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Abstract

In this paper, we propose a simultaneous estimation
method of structure and motion in dynamic scenes. Usual
methods for obtaining structure and motion using stereo
cameras require two kinds of operations: stereo correspon-
dence and tracking. Therefore, we must separately deter-
mine the correspondence between stereo images and se-
quential images. This necessity complicates the algorithm
and increases the possibility of mismatches because of the
object’s motion and visibility change in the images. Our
proposed method makes two contributions. The first con-
tribution is the method of corresponding all stereo images
and sequential images at once. Therefore, we can obtain the
structure and motion simultaneously and more accurately.
On the other hand, most stereo correspondence algorithms
are limited to use under a synchronized status. In a stereo
rig using unsynchronized cameras, as are most commer-
cially available cameras, the structure cannot be obtained
by stereo correspondence and triangulation because of the
unknown time offset between cameras. Therefore, our sec-
ond contribution is a method of estimating structure, mo-
tion, and time offset simultaneously using unsynchronized
stereo cameras. This latter task is accomplished by tak-
ing advantage of the first contribution scheme. Additionally,
our method requires no preprocessing such as motion seg-
mentation for separating identical-motion objects and ad-
vance calibration of the time offset. Finally, we present the
experimental results using both synthetic and real images.

1. Introduction

Estimation of the three-dimensional (3D) position and
motion given by a moving stereo rig, such as that of a robot
and vehicle-mounted cameras in scenes are available for 3D

†He belongs to Toshiba Corporate Research & Development Center,
now.

Figure 1. Unsynchronized stereo images and 3D measurement. xr

is the projected point at time t in the right image, x′
l shows the

arrangement at time t+∆t in the left image. The rays of xr and x′
l

do not intersect because of the time offset ∆t.

reconstruction, ego-motion estimation, segmentation using
spatial information, visual navigation, local 3D map gener-
ation, obstacle detection and avoidance, etc.

The problems of estimating 3D positions in a scene and
its 3D motion are closely intertwined. If one or the other
of the two were known (e.g. 3D position), other unknown
parameters (i.e. 3D motion) could be estimated easily. Usu-
ally, however, one or the other of those two is not known
accurately: typically, both parameters must be estimated.

In a general environment, two cases are assumed. The
first case is that unique 3D motion is observed in stereo im-
ages. For example, the cameras are moving in static scenes.
Unique 3D motion in stereo images and 3D positions of
every point are estimated [2, 4, 5, 7, 11]. However, some
different 3D motions exist in real environments and appli-
cations of these methods are limited.

The second case is that some different 3D motions are in-
cluded in the images. The simplest way to estimate the 3D
position and 3D motion is that we first obtain the 3D posi-
tion of a point through conventional stereo correspondence
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between stereo images, and then track the point between se-
quential images. Then stereo correspondence is performed
for the tracked point to obtain the 3D motion. A method de-
veloped by Hao et al. estimates motion and depth for every
color-based segmented region [3]. Depth and motion are
assumed as unique within the same color region.

These methods assume the use of a synchronized stereo
camera system. In contrast, commercially available stereo
camera systems constructed of commercially available de-
vices, such as web cameras and home video cameras, take
stereo images at different timing: they are unsynchronized
stereo camera systems. Such unsynchronized systems are
not applicable with these methods because, if the target
object moves, the spatial localizations of the object differ
among stereo images. As shown in Fig. 1, this presents the
issue that stereo-correspondent points are not on the epipo-
lar line and the estimated spatial localization is not accurate,
even if the points are correctly matched between stereo im-
ages. If the 3D position and its 3D motion were estimated
using unsynchronized cameras, many applications would
thereby be useful with any camera.

Svedman et al. proposed a method for estimation of 3D
positions in feature points using an unsynchronized stereo
camera [12]. A method developed by Shimizu et al. [9]
obtains the 3D position at the frequency of more than the
frame rate of one camera by delaying the timing of the
stereo camera (as an unsynchronized camera). However,
those methods presuppose knowledge of the time offset be-
tween stereo cameras.

