF term and the light intensity term are
canceled out. Therefore, the depth measured by this method
is invariant to lighting intensity and surface property.

3.2. Estimate a Depth Map for the Whole Scene

The above process can be extended for recovering depth
for other points in the scene as well. As shown in Figure 3,
the depth of all points in the scene are measured with re-
spect to a depth reference plane, which passes through the
first lighting position S and is perpendicular to the lighting
direction for the pivot point p. For an arbitrary point q in the
scene, here we use I(q) to denote the observed intensity of
the point under the lighting position S. It is worthy noting
that I(p) and I(q) can be measured at same time as long as
both points p and q are within the camera’s field of view.

In order to maintain the same incident lighting direction,
when capture the intensity of point q under the second light-
ing position, we need to move the light along the ray qS.
Here we place the light at location T ′, the intersection be-
tween ray qS and the second lighting plane, and refer the
new observed intensity as I ′(q). According to the lighting
distances shown in the figure, we have:

I ′(q)
I(q)

=
(rq/ cos θ)2

((rq + ∆r)/ cos θ)2
(10)
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Figure 3. The setup for recovering a depth map for the whole
scene.

After simplification, we get:

rq =
∆r√

I(q)/I ′(q) − 1
(11)

Comparison between equation 9 and 11 suggests that,
once the light is positioned at proper locations on the second
lighting plane, the same equation can be used to estimate the
depth of different points in the scene.

Calibrating the light position for different points in the
scene can be a tedious task. Fortunately, we can simplify
the problem by placing an optical occluder along the depth
reference plane such that light can only go through a small
hole at location S. Hence, when the light is positioned at the
second lighting plane, only a small portion of the scene is
illuminated and the incident lighting direction for this small
portion is the same as the case when light is placed at loca-
tion S. Multiple images of the scene can be captured either
by moving the light along the second light plane or by build-
ing a light array at the second light plane and turning on
one light at a time. Through finding the maximum intensity
at each pixel location from multiple captured images, we
can effectively extract the illuminated portions of the scene
and merge them into a single image. The resulting image,
referred as Multi-Lighting-Direction-Image, shows the ap-
pearance of the scene under different lighting directions for
different portions and guarantees that the incident light di-
rection on every surface point remains the same. As a result,
it can be used to recover the depth of the entire scene using
equation 11.

3.3. Practical Approximation

While the approach discussed in above subsection gives
more accurate depth estimation results in theory, our exper-
iments show that reasonable good estimations can be ob-
tained through a much simplified procedure. By assuming
the observed intensity difference of point q under lighting
position T and T ′ is negligible, we simply capture a single
image of the scene under lighting position T and use it to
approximate the required Multi-Lighting-Direction-Image.
In fact, this is similar as assuming that the incident light-
ing directions for different points in the scene are parallel.

When the object size is relatively small compared to the
distance to the light, such an approximation is valid and has
been used in almost all photometric stereo and shape- from-
shading algorithms.

In order to evaluate the error introduced by the above ap-
proximation, an empirical experiment is conducted in which
we try to reconstruct a flat piece of paper under two differ-
ent settings (shown in Figure 4). In the first setting, the
paper, 11 inches in width, is placed at about 20 inches from
the depth reference plane. In the second setting, the paper
is about 43 inches away. The evaluation result suggests that
the estimated depth is noticeably distorted under the first
setting where the paper spans an angle of 30 degrees in the
field of view of the light. However, the error dramatically
decreases when the span angle reduces to 15 degrees under
the second setting.
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Figure 4. The effect of distortion caused by incident angle changes.
Images in the top row are 3D views of the recovered depth maps
when the piece of paper is positioned at the near (left) and far
(right) locations. The bottom row plots the depth values extracted
from a selected scanline in both depth maps. The variances of
depth values in these two scanlines are 0.0376 and 1.1757, respec-
tively.

While placing the light source far from the scene helps
to minimize the distortion caused by light direction approx-
imation, it also makes the 1/r2 light fall-off term less sig-
nificant and hence small depth variation in the scene may
become unrecoverable. Here we try to analyze the max-
imum depth resolution, i.e., the smallest depth change of
can resolve using LFS, given a camera’s limited dynamic
range.