Zhou et al. [13] introduced a method to estimate the time
offset using four-point correspondence between two pairs
(i.e. right image at time t and at time t+1 and left image
at time t+∆t and t+∆t+1) of unsynchronized stereo images
and epipolar geometry. Next, optical flows between sequen-
tial images are estimated. A virtual synchronized image is
generated by blending the pixel position and its brightness
using the estimated time offset and optical flows. Depth is
estimated using a conventional stereo correspondence algo-
rithm with the generated virtual synchronized image. This
method is applicable in dynamic scenes. However, the four
points in the time offset estimation step are separately cor-
responded; therefore, they do not include depth and motion
coherence at the points in the stereo image sequence.

In our proposed method, correspondence of all stereo im-
ages and sequential images is done at once. For that reason,
we can obtain structure and motion simultaneously. By tak-
ing advantage of this correspondence scheme, our method
estimates structure, motion, and the time offset simultane-
ously using unsynchronized stereo cameras. Additionally,
the 3D position and 3D motion can be estimated with each
point in stereo images. Therefore, our method is applicable
to dynamic scenes without preprocessing, such as motion
segmentation, for separating identical-motion objects.

Figure 2. Correspondence between sequential stereo images.

In this paper, we first explain the correspondence for-
mulation between unsynchronized stereo images and define
the cost function. Next, we explain minimization of the cost
function to estimate depth, 3D motion, and the time offset
simultaneously. Finally, we present the experimental results
to demonstrate the effectiveness of our method.

2. Correspondence formulation

Sequential stereo images are captured using unsynchro-
nized cameras in dynamic scenes. These scenes typically
contain multiple moving objects. Figure 2 shows stereo im-
ages Ir,0, Il,0 at 0-th frame and subsequent stereo images
Ir,k, Il,k at k-th frame. For this study, we assume the fol-
lowing:

• The sequential stereo images are taken at a uniform
frame rate within a short time period. Therefore, the
captured timing offset (time offset) of image Ir,0 and
Il,0 is the same as that of image Ir,1 and Il,1.

• The extrinsic and intrinsic camera parameters are cali-
brated.

• The relative 3D motion of an object is assumed to be
locally linear uniform motion in 3D space for a short
time.

Next, we explain the correspondence relation between
the images.

2.1. Relation between identical-camera images

We consider the correspondence relation between im-
ages taken at different timing with an identical camera ( 1©
in Fig. 2). Let a point p0 = [x, y]T in the key frame have
depth Z and 3D motion Tm = [Tmx, Tmy, Tmz]T per im-
age. The corresponding point pk in the k-th frame is repre-



sented as

pk = p0 +
kAxTm

Z − kTmz
, (1)

where

Ax =
[

−f 0 x̂
0 −af ŷ

]
, x̂ = x− u0, ŷ = y − v0, (2)

and the intrinsic camera parameter Aintr is

Aintr =

[
f 0 u0

0 af v0

0 0 1

]
. (3)

The epipolar constraint exists between the two images. The
constraint is underspecified for unknown 3D motion, but if
the motion is known, the epipolar constraint is determined
uniquely.

2.2. Relation between different-camera images

Regarding the correspondence relation between unsyn-
chronized stereo cameras ( 2© and 3© in Fig. 2), we first
explain the relation of 2©. Let the position p′

0 in image Il,0

be the projected point of p0. Then, p′
0 is represented as

p′
0 = p0 +

Ax{λTm + Ts}
Z − λTmz

, (4)

where λ is the time offset between stereo images and Ts is
the camera translation vector.

Next, 3© is explained. The position p′
k, which is in the

k-th image after (or before) is given as

p′
k = p0 +

Ax{(k + λ)Tm + Ts}
Z − (k + λ)Tmz

. (5)

3. Simultaneous estimation algorithm

In this section, the cost function for depth, motion, and
time offset is defined. Then, the solution of the cost function
is explained.