From equation 5, we know that

I(p) =
m

r2
p

(12)

where m is a constant related to camera optics, BTF and



lighting. Taking derivative on both side, we have

dI(p)/drp = −2m/r3
p = −2I/r. (13)

We can see that change in Ip is only inversely propor-
tional to r. If we say r = 1000mm, taking I as 127, 1 mm
depth change will cause approximately 0.25 unit variation
in intensity, i.e., we need to have at least 10 bits/pixel in-
tensity resolution to resolve that. Fortunately most cameras
today in fact capture 12 bits per pixel, sufficient to high ac-
curacy capture. In addition, high-dynamic-range imaging
techniques [8] can be used if necessary.

It will be interesting to study the optimal lighting dis-
tance for a given sensor dynamic range. Because of the
number of factors involved in this image formulation, e.g.,
surface normals, albedo variations, and shininess, such an
analysis is non trivial and we leave it for further work.

4. Global Method
So far we have shown that a depth map can be generated

using two images of the scene illuminated by a point light
source positioned at two different locations. The derived lo-
cal LFS method is both efficient and simple to implement.
However since the image acquisition process can be eas-
ily corrupted with noise, the depth maps obtained using lo-
cal approach are sometimes noisy. In this section we re-
formulate the LFS problem under an energy minimization
framework. The derived global optimization-based method
can produce smooth and accurate depth maps since: 1) it
can make use of images captured under more than two light-
ing configurations; and 2) it enforces the spatial consistency
among adjacent pixels in the depth map.

4.1. Formulation under Energy Minimization

As illustrated in Figure 5, the scene is illuminated by a
point light source located at different positions. A sequence
of images of the scene, referred as I , I1, . . . IN , are thereby
acquired. Please note that the point light source is again
carefully positioned so that, for a pivot point P in the scene,
the incident light direction does not change. We also assume
that the lighting direction changes for the remaining points
on the scene are negligible.

Now if we set the depth reference plane at the first light
position, according to equation 11, the following holds re-
gardless of surface BTF and light intensity.

√
Ix,yrx,y =

√
I1
x,y(rx,y+∆r1) = . . . =

√
IN
x,y(rx,y+∆rN )

(14)
where Ix,y is the intensity of pixel (x, y) in the captured
image I . rx,y is value of pixel (x, y) in the estimated depth
map, i.e., the distance between the depth reference plane
and the corresponding 3D point of pixel (x, y).

r

rN

Depth

reference

plane

r1

r2

Figure 5. Images are captured under multiple lighting conditions.
The light movement is carefully controlled to minimize the change
of incident directions on the scene surface.

Due to the noise in the image acquisition process, when
more than two images are used, for a given pixel (x, y), we
may not be able to find a value rx,y that satisfies the above
equation. Our objective is therefore to find a depth value
that minimizes the variance among different terms. Here
we use K0,...,N to represent the value of the above terms:

K0 =
√

Ix,yrx,y

Ki =
√

Ii
x,y(rx,y + ∆ri), 1 ≤ i ≤ N (15)

The energy minimization objective function can then be de-
fined accordingly using the following equation:

E = (1−λ)
∑
x,y

N∑
i=0

(Ki−K)2 +λ
∑
x,y

(u2
x,y +v2

x,y) (16)

where u, v, defined in equation 17, are the symmetric sec-
ond finite differences of the variables rx,y . The second
term is used to enforce the smoothness of the solution. λ
(0 ≤ λ ≤ 1) represents a user defined parameter that ad-
justs the relative importance between the error term and the
smoothness term.

ux,y = rx+1,y − 2rx,y + rx−1,y

vx,y = rx,y+1 − 2rx,y + rx,y−1 (17)

4.2. Optimization Approach

Our goal is to find a depth map that satisfies the inverse-
square law at all pixel locations and in all captured images.
When there is no noise, it is equivalent to finding a sur-
face that incurs zero measurement error. However in the
real world where sensor measurement is almost always cor-
rupted with noise, we approximate the objective surface by
finding a smooth surface that minimizes our cost function
defined in equation 16.