3.1. Cost function

The corresponding positions of p0 in key frame Ir,0 are
determined by minimizing the difference between intensi-
ties within a window area W around p0 and those in se-
quential stereo images. Therefore, the cost function E(m)
is defined below. Minimum E gives unknown parameters
m, which consist of depth Z , 3D motion Tm, and time off-
set λ at point p0,

E(m) =
n∑

k=0

∑
x∈W

[Il,k(x + uk)− Ir,0(x)]2

+
n∑

k=1

∑
x∈W

[Ir,k(x + u′
k)− Ir,0(x)]2 , (6)

where n is a number of sequential frame, vector m is
[Tmx, Tmy, Tmz, Z, λ]T , I∗(x) represents the image inten-
sity at x = [x, y]T , and uk and u′

k are

uk =
Ax{(k + λ)Tm + Ts}

Z − (k + λ)Tmz
, u′

k =
kAxTm

Z − kTmz
. (7)

The first half of eq.(6) indicates SSSD (sum of SSDs) be-
tween sequential images of the different cameras; the last
half means SSSD between sequential images of the identi-
cal camera. Equation (6) is considered to be an application
of the multi-baseline stereo concept[6].

3.2. Minimization of the cost function

For minimizing the cost function, we first approximate
the equation (6). First, we consider that x̃′′ ∼ (I + D)x̃1,
where I is identity matrix and D is a 3× 3 matrix with small
values. First-order Taylor expansion is applied to Ĩl,k(x′′) 2

around x; therefore, we get

Il,k(x + uk)− Ir,0(x) =

Ĩl,k(x′′)− Ir,0(x) ≈ gT
l,kJ

T
l,k∆m + elr,k, (8)

where gT
l,k is the intensity gradient of Ĩl,k, JT

l,k is the Ja-
cobian matrix, and elr,k is the intensity difference between
Ĩl,k and Ir,0. The detailed derivation is shown in Appendix
A.

Identically, we obtain

Ir,k(x + u′
k)− Ir,0(x) =

Ĩr,k(x′′)− Ir,0(x) ≈ gT
r,kJ

T
r,kT

T ∆m + err,k, (9)

where Ĩr,k(x), gT
r,k, JT

r,k, and err,k are the symbols for
which subscript l are transposed to r in eq.(8). Also, the
Jacobian JT

r,k and T are described in Appendix B.

3.2.1 Solution using one point

If the observation point is considered as one, then the cost
function E is represented using eqs. (8), (9) as

E(∆m) =
n∑

k=0

∑
x∈W

[
gT

l,kJ
T
l,k∆m + elr,k

]2

+
n∑

k=1

∑
x∈W

[
gT

r,kJ
T
r,kT

T ∆m + err,k

]2
. (10)

To minimize E, eq. (10) is differentiated partially and we
obtain the following.

∂E

∂∆m
=

nX
k=0

X
x∈W

h
Jl,kgl,kg

T
l,kJ

T
l,k∆m + elr,kJl,kgl,k

i

+

nX
k=1

X
x∈W

h
TJr,kgr,kg

T
r,kJ

T
r,kT

T ∆m + err,kTJr,kgr,k

i
= 0 (11)

1x̃ is a homogenous coordinate of x
2Ĩl,k(x) yields the image made by sub-sampling Il,k at the position of

(x + uk).



The upper equation is put into simple symbols Ao, b, and
∆m. Therefore, the equation is written as

Ao∆m = −b, (12)

where

Ao =
∑n

k=0

∑
x∈W Jl,kgl,kgT

l,kJ
T
l,k

+
∑n

k=1

∑
x∈W TJr,kgr,kgT

r,kJ
T
r,kT

T

b =
∑n

k=0

∑
x∈W elr,kJl,kgl,k

+
∑n

k=1

∑
x∈W err,kTJr,kgr,k.

(13)

In addition, m is given by iteratively solving eq. (12) for
minimizing cost function E. In doing this iteration, updat-
ing rules of m and ∆m are

m←m + ∆m. (14)

In that process, correspondence of all stereo images and se-
quential images are done at once. Therefore, structure and
motion are obtained simultaneously.

3.2.2 Solution using multiple points

The previous section describes the solution using one ob-
servation point. In this section, we will explain the multiple
points’ case. If depth, motion, and time offset are estimated
independently with each point using the previous approach,
it is not good because the time offset is unique within the
image sequence. For that reason, we estimate the cost func-
tion E to optimize depth and motion with each point and
unique time offset within the image sequence.

The cost function is represented by summing of each
point i(= [0, q])

E(∆M) =
q∑

i=0

{
n∑

k=0

∑
x∈W

[
gT

l,k,iJ
T
l,k,i∆mi + elr,k,i

]2

+
n∑

k=1

∑
x∈W

[
gT

r,k,iJ
T
r,k,iT

T ∆mi + err,k,i

]2

}
, (15)

where

∆M = [∆Tm,0, ∆Z0, · · · , ∆Tm,q, ∆Zq, λ]T . (16)

Next, ∆mi = [∆Tmx,i, ∆Tmy,i, ∆Tmz,i, ∆Zi, ∆λ]T is
written using ∆M.

∆mi = KT
i ∆M (17)

KT
i =

4i 4i + 1 4i + 2 4i + 32
6664

0 · · · 0 1 0 · · · 0
3
7775

0 · · · 0 1 0 · · · 0
0 · · · 0 1 0 · · · 0
0 · · · 0 1 0 · · · 0
0 · · · 0 1

As these equations are inserted into eq. (15), the cost func-
tion E is written as

E(∆M) =
q∑

i=0

{
n∑

k=0

∑
x∈W

[
gT

l,k,iJ
T
l,k,iK

T
i ∆M + elr,k,i

]2

+
n∑

k=1

∑
x∈W

[
gT

r,k,iJ
T
r,k,iT

TKT
i ∆M + err,k,i

]2}
. (18)

To minimize the cost function, the upper equation is par-
tially differentiated by ∆M. Accordingly,

∂E
∂∆M =

∑q
i=0 Ki

{∑n
k=0

∑
x∈W

[
Jl,k,igl,k,igT

l,k,iJ
T
l,k,i

]
+

∑n
k=1

∑
x∈W

[
TJr,k,igr,k,igT

r,k,iJ
T
r,k,iT

T
]}

KT
i ∆M

+
∑q

i=0 Ki

{∑n
k=0

∑
x∈W [elr,kJl,k,igl,k,i]

+
∑n

k=1

∑
x∈W [err,k,iTJr,k,igr,k,i]

}
= 0.

(19)
The upper equation is put into simple symbols of Am and
b. Consequently, the equation is written as

Am∆M = −b, (20)

where

Am =
∑q

i=0 Ki

{∑n
k=0

∑
x∈W

[
Jl,k,igl,kgT

l,k,iJ
T
l,k,i

]
+

∑n
k=1

∑
x∈W

[
TJr,k,igr,k,igT

r,k,iJ
T
r,k,iT

T
]}

KT
i

b =
∑q

i=0 Ki

{∑n
k=0

∑
x∈W [elr,k,iJl,k,igl,k,i]

+
∑n

k=1

∑
x∈W [err,k,iTJr,k,igr,k,i]

}
.

(21)
Optimized M is obtained by iteratively solving eq. (21) for
minimizing cost function E. In doing this iteration, updat-
ing rules of M and ∆M are

M←M + ∆M. (22)

In that process, correspondence of all stereo images and
sequential images about multiple points are done at once.
Therefore, the structure and motion of these points as well
as unique time offset are estimated simultaneously.

In the case of synchronized cameras (i.e. time offset λ =
0) and unsynchronized cameras with known time offset λ,
the structure and motion are obtained simultaneously using
our framework. For that case, the derivations of eq.(8) and
(9) are identical except the λ parameter. Thereby, Jacobian
matrices are given by a partial differential with depth and
3D motion, and T becomes I.