Our global LFS method implements the standard Con-
jugate Gradient (CG) algorithm together with the line
search algorithm DBRENT as an iterative minimization
tool [28]. Given the objective function expressed in equa-
tion 16, this minimization process simply requires the con-
struction of two functions: one that computes the objective



cost value E and the other calculates the gradient of E with
respect to the vector �r. We also impose boundary conditions
by defining the gradient to be zero at boundary pixels. Al-
though we cannot guarantee that the solution is converged
to the exact correct surface, experiment shows that our re-
covered depth map is indeed smooth and incurs small mea-
surement error.

5. Experiment and Results

Figure 6. Our experimental setup. A sliding projector is in the
middle and a video camera is on the right.

As demonstrated in Figure 6, in our experiments the
scene is captured using a PointGrey FLEA video camera
and is illuminated using a Epson powerlite 82c projector
that provides very isotropic illumination. The spatial res-
olution of images is 1024×768 at 8 bits. To eliminate the
errors introduced by the on-camera color processing algo-
rithm, the raw images captured by the Bayer pattern sen-
sor is used directly as input. The camera is calibrated to
ensure a linear radiometric response using the techniques
in [8]. A lookup table is built for each color channel since
the response curves for the three color channels are slightly
different.

When adjusting lighting positions, we move the projec-
tor along a guiding rail. This ensures that the light positions
always lie on a straight line, the intersection of which with
the scene is the pivot point. We also try to position the pivot
point at the center of the scene, which helps to minimize the
lighting direction changes for other points in the scene.

We demonstrate some of the results here. Figure 7 and
8 show the depth map and the 3D rendering result for two
Lambertian objects. Most of the fine details are recovered.
Figure 9 and Figure 10 show the depth maps of two scenes.
Since our method does not deal with areas in shadow, these
areas are masked out in the resulting depth map. Figure 11
illustrates the global approach presented in section 4. The
scene consists of two very specular objects: a glossy book
cover and a piece of silk. Note that this kind of specular
surfaces is very sensitive to the light’s incident angle. As

shown in the lower row, our global method demonstrates
significantly improvement for this challenging scene.

Figure 7. 1st row: images taken with light at two positions. 2nd
row: left image is the depth map, and right image is a view of the
recovered 3D model.

6. Conclusions and Future Work
A novel way of recovering depth information from 2D

images is presented in this paper. While existing shape-
from-X approaches rely on intensity matching, shading, or
focusing information, our approach uses a completely dif-
ferent cue: the light fall-off property. The derived algorithm
makes no assumption about the surfaces in the scene and
can handle surfaces beyond lambertian reflectance proper-
ties and textures.

We presented two different methods for estimating depth
from light fall-off. The local method requires only two in-
put images and has a very low computational cost, but may
suffer from noises. The problem can be addressed using the
global method, which utilizes more than two input images
for increased robustness, as well as enforces smoothness in
the resulting depth map. The effectiveness of both local
and global methods are demonstrated with a variety of real-
world scenes.

Due to the low computational cost of the proposed ap-
proaches, it is highly possible to perform the depth recon-
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Figure 8. A toy house with very fine details. We show its depth in
3D view.

struction process in real-time. However, since a single light
source is used in our current experiment and its position
needs to be adjusted manually, scenes with dynamic objects
cannot be captured fast enough. As an extension, we plan
to use two or more synchronized projectors as light sources,
which projects white light to the scene in an alternating or-
der. The scene is captured by a high-speed video camera,
which is also synchronized with the projectors such that
different frames record the appearance of the scene under
the lighting of different projectors. Hence, using images
captured at adjacent frames as input, the proposed LFS ap-
proaches will be able to recover depth maps for dynamic

Figure 9. left image is a simple scene with plastic leaves and an
apple in it. Right image is its depth map. Both the leaves and the
apple are non-lambertian surface.

Figure 10. A more complex scene. There are wood, metal,plastic
in this scene. Since we don’t deal with shadow areas, we ignore
the pixels below a certain threshold.

Figure 11. Comparison between local method and global method.
1st row: there are two objects in the scene at different depth. The
surface of these two objects are very specular making the result
quite sensitive to incident angle change. 2nd row: left image is
depth map obtained by per-pixel calculation from two shaded im-
ages only. Right image is depth map processed by global method
from six shaded images. (The parameter λ is set to 0.15 in our
experiments)

scenes on the fly.
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