3.3. Implementation

As we described above, the structure, its motion, and
time offset can be estimated. We summarize these estima-
tion steps of multiple points’ case (Fig. 3). First, select
points 3 from the key frame. Next, estimate the unknown

3Shi et al.’s method[8] is employed to detect feature points.



for (iter=0 to iter max or convergence condition)
if iter is 0

Set initial value to M.
end if.
for (k=0 to max image)

for (i=0 to max point)
Warp image Ir,k,i and get Ĩr,k,i using mi (k �= 0).
Warp image Il,k,i and get Ĩl,k,i using mi.
Calculate gr,k,i, Jr,k,i, err,k,i in eq.(39) (k �= 0).
Calculate gl,k,i, Jl,k,i, elr,k,i in eq.(33)

end for loop.
end for loop.
Calculate Am and b in eq.(21).
Calculate ∆M using eq.(20).
Update M←M + ∆M in eq.(22).

end for loop.
3D MOTION, DEPTH for each point and TIME
OFFSET parameters are given.

Figure 3. Optimization step of cost function in case of multiple
points.

Figure 4. Unsynchronized stereo image pair.

vector M which contains depth, motion, and time offset ac-
cording to Fig. 3.

We use a Gaussian pyramid for reducing the iteration
number and are more robust about initial value. In this
paper, we assume that stereo cameras are set up paral-
lel. We also use the same intrinsic camera parameters for
easy expression of formulation. Therefore, if the setting of
stereo cameras is not parallel or intrinsic camera parameters
are not the same, image rectification[1] is applied apriori.
Consequently, the stereo cameras are virtually parallel and
have the same intrinsic camera parameters.

4. Experiments

4.1. Synthetic images

Figure 4 shows input unsynchronized stereo images.
A stereo camera is 0.77 [m] baseline and parallel layout.
Therefore, the epipolar line of this stereo image is horizon-
tal, but it is apparent that the same point between stereo im-

Figure 5. Layout and objects’ motion.

Figure 6. Estimated 3D positions and motions.

Figure 7. RMS Errors of depth and 3D motions.

ages does not exist on the epipolar line because of the time
offset. The layout and objects’ motion are shown in Fig. 5.
The two objects are flat and have different 3D motions and
depths. The left object A is 10.6 [m] depth and the right
object B is 14.4 [m].

Two pairs of unsynchronized sequential stereo images
that are different by one frame are used in this experiment.
Initial values of depth, 3D motion, and time offset are set
uniformly as Z = 12 [m], Tm = [1e− 5, 1e− 2, 1e− 1]T ,
and λ = 0, respectively.

The estimated time offset is −1.006 [frame lag], of
which the true value is −1.0. Demonstrably, it accurately
estimated the true value. We next compare the proposed
method and the conventional method. The conventional
method is that a point in Ir,0 corresponds to Il,0 (unsynchro-
nized stereo pair). Then this point is tracked to Ir,1. Finally,
the tracked point in Ir,1 corresponds to Il,1. Therefore, an
identical point has a 3D position at each time. The 3D mo-



tion is given as the difference between these estimated 3D
positions.

Figure 6 shows the estimated 3D position and its 3D mo-
tion with an arrow. The direction and length of the arrows
respectively represent the motion direction and its magni-
tude. Red and blue arrows respectively denote the proposed
method’s result and the conventional method’s result.

Figure 7 shows the RMS error of depth and each axis
of 3D motion, of which the vertical axis is a log scale. The
RMS errors of the conventional method are larger than those
of the proposed method in all results. The conventional
method is difficult to correspond between the asynchronous
stereo images. Even if correspondence were shown accu-
rately, the estimated 3D position could be wrong because
the locations of objects differ among stereo images.

4.2. Real images

The actual experiment described here used a Dragonfly
camera (Point Grey Research Inc.) and a typical retail-
purchased video camera (VX-2000; Sony Corp.). These
cameras are unsynchronized. We cannot know the real time
offset between these cameras. Figure 8 shows the input im-
ages; two pairs of unsynchronized images are used. A run-
ning model car A and a teddy bear C are shown. The
stereo rig is fixed in tripod stand. Therefore, the carved or-
nament B and background are stationary.

The respective initial values of depth, motion, and time
offset are 0.7 [m], 0.001 [m/f], and 0.0. The estimated time
offset is 0.719 [frame lag]. Figure 9 shows estimated struc-
tures with textures observed from some viewpoints. The 3D
positions of these objects are reconstructed well.

Figure 10 shows the estimated 3D position and its 3D
motion using an arrow with direction and length. The
lengths of the arrows are expanded two times for ease of
view. The viewpoint of this figure is nearly the same as that
in the middle of Fig. 9. The 3D motion of A is uniform in
both direction and length, and is different from the motion
of B and C . The object B has only a + mark with no
arrow, i.e. no motion for stationary status. By these results,
it is apparent that the structure and motion are appropriately
and accurately estimated.

5. Conclusions

We proposed the method of estimating structure, mo-
tion, and time offset using unsynchronized stereo cameras.
The contribution of our method consists of two parts: The
first is the method of corresponding all stereo images and
sequential images simultaneously. Using that method, we
can get structure and motion at the same time. Our second
contribution is the method of estimating structure, motion,
and time offset simultaneously using unsynchronized stereo

Figure 8. Unsynchronized stereo images taken by cameras of dif-
ferent types.

Figure 10. Estimated 3D positions and motions.

cameras. This is done by taking advantage of the first con-
tribution scheme. Finally, we present the experimental re-
sults to show the effectiveness of our method.

Future work is intended to reduce the calculation time
and to handle spatial and temporal occlusions.
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A. Derivation of Jacobian Matrix for a
Different-Camera Pair

Consider that the changed portions of uk in eq.(7) are

u∆
k =

Ax{(k + λ + ∆λ)(Tm + ∆T) + Ts}
Z + ∆Z − {(k + λ + ∆λ)Tmz + ∆Tz} . (23)

The denominator of the upper equation is described as

1
Z + ∆Z − {(k + λ + ∆λ)Tmz + ∆Tz} =

1
Żk

+ ξ, (24)

where

Żk = Z − (k + λ)Tmz

ξ = −{∆Z−(k+λ)∆Tz −∆λTmz}
Ż2

k
+Żk{∆Z−(k+λ)∆Tz−∆λTmz} .

(25)

Then, if the changed portions of uk are assumed to be small,
then

Z − (k + λ)Tmz >> ∆Z − (k + λ)∆Tz −∆λTmz.

We obtain ξ as

ξ ≈ ξ′ =
−∆Z + (k + λ)∆Tz + ∆λTmz

Ż2
k

. (26)

Equation (23) is described using ξ′ as the following.

u∆
k =

„
1

Żk

+ ξ′
«

Ax{(k + λ + ∆λ)(Tm + ∆T) + Ts} (27)

Equation (27) is altered according to two considerations:
one is disregard of the sections that contain ∆ squared be-
cause of smallness; the other is Ts = [Tsx,0, 0]T for a par-
allel setup.

u∆
k ≈

“
1

Żk
+ −∆Z+(k+λ)∆Tz+∆λTmz

Ż2
k

” »
α
β

–

+ 1
Żk

2
664

−(k + λ)f∆Tx + (k + λ)x̂0∆Tz

+ (−fTmx + x̂0Tmz)∆λ

−(k + λ)af∆Ty + (k + λ)ŷ0∆Tz

+ (−afTmy + ŷ0Tmz)∆λ

3
775

(28)

Therein,

α = (k + λ)(−fTmx + x̂0Tmz)− fTsx

β = (k + λ)(−afTmy + ŷ0Tmz).
(29)

Using a homogeneous coordinate, the upper equation is de-
scribed as:

x + u∆
k =


 γ 0 α′

Żk

0 γ β′

Żk

0 0 1





 κ

γ 0 ζ
γ

0 κ
γ

η
γ

0 0 1




︸ ︷︷ ︸
I+D

x̃, (30)



where

x̃ = [x, y, 1]T

α′ = −(k + λ)(fTmx + u0Tmz) − fTsx

β′ = −(k + λ)(afTmy + v0Tmz)

γ = 1 + (k+λ)Tmz

Żk

κ = 1 + 1

Żk
[(k + λ)(Tmz + ∆Tz) + Tmz∆λ]

+ξ′(k + λ)Tmz

ζ = − 1

Żk
[(k + λ)(f∆Tx + u0∆Tz)

+(fTmx + u0Tmz)∆λ] + ξ′α′

η = − 1

Żk
[(k + λ)(af∆Ty + v0∆Tz)

+(afTmy + v0Tmz)∆λ] + ξ′β′.

(31)

Next, we consider x̃′′ ∼ (I + D)x̃, in which I is the
identity matrix and D is a 3 × 3 matrix with small values.
First-order Taylor expansion can be applied to Ĩl,k(x′′) 4

around x, we get

Ĩl,k(x′′)− Ir,0(x) ≈ gT
l,kJ

T
l,k∆m + elr,k, (32)

where

gT
l,k = ∇Ĩl,k(x)

JT
l,k = ∂x′′

∂∆m

∆m = [∆Tmx, ∆Tmy, ∆Tmz, ∆Z, ∆λ]T

elr,k = Ĩl,k(x) − Ir,0(x)

. (33)

The context of the Jacobian matrix is written as

∂x′′

∂∆m
=

∂d
∂∆m

∂x′′

∂d
. (34)

d is the vector which aligns D line by line. The last half of
the right side in eq. (34) is represented [10] as

∂x′′

∂d
=

[
x y 1 0 0 0 −x2 −xy −x
0 0 0 x y 1 −xy −y2 −y

]T

. (35)

In addition, ∂d
∂∆m is given by partially differentiating D in

eq. (30) with ∆m. Therefore, the Jacobian matrix is given
by substituting eq. (35) and ∂d

∂∆m to eq. (34). Consequently,
we get

JT
l,k =

∂x′′

∂∆m
=

1
γ




j11 0
0 j22
µ ν

j41 j42
j51 j52


. (36)

In those equations,

j11 =− (k+λ)f

Żk
, j22 = − (k+λ)af

Żk

j41 =−α′+(k+λ)xTmz

Ż2
k

, j42 = −β′+(k+λ)yTmz

Ż2
k

j51 =− fTmx−(x−u0)Tmz

Żk
+

α′Tmz+(k+λ)xT2
mz

Ż2
k

j52 =− afTmy−(y−v0)Tmz

Żk
+

β′Tmz+(k+λ)yT2
mz

Ż2
k

µ = 1

Żk
(k + λ)(x − u0) + 1

Ż2
k

(k + λ){α′ + (k + λ)Tmzx}
ν = 1

Żk
(k + λ)(y − v0) + 1

Ż2
k

(k + λ){β′ + (k + λ)Tmzy}.
4Ĩl,k(x) to represent the image that is generated by subsampling Il,k

at the position of (x + uk).

B. Derivation of Jacobian Matrix for an
Identical-Camera Pair

The u′
k in eq.(7) is resolved in an identical manner as uk

in the Appendix A. Finally, the Jacobian is given as

JT
r,k =

∂x′′

∂∆m′ =
1
γ′′




− kf

Z̈k
0

0 − kaf

Z̈k

µ′′ ν′′

−α′′+kxTmz

Z̈2
k

−β′′+kyTmz

Z̈2
k


,

(37)
where

∆m′ = [∆Tmx, ∆Tmy, ∆Tmz, ∆Z]T

Z̈k = Z − kTmz

α′′ = −k(fTmx + u0Tmz)
β′′ = −k(afTmy + v0Tmz)
γ′′ = 1 + kTmz

Z̈k

µ′′ = 1
Z̈k

k(x− u0) + 1
Z̈2

k

k(α′′ + kTmzx)

ν′′ = 1
Z̈k

k(y − v0) + 1
Z̈2

k

k(β′′ + kTmzy).

In a similar manner, the difference of the image value is

Ĩr,k(x′′)− Ir,0(x) ≈ gT
r,kJ

T
r,k∆m′ + err,k, (38)

where

gT
r,k = ∇Ĩr,k(x)

JT
r,k = ∂x′′

∂∆m′

err,k = Ĩr,k(x)− Ir,0(x)
(39)

∆m′ = TT ∆m , TT =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0


 . (40)

Equation (38) is expressed by considering eq. (40); thus,
we obtain

gT
r,kJ

T
r,k∆m′ + err,k = gT

r,kJ
T
r,kT

T ∆m + err,k (41)